
Jacdac: Service-based Prototyping of Embedded Systems

Jacdac: Service-based Prototyping of Embedded Systems
Thomas Ball

tball@microsoft.com
Microsoft

USA

Peli de Halleux
jhalleux@microsoft.com

Microsoft
USA

James Devine
devinejames@microsoft.com

Microsoft
UK

Steve Hodges
shodges@microsoft.com

Microsoft
UK

Michal Moskal
mimoskal@microsoft.com

Microsoft
USA

ABSTRACT
The traditional approach to programming embedded systems is
monolithic: firmware on a microcontroller contains both applica-
tion code and the drivers needed to communicate with sensors and
actuators, using low-level protocols such as I2C, SPI and RS232. In
comparison, software development for the cloud has moved to a
service-based development and operation paradigm: a service pro-
vides a discrete unit of functionality that can be accessed remotely
by an application program, or other service, but independently
managed and updated.

We propose, design, implement and evaluate a service-based
approach to prototyping embedded systems called Jacdac. With
Jacdac, each sensor/actuator in a system is paired with a low-cost
microcontroller that advertises the services that represent the func-
tionality of the underlying hardware over an efficient and low-cost
wire protocol (bus). A separate microcontroller executes the user’s
application program, which is a client of the Jacdac services on the
bus.

Our evaluation shows that Jacdac supports a service-based ab-
straction for sensors/actuators at low cost and reasonable perfor-
mance, with many benefits for prototyping: ease of use via the
automated discovery of devices and their capabilities, substitution
of same-service devices for each other, as well as high-level pro-
gramming, monitoring, and debugging. We also report on the expe-
rience of bringing Jacdac to commercial availability via a third-party
manufacturer.

KEYWORDS
embedded systems, services, plug-and-play, microcontrollers

1 INTRODUCTION
The traditional approach to programming embedded systems is
monolithic: firmware on a microcontroller unit (MCU) contains
both application code and the drivers needed to communicate with
sensors, actuators and other peripherals using low-level protocols
such as I2C, SPI and RS232 [Corcoran 2013; Leens 2009; Semicon-
ductors 2000]. Such protocols were designed to provide a universal
interconnect between microcontrollers and their peripherals; they
are efficient but are low-level and use static addressing. While soft-
ware abstractions such as those provided by Arduino [Severance
2014], ARM’s Mbed [ARM 2017], and TinyOS [Levis et al. 2005]
provide higher-level APIs for programmers, the end result is a
monolithic system with a tight coupling between software and a

Figure 1: Jacdac devices (modules and brains) communicate
with each other via packets sent over a bus.

static configuration of specific hardware components, as well as
the underlying protocols they depend upon.

In comparison, in the world of the web and cloud, software de-
velopment has largely transitioned from the delivery of monolithic
layered systems to a service-based development and operation par-
adigm. A service provides a discrete unit of functionality that can
be accessed remotely by an application program, or other service,
but independently managed and updated. Services have radically
changed how software is produced, delivered, and operated. Mi-
croservices can be used to further decompose applications and
services into smaller units of functionality [Dragoni et al. 2017].

We propose, design, implement, and evaluate a service-based
approach to prototyping embedded systems called Jacdac. Our core
contribution is to show that it is possible to efficiently map service-
based abstractions to embedded systems, at low cost and reasonable
performance. As a result, many benefits can be realized that support
prototyping, including: ease of use via the automated discovery of
devices and their capabilities, substitution of same-service devices
for each other, and high-level programming. Our target audience is
novice programmers as well as programmers who are not familiar
with embedded systems.

A service specification language, designed especially for embed-
ded systems, is a key contribution of our work, along with a host of
specifications for a variety of sensors and actuators. For example,
as shown in the next section, an accelerometer service specification
describes the basic interface to an accelerometer, regardless of the
specific accelerometer hardware used.

MSR-TR-2023-4, January 2023

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

(a)

(b)

(c)

Figure 2: (a) A Jacdac system comprised of an ESP32 brain (center), connected via cables to an LED ring module (left) and an
accelerometer module (right). The ESP32 brain has four Jacdac edge connectors, two of which are visible on the right side of the
PCB. The LED ring has a single edge connector (not visible). (b) the front of the accelerometer module, which has two Jacdac
edge connectors, allowing it to be daisy-chained.(c) Back of accelerometer module.

