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Recent work has shown the benefits of synthetic data for use in computer
vision, with applications ranging from autonomous driving [17, 18] to face land-
mark detection [20] and reconstruction [19]. There are a number of benefits of
using synthetic data from privacy preservation and bias elimination [1, 12] to
quality and feasibility of annotation [19]. Generating human-centered synthetic
data is a particular challenge in terms of realism and domain-gap, though re-
cent work has shown that effective machine learning models can be trained using
synthetic face data alone [20]. We show that this can be extended to include the
full body by building on the pipeline of Wood et al. [20] to generate synthetic
images of humans in their entirety, with ground-truth annotations for computer
vision applications.

In this report we describe how we construct a parametric model of the face
and body, including articulated hands; our rendering pipeline to generate realis-
tic images of humans based on this body model; an approach for training DNNs
to regress a dense set of landmarks covering the entire body; and a method for
fitting our body model to dense landmarks predicted from multiple views.

1 Shape Model

1.1 Model Construction

Our body model combines the high fidelity face model of Wood et al. [20] with
the popular body and hand model SMPL-H [14], which itself combines the
articulated hands of MANO [14] with the SMPL body model [9]. So, we obtain
a parametric model of the full human body with control of body shape and pose
as in SMPL-H [14], and of facial and identity and expression as in Wood et al.
[20], see Figure 1.

The body mesh is made up of N = 12943 vertices and 12726 polygons with
a skeleton of K = 54 joints: 22 for the body (the SMPL skeleton [9]), 15 per
hand (as in MANO/SMPL-H [14]) and 2 for the eyes.
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(a) Head model of Wood
et al. [20]

(b) SMPL-H body
model [14]

(c) Our combined body
and head model

Figure 1: Template meshes of the constituent models (left two) used in our
combined shape model (right), with head region inset for full-body models. Our
combined model has significantly higher fidelity on the face than the SMPL-H
body model [14].

The body mesh vertex positions are defined by mesh generating function

M(~γ, ~β, ~ψ, ~θ) :R|~γ|+|~β|+|~ψ|+|~θ|→RN×3 which takes parameters ~γ ∈ R|~γ| for face

identity, ~β ∈ R|~β| for body identity, ~ψ ∈ R|~ψ| for expression, and ~θ ∈ RK×3 for
skeletal pose.

M(~γ, ~β, ~ψ, ~θ) = L(T (~γ, ~β, ~ψ, ~θ), ~θ,J (~γ, ~β); W)

where L(X, ~θ,J; W) is a standard linear blend skinning (LBS) function that
rotates vertex positions X ∈ RN×3 about joint locations J ∈ RK×3 by local
joint rotations ~θ, with per-vertex hand-authored skinning weights W ∈ RK×N
determining how rotations are interpolated across the mesh.

T (~γ, ~β, ~ψ, ~θ) :R|~β|+|~γ|+|~ψ|+|~θ| → RN×3 constructs an unposed body mesh by
adding displacements to the template mesh T ∈ RN×3, which represents the
average body in T-pose with neutral expression:

T (~γ, ~β, ~ψ, ~θ)jk = T
j

k + γiS
ij
k + βiU

ij
k + ψiE

ij
k + P (~θ)jk

given linear face identity basis S ∈ R|~γ|×N×3, body identity basis U ∈
R|~β|×N×3, expression basis E ∈ R|~ψ|×N×3 and P (~θ) which represents pose-

dependent blendshape offsets for pose parameters ~θ (see SMPL [9] for more
details). Note the use of Einstein summation notation in this definition and

below. Finally, J (~γ, ~β) :R|~γ|+|~β| → RK×3 moves the joint locations to account
for changes in identity:

J (~γ, ~β)jk = J(T
j

k + γiS
ij
k + βiU

ij
k)
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Figure 2: Head and neck topology of our
body model.

Figure 3: Head mask used for blend-
ing bases.

Where J is a modified version of the SMPL joint regressor, learnt as part of
the SMPL model.