In Jacdac, service specifications provide a separation of concerns
between application code (client) and driver code (server) that inter-
faces with hardware sensors and actuators. As shown in Figure 1, a
Jacdac module (server) is a device that has one or more sensors/ac-
tuators and advertises the services that it supports over the Jacdac
bus. A Jacdac brain (client) is a device that runs an application
program, which consumes the services available on the bus.

The Jacdac service abstraction is supported by a three-layer pro-
tocol: the service layer represents all Jacdac services, including a
set of common services for device discovery, advertisement of a
device’s services, power management and firmware updating; the
transport layer is responsible for routing packets between Jacdac
devices, and forwarding them to the appropriate service or appli-
cation; the network interface layer deals with the transmission of
Jacdac packets over the wire. Jacdac implements a “single wire se-
rial” protocol, a UART-based data transmission protocol that uses
one wire for data, plus one for ground and one to supply power.

In our current implementation, each Jacdac module has a dedi-
cated MCU with firmware that implements the three layers of the
Jacdac protocol and exposes a module’s on-board components via
services on the bus (for a module), or consumes the services (for a
brain). A Jacdac module’s MCU abstracts over the specific hardware,
adapting it to the appropriate Jacdac service; this is analogous to
how web services were originally used to wrap legacy enterprise
applications and make them available on the web. We support the
Jacdac protocol for many sensors/actuators using 8-bit MCUs with
64 bytes of RAM that cost as little as US $0.03.

Figure 2(a) shows a small embedded system built from a Jacdac
brain and two Jacdac modules, which are connected together to
form a single 3-wire bus. The printed circuit boards (PCBs) of all
three devices have one or more Jacdac 3-wire edge connectors;
these are double sided and wired so that the Jacdac cable makes a

stable connection, no matter which way it is plugged in. The PCB-
based edge connector is low-cost and provides a consistent and
reliable experience for at least 1500 plug/unplug cycles (a separate
paper will give more details of the design of the edge connector
and cable).

The Jacdac platform, both hardware designs and software, is
open source and includes:

• a large library of service specifications, with supporting
server firmware, web-based simulators, and client bindings
in a variety of languages1

• a growing device catalog of over 40 Jacdac modules (and a
handful of brains) produced by us and others2

• a platform-agnostic C99 implementation of the Jacdac pro-
tocol and a number of servers and drivers for I2C/SPI com-
ponents;

• a device development kit (DDK) with hardware designs,
and firmware source code for a range of MCUs, including
the 8-bit PADUAK MCU, the 32-bit ARM-based family of
STM32x0 MCUs, as well as the ESP32 (which supports WiFi,
TCP/IP and TLS) and RP2040 the last two being typically
used as brains3

• additional implementations of the Jacdac protocol/runtime
in Python, C#, TypeScript, and Static TypeScript [Ball et al.
2019], the subset of TypeScript supported by the MakeCode
system [Devine et al. 2018], as well as a client library in
each language (mostly code-generated) for each service;

• web site and tooling for compilation, flashing, monitoring,
simulation, and debugging4

1https://microsoft.github.io/jacdac-docs/services/
2https://microsoft.github.io/jacdac-docs/devices/
3https://microsoft.github.io/jacdac-docs/ddk/
4https://microsoft.github.io/jacdac-docs/tools/

MSR-TR-2023-4, January 2023

https://microsoft.github.io/jacdac-docs/services/
https://microsoft.github.io/jacdac-docs/devices/
https://microsoft.github.io/jacdac-docs/ddk/
https://microsoft.github.io/jacdac-docs/tools/

Jacdac: Service-based Prototyping of Embedded Systems

Figure 3: Jacdac modules created by KittenBot. From top left: Jacdac cables, Jacdac adapter for micro:bit, Jacdac hub, and seven
Jacdac modules - two buttons, slider, rotary encoder, light and magnetic sensors, LED ring. Available at https://www.kittenbot.
cc/collections/frontpage/products/kittenbot-jacdac-kit-for-micro-bit

Put altogether, the Jacdac stack effectively separates clients (brains)
and server (modules) via services and supporting protocol, enabling
the dynamic creation and modification of the system. Programmers
can choose from a variety of different programming languages to
develop client/application code.

A previous paper evaluated the user experiencewith Jacdac using
modules designed and manufactured by us. [Devine et al. 2022] As
of the writing of this paper, a Jacdac kit of cables, seven modules
and a Jacdac adapter for the popular micro:bit device, designed and
manufactured by KittenBot, are commercially available, as shown
in Figure 3.

In this paper, we focus on the design and technical implemen-
tation of the Jacdac platform and evaluate it with respect to the
cost of the solution, its generality, and the overhead that the separa-
tion of client and server incurs. We also discuss the learnings from
working with KittenBot to make Jacdac commercially available.

2 OVERVIEW
This section presents how a three-axis accelerometer is represented
and programmed using Jacdac. This example illustrates how Jacdac
supports prototyping through standardized service specifications —
communication between devices is mediated via service specifica-
tions so that similar devices can act as drop-in replacements for
one another. Using the Jacdac protocol, devices can be the provider
and/or client of services, allowing greater flexibility in applica-
tion/system design than present in monolithic systems, and devices
and their services are discovered dynamically, as they join the Jac-
dac bus. Finally, Jacdac supports application/client programming in
a variety of high-level languages, with monitoring and debugging
support provided by a web dashboard that joins the Jacdac bus
using WebUSB or WebSerial.

2.1 Accelerometer Service
Figure 4 presents the (partial) source text of a Jacdac service

specification for a three-axis accelerometer, which is specified using

a simple markdown language where indented text represents the
formal specification and non-indented text is descriptive. Every
Jacdac service is uniquely identified by a 32-bit identifier (line 3),
also referred to as the service class, which is chosen randomly by
the initial author of the service (we maintain a central repository
of service specifications, which includes service class identifiers,
and check for collisions in our tooling). We don’t expect there to
be more than a few thousand service classes overall, compared to
billions of device instances (which use 64-bit identifiers). Line 4 of
the specification states that the accelerometer service extends the
abstract sensor service, which defines a set of common registers
for working with sensors.

Line 8 defines a read-only register named forces, a record with
three fields (x, y, and z). Every Jacdac register is assigned a unique
numeric code: the “@ reading” annotation on line 8 states that the
forces register is using the common code 0x101 as defined in base
service specification. Sharing numeric codes allows for common
sensor-handling code, regardless of the specific service class.

Lines 9, 10 and 11 define the type and units for the three fields (x,
y, and z) of the forces register. The i12.20 type is a signed 32-bit
fixed point value, with 12 bits for the integer portion and 20 bits for
the fractional part. Any data field, such as the three above, should
be annotated with its unit. Jacdac supports a large set of units (“g”
is earth gravity).

The data sheet for a sensor specifies its sensitivity (which may
depend on environmental factors such as temperature), output
resolution, and noise, among other characteristics. Line 16-17 of
Figure 4 specifies a register named forces_error which exposes
the expected error when reading the forces register.

The stream of values of any given sensor may give rise to a
sequence of discrete events that capture various patterns in the
stream. Lines 21-30 of Figure 4 declare a handful of events that the
accelerometer service raises: freefall is emitted when the total
force acting on the accelerometer is much less than 1g, while shake
is emitted when the forces change violently a few times in a short

MSR-TR-2023-4, January 2023

https://www.kittenbot.cc/collections/frontpage/products/kittenbot-jacdac-kit-for-micro-bit
https://www.kittenbot.cc/collections/frontpage/products/kittenbot-jacdac-kit-for-micro-bit

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

1 # Accelerometer

2
3 identifier: 0x1f140409

4 extends: _sensor

5
6 ## Registers

7
8 ro forces @ reading {

9 x: i12.20 g

10 y: i12.20 g

11 z: i12.20 g

12 }

13
14 Indicates the current forces

15 acting on accelerometer.

16 ro forces_error ?: i12.20 g

17 @ reading_error

18
19 ## Events

20
21 event face_up @ 0x85

22 event face_down @ 0x86

23
24 Emitted when accelerometer is

25 laying flat in the given direction.

26
27 event freefall @ 0x87

28 event shake @ 0x8b

29 ...

Figure 4: Jacdac accelerometer service (partial).

period. The faceup and facedown events are used in our running
example.

Service specifications are stored in a GitHub repository which
includes tools for generating various artifacts from the specifica-
tions, such as documentation, interface files for server code, and
client libraries.