The face identity, S, and expression E bases are those from Wood et al. [20],
and the body identity basis U is that from the neutral SMPL-H model, which
is a PCA basis learnt from scans of humans. The pose-dependent blendshapes
are also taken from the neutral SMPL-H model.

The size of the face identity basis is |~γ| = 260 , and the body identity basis

is |~β| = 300. The expression basis has |~ψ| = 224 components.

1.1.1 Template Mesh

To construct the template mesh, T , we manually align the template of Wood
et al. [20] to the head of the SMPL template. Once aligned the head of SMPL
and lower neck of the new head are removed and the two partial meshes merged.
The topology around the join was hand-crafted to create a smooth transition
given the different density of the two meshes, see Figure 2.

1.1.2 UV Space

To create the UV space we started from the SMPL UV space and manually
aligned the UVs for the new head vertices with the original boundaries and
features of the head in the SMPL UV space. This means that the UV space
of SMPL and our model are functionally identical so textures can be reused
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directly. Elements that are not present in SMPL such as the eyes and mouth
parts were added in previously unused areas of the UV space.

1.1.3 Basis Transfer

Given that we have changed the topology of the mesh significantly from both
Wood et al. [20] and SMPL, we need to adapt all of the bases associated with
these source models to work for ours. That is face and body identity, expression,
pose-dependent blendshapes, skinning weights and the joint regressor.

We calculate a mapping function FQ : R|Q|×m → RN×m which transforms
vertex data from a given topology Q to that of our model, where |Q| is the
number of vertices in model Q. Specifically, we calculate Fhead and Fsmpl.

This mapping function FQ is determined by finding, for every vertex in our
template mesh T, the closest point on the surface of the template mesh of Q.
This is then stored as barycentric coordinates on the triangle which that point
lies within, we can then transform the input data for a given vertex in our model
by taking the sum, weighted by barycentric coordinates, of the data from the
vertices of that triangle in Q. This approach works because all data (identity
basis, pose basis etc.) for all models is stored per vertex.

We can then apply this mapping function to bases directly to map them
from the original head or body models to our model, e.g., the face identity basis:
S = Fhead(Shead). Vertex groups can be mapped by creating a mask containing
one where a vertex in the group and zero where it isn’t, and applying F to this
mask. Vertices are then determined to be in the vertex group for our model if
the mapped value for the vertex is above some threshold value.

In order to prevent the head identity basis affecting the lower neck area we
mask it to only apply to the head. Similarly, to prevent the SMPL identity
basis and pose dependent blendshapes affecting the head, we mask these to
only apply to the body. In order to preserve variation in head position due to
body identity, we take the average of the SMPL identity basis over the masked
area and apply it uniformly to all masked vertices. The mask is constructed
by taking the SMPL skinning weights for the head joint, mapped to our model,
and adding the eyes and mouth parts from Wood et al. [20], see Figure 3.

It is also not sufficient to simply map the SMPL joint regressor to our model
using F , as the per-joint regressor must sum to exactly one. Instead we calculate
a one-to-one vertex mapping from SMPL to our model by taking the closest
vertex pairing on the two template meshes. Given that our model is based on
SMPL we get an exact match for all but the head and neck joints, where we get
a very close approximation. As we have added additional joints for the eyes,
we also need to construct eye joint regressors. We do this by simply taking the
four extreme points of each eyeball in the x and y directions.

Similarly the skinning weights for the eyeballs need to be overridden, remov-
ing any influence from other joints and setting the influence of the applicable
eye joint for all eyeball vertices to one. The mouth parts skinning weights are
also overridden to completely follow the head joint, as the mapping function
above can result in the neck joint having some influence.
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1.2 Identity Sampling

To sample face identity we fit a multi-variate Gaussian to male, female and
all identities in the training set of Wood et al. [20] (all gender labels are self-
reported). This lets us randomly sample male, female and neutral (non-binary)
facial identities.

For body identity, SMPL has three versions of the model: male, female and
neutral but for our model we use just one, neutral, model. As such it is useful to
be able to transfer shape parameters from gendered models to neutral, that is
for gendered parameters ~βg, find neutral parameters ~βn such that SMPLg(~βg) =

SMPLn(~βn) where SMPLg is the mesh generating function for the SMPl model
of gender g.

So for template vertices T, shape basis S and shape parameters ~β, we want
to find template offset ~o and identity mapping M such that

Tg + ~βg · Sg = Tn + (~og + ~βg ·Mg) · Sn
To do this we solve the two sub-problems finding the least squares solution

for:

Tg = Tn + ~og · Sn
Tg −Tn = ~og · Sn

~o = Sn/(Tg −Tn)

and

~βg · Sg = ~βg ·Mg · Sn
Sg = Mg · Sn
M i
g = Sn/S

i
g

for the latter we solve for each element of the shape basis, Sig individually.
So given this mapping information, ~og and Mg, for both male and female

SMPL models (g ∈ [m, f ]) we can simply sample the unit normal to get identity
~βg and for given gender, g, transfer to the neutral identity (usable by our model)
~βn = ~og + ~βg ·Mg.

We currently have no concept of dependence between the body and face
identities, meaning there can be significant mismatch in the shape. In practice
we find that sampling with coherent gender produces plausible results in most
cases. Joint sampling of face and body identity could be an interesting direction
for future work. Example sampled identities can be seen in Figure 4. In general
we sample male, female and neutral identities in equal proportion to ensure we
cover the gender spectrum sufficiently.
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(a) Male.

(b) Female.

(c) Neutral.

Figure 4: Randomly sampled identities.

2 Rendering Pipeline

We build on the pipeline of Wood et al. [20] using the Cycles rendering engine [2].
Many elements are identical such as the hair and environment libraries. We
additionally add a shadow-catching plane to integrate the subject better with
the scene now that the legs/feet are included. Figure 5 shows some of the final
renders from the pipeline.

Primary differences are the texture library used for the rest of the body,
clothing for the body (which now needs to adapt to pose changes rather than
being static as in Wood et al. [20]), and the pose library. Details of these
additions are given in the following section. Figure 6 shows how we construct a
synthetic image of a human from the component parts.

We are able to generate a wide variety of ground truth data from our pipeline,
along with RGB images, in the same fashion as Wood et al. [20]. Figure 7
shows some example ground truth annotations for an image generated using
our pipeline.

2.1 Textures

For the face we use the high quality skin texture library of Wood et al. [20], as
shown in Figure 8a. For the body we use a set of 25 high quality textures from
3D body scans [16], as shown in Figure 8b. For each scan we extract albedo,
displacement and an approximated bump map for high-frequency details in the
SOMA UV space described above.

Sampling face and body textures independently can result in significant mis-
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Figure 5: Example images generated using our human synthetics pipeline.
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(a) Sampled identity. (b) Clothing. (c) Hair.

(d) Textures/Shaders. (e) Pose. (f) Environment.

Figure 6: Stages of our pipeline to construct a synthetic human.

(a) RGB (b) Depth (c) Segmentation (d) Vertices

(e) Albedo (f) UVs (g) Normals (h) Skeleton

Figure 7: Many ground truth label types can be generated using our pipeline.
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(a) Face [20]. (b) Body.

Figure 8: Examples of skin textures from our library.

match in skin tone (see Figure 9a).
To address this we first sample a head texture from the library as our head

texture library has greater diversity, then select a random body texture with
average skin tone within some bound of perceptual similarity to that of the
face using Equation 1 to determine perceptual color difference from input RGB
values.

∆C =

√(
2 +

r̄

256

)
+ ∆R2 + 4×∆G2 +

(
2 +

255 + r̄

256

)
×∆B2 (1)

Where r̄ is the average red component of the two colors.
In general this provides quite close matches in skin tone between face and

body, though there are still minor mismatches (see Figure 9b). To address this
we adjust the mean and variance of pixel values in the body texture to match
that of the face texture, ensuring a quite precise match in skin tone of the body
with the face (see Figure 9c).

2.2 Clothing

Wood et al. [20] use mesh based assets for adding clothing and accessories to face.
For headwear, facewear (masks, eye-patches) and glasses the same technique can
be used, simply parenting these assets to the head bone of the full body. But
other clothing items must now adapt to the dynamic pose of the body. As such,
we use displacement maps to model clothing items [10] We split these assets into
tops and bottoms (including shoes), as well as using this technique to model
some further accessories such as gloves, watches, bracelets and rings.

Dynamic subdivision lets us produce very high fidelity results using this
technique. For each asset we author normal, roughness and metallic maps in
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(a) Random sampling. (b) Filtered sampling. (c) Color adjustment.

Figure 9: Skin color matching process. We filter to achieve approximate matches
when sampling then apply a further color correction.

addition to albedo and displacement, providing a high level of realism in terms
of shading.

The clothing items are authored using Marvelous Designer [6] and displace-
ment maps baked using Marmoset Toolbag [7]. Manual cleanup and material
detail is authored in Substance Painter [5]. Examples of some of the assets in
our displacement map clothing library can be seen in Figure 10.

There are a few significant shortcomings of this method, most obviously it is
not possible to represent loose clothing using displacement maps. Furthermore,
simulation is impossible; the clothing must directly follow the body mesh under-
neath it when animated. We find that displacement maps can give surprisingly
compelling results for more than just very tight-fitting clothing as one might
expect, but cannot be used for items such as dresses and skirts, and items like
ties or jackets do not behave realistically in certain poses. To address these is-
sues we plan to incorporate mesh based clothing in the future, along with cloth
simulation.

2.3 Pose Library

For the face, the expression library of Wood et al. [20] is used. For the body
we use the AMASS dataset [11] as an initial pose library. To this we add data
collected using a motion-capture stage and processed using MoSh [8]. Some
of this motion-capture data is targeted specifically to fill gaps in the existing
library such as poses with crossed legs. In total our body pose library contains
over 2 million frames at 30 fps, so approximately 19 hours of motion data.

In some cases the pose data is captured including articulated hand pose, but
in many cases this is missing. For frames without hand pose we randomly sample
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Figure 10: Examples of displacement clothing from our library including tops,
bottoms, bracelets, gloves, ring and watches.

poses for each hand from the MANO dataset [14] and splice these on. Face
expression (and eye pose) and body pose are sampled independently and spliced
together. In general we find this produces very plausible results, particularly
for single-frame (i.e., non-sequential) data.

When collecting motion-capture data it is common to start (and end) the
motion sequence in a canonical pose, often T-pose. As a result we found that
when sampling poses uniformly we had a very high occurrence of these T-poses,
as such we use a Gaussian mixture model (GMM) to classify poses into a set of
coarse classes one of which is T-pose. This allows us to significantly down-weight
T-poses in our resulting samples.

In addition, we found relatively neutral, standing poses were common and
typically not useful when it comes to training DNNs for downstream tasks such
as landmark detection. Consequently, we also up-weight frames with higher
mean absolute joint angles, i.e., frames which we consider to have more ‘in-
teresting’ poses. We employ a similar approach for sampling facial expressions
from the expression library of Wood et al. [20], weighted by mean blendshape
activation. Finally, we randomly mirror body poses to effectively double the
number of unique poses.

Examples of poses sampled from our library using the above technique are
shown in Figure 11.

3 Landmark Regression

Perhaps one of the most common use-cases for this kind of human-centred visual
data is detection and tracking of people within images. As such, we define
landmark definitions corresponding to vertices of our body model defined in
section 1. A sparse definition of just 36 landmarks (Figure 12a) which is used
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Figure 11: Example poses sampled from our body pose library with spliced
facial expressions from Wood et al. [20] and hand poses from MANO [14] in
some frames.

(a) Sparse (36). (b) Dense (1428).

Figure 12: Full-body landmark sets used for (a) detection and (b) dense track-
ing.

for detection and tracking with the sliding window approach outlined by Wood
et al. [19]. As well as a dense definition of 1428 landmarks (Figure 12b) used for
model fitting, see section 4. Using these definitions it is trivial to generate 2D
landmark annotations for our synthetic data using the vertex location outputs
(Figure 7d).

We render a dataset of 100,000 images containing a single person, with 20,000
identities and 5 frames per identity, using the pipeline outlined in section 2.
Each frame contains different pose and environmental lighting to increase the
diversity of the data. An example of such an input image used for training is
shown in Figure 7a above.

To regress sparse landmarks we train a MobileNetV2 [15] model, for dense
landmarks we train a ResNet101 [4] model, both with 256 × 256 pixel input
image size. In both cases we train using the procedure of Wood et al. [19]
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Figure 13: Sample images from our hand dataset.

with Gaussian Negative Log Likelihood (GNLL) loss and heavy use of data
augmentation techniques. The models therefore predict 2D landmark positions
as well as per-landmark uncertainty values.

3.1 Hand and face sub-networks

When predicting landmarks for the full body as described above we find perfor-
mance for the hands is poor. This is not surprising given how small the hand is
in the 256 pixel ROI. The shape of the hand and how it moves also result in high
levels of self-occlusion, making this task especially challenging. Consequently,
we train dedicated DNNs for hand landmark prediction using a ROI including
just the hand as input.

We generate a dataset of 100,000 synthetic images cropped to include just
the left hand, examples are shown in Figure 13. We also define sparse and
dense landmark definitions for just the hands shown in Figure 14. In the dense
case the hand landmarks are a subset of the full-body definition in Figure 12b
meaning they have direct correspondence.

Again we train using the procedure of Wood et al. [19], using MobileNetV2
[15] in the sparse case and ResNet18 [4] in the dense case with 128× 128 pixel
input image size. We increase the amount of rotation augmentations used to
further increase data diversity. We also increase the frequency of motion blur
augmentation to match observations in real data due to the typically faster
motion of the hands than other body parts.

At run-time we first predict full-body landmarks and use these to extract and
approximate ROI around the hand. We then use the sparse DNN to iteratively
refine the ROI and finally run the dense DNN to get output landmarks. Due
to the direct correspondence in the dense definition we can overwrite the hand
landmarks from the initial prediction, interpolating at the wrist.

As our network has only seen left hands, and our initial full-body prediction
disambiguates the left and right hands, we simply mirror the ROI for the right
hand and input it to our left hand landmark DNNs. The returned landmarks
are then mirrored back before use.

Similar to hands, we find that face landmarks are also not predicted accu-
rately when regressing full-body landmarks with a single DNN. This is again
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(a) Sparse hand (21). (b) Dense hand (141) .

Figure 14: Hand landmark sets used for (a) detection and (b) dense tracking.

likely to be due to the small size of the face in the 256 pixel ROI used in those
models. As such, we also take a dedicated face ROI and use the DNN of Wood
et al. [19] to regress accurate face landmarks. As the face model used is the
same, the face landmarks also retain a direct correspondence, so we can again
overwrite those of the initial prediction.

3.2 Results

Some results of our dense full body landmark prediction method (including
hand sub-networks) are shown in Figure 15. We are able to deal with a large
range of pose, shape, appearance and environment. In some cases we are even
able to deal with loose clothing, children and prosthetic limbs despite these not
being modelled in our synthetic data. Particularly useful is the ability of the
network to predict plausible landmarks with high uncertainty in cases of partial
occlusion, like when one arm is totally hidden by the body.

Examples of failures of our method are shown in Figure 16. We particularly
struggle with extreme poses, heavy (self-)occlusion, loose clothing, missing and
prosthetic limbs. This is likely because many of these elements are not currently
modelled explicitly in our synthetics data generation pipeline. In fact, missing
limbs cannot even be represented by our parametric body model described in
section 1. However, due to our use of GNLL loss and resulting prediction of
uncertainties, we typically get an accurate indication of where these errors are
occurring, as demonstrated in many of these examples. Future work on our
shape model and rendering pipeline will aim to fill these gaps in representation
of real world data.
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Figure 15: Dense landmark tracking results. Confidence is colour coded, with
green being high and red being low. Images collected from https://pexels.

com.
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Figure 16: Examples of failures of our landmark prediction method. Confidence
is colour coded, with green being high and red being low. Images collected from
https://pexels.com.
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4 Model fitting

It is often useful not just to have landmarks, but to have a parameterized rep-
resentation of a person’s shape and motion . We extend the approach of Wood
et al. [19] from face reconstruction to fit our complete body model described in
section 1 to the dense landmarks output by the pipeline of section 3.

So, given probabilistic dense 2D landmarks L, our goal is to find optimal
model parameters Φ∗ that minimize the following energy:

E(Φ;L) = Elandmarks︸ ︷︷ ︸
Data term

+

Eface identity + Ebody identity + Eexpression + Epose + Etemporal + Eintersect︸ ︷︷ ︸
Regularizers

Where we are optimizing Φ, that is face identity ~γ, body identity ~β, ex-
pression for each frame Ψ, pose for each frame Θ, and camera rotations R and
positions T.

Φ = {~γ, ~β,ΨF×|~ψ|,ΘF×|~θ|︸ ︷︷ ︸
Human

; RC×3,TC×3︸ ︷︷ ︸
Cameras

}

Where F is the number of frames in the given sequence and C is the number
of cameras. Elandmarks takes the same form as in Wood et al. [19]. Eface identity,
Eexpression, Etemporal and Eintersect also follow the implementation of Wood et al.
[19].

For Ebody identity we use an L2 prior given that SMPL-H uses a variance-
scaled PCA basis for identity. It may be beneficial to use a GMM body identity
prior (as we do for the face) to promote more plausible body shape, we leave
this is a potential direction for future work.

For pose, instead of using an L2 prior as in Wood et al. [19], we use three
GMM priors. One for body pose (excluding hand and eye pose) with a GMM
fit to a subset of our pose library, and one for each hand with the GMMs fit
to the MANO dataset [14] for each hand respectively. This helps to promote
plausible poses in a data-driven way. More advanced pose priors (e.g., DNN)
could provide better results [13], again we leave this for future work.

In cases of 2D-to-3D lifting such as this, bodies provide a much harder
challenge than faces. After projection there is much more ambiguity in limb
position, for example, due to the high range of motion of some body parts
compared to the face. Further, self-occlusion is much more common for bodies,
while for faces symmetry provides a very strong prior when limited self-occlusion
does occur. As such, we observe that effective model fitting is much more
difficult than for faces, and the monocular case is often ill-posed. We find that
multiple camera views (C ≥ 3) are required and results improve significantly
for higher numbers of cameras.
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Figure 17: Example model fitting results on data collected using three Azure
Kinect RGB cameras. Showing three viewpoints for various subjects and poses,
and a single viewpoint for four diverse poses in the bottom right.

We also find reasonable initialization to be more important than for faces,
and significantly harder. For faces simple 6-DoF alignment using PnP is suf-
ficient to get a very good starting point for the optimizer, but in the case of
the full body this gives quite poor results. Particularly for fine details like hand
pose which will struggle to converge without good initialization, even if the
landmarks are highly accurate.

To address this we initialize the pose using a machine learning approach to
predict pose directly from one of the available views [3], providing the optimizer
with a very good starting point. The multi-view landmarks are then used by
the optimizer to achieve highly accurate 3D consistency across views, and so a
very precise registration in world-space. Many machine learning approaches do
not take multi-view data as input and, even when they do, struggle to achieve
very precise alignment and consistency between views as required here. Future
work might attempt to improve this initialization step to use multi-view data
and reduce the need for the secondary optimization step.

Some results of our model fitting approach are shown in Figure 17.
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