2.2 Accelerometer Module: Hardware
An accelerometer module we designed and produced appears in
the upper-right of Figure 2(a). Figure 2(b) and (c) shows the mod-
ule in greater detail. The large integrated circuit on the PCB is
a STM32F030x4 MCU (16kB flash, 4kB RAM, running at 8MHz),
connected via I2C to Kionix’s KXTJ3 3-axis digital accelerometer,
the square IC centered under the MCU on the PCB. Both the front
and back of the PCB have a silk screen that show the direction of
the three axes. The module has two Jacdac edge connectors, which
share the same three PCB traces (PWR, GND, DATA), to allow the
module to be connected to the Jacdac bus and daisy chained. Jacdac
uses the UART capability on the MCU to allow the module to send
and receive Jacdac packets over the bus.

2.3 Accelerometer Module: Firmware and
Jacdac Protocol

The responsibility of the firmware is to make available the underly-
ing specific hardware (the KXTJ3 accelerometer) via a Jacdac service.
That is, the firmware abstracts over the particular accelerometer
used by representing it using the Jacdac accelerometer service. The
firmware allows the accelerometer module to join the Jacdac bus,
advertise itself and that it supports the accelerometer service, re-
spond to requests a client may send it, as well as generate events
of interest.

The firmware communicates with other Jacdac-aware devices
using the Jacdac protocol, and communicates with the on-board
KXTJ3 accelerometer over I2C. As the KXTJ3 uses a different repre-
sentation of forces from the service of Figure 4, the firmware also
converts to the specified representation before the register value is
communicated via Jacdac.

The firmware for the accelerometer module is built using three
layers:

(a) anMCU-specific C99 implementation of a hardware abstrac-
tion layer (HAL) that provides the necessary primitives
needed to interface with common hardware interfaces (I2C,
SPI) as well as those needed by the Jacdac protocol (UART);

(b) anMCU-independent C99 implementation of the Jacdac pro-
tocol (that relies on the HAL), including the Jacdac control
service, which advertises the supported services, as well as
implementations of many services and drivers for various
I2C/SPI hardware sensors, including the KXTJ3 accelerom-
eter;

(c) finally, a small C driver that brings the above code together
for the specific accelerometer module, specifying the hard-
ware (KXTJ3) used, the orientation of the chip with respect
to silk markings, as well as manufacturer and device name
for easy user identification.

2.4 Brain/Client Programming
We have ported the Jacdac protocol implementation to a variety of
higher-level languages, including Python, C#, TypeScript, and Static
TypeScript (the programming language of the MakeCode editors).
These ports primarily support the programming of brains/clients,
with abstractions to hide the underlying asynchrony of the Jac-
dac protocol from the application programmer, although they can
also be used to implement servers. Code generation tools compile
each specification into high-level client APIs for each supported
language, that call into the underlying runtime.

Figure 5 shows a small JavaScript program that works with the
accelerometer and LED services. The Jacdac runtime (in this case,
for the MakeCode programming environment) provides singletons
(accelerometer1 and ledStrip1) for working directly with mod-
ules exposing a single service (the mapping from names to device
identifiters is discussed later).

The program has two event handlers for responding to the
face_down and face_up events from the accelerometer module,
where the first one sets the color of the LEDs to red and the second
one sets the colors to green. As shown in the lower-left corner
of Figure 5, Jacdac provides a simulator for the LED ring (the ac-
celerometer simulator is not visible), which allows the user’s pro-
gram to be tested in the web browser before being deployed to the
ESP32 brain.

MSR-TR-2023-4, January 2023

Jacdac: Service-based Prototyping of Embedded Systems

Figure 5: JavaScript program sets LED color based on accelerometer orientation (faceDown: red, faceUp: green). The coding
environment is MakeCode, which we extended with support for Jacdac brains, as well as simulating Jacdac modules.

2.5 Dashboard and Digital Twins
Figure 6(a) shows the system from Figure 2 with the program de-
ployed to the ESP32 brain and the accelerometer face up with the
LED ring displaying green. The ESP32 brain is connected over
USB to a host computer, extending the Jacdac bus over USB so it
can be accessed from a web browser. Figure 6(b) shows the web-
based Jacdac dashboard, which displays the digitals twins of the
accelerometer module, LED module, and the ESP32 brain. Other
tools available from the dashboard include a packet logger, details
of device status, etc.

2.6 Summary
This section presented the essential facets of Jacdac. A Jacdac brain
executes client code that can discover Jacdac services on the bus,
as advertised by Jacdac modules (servers). Communication among
Jacdac devices takes place via a packet-based protocol that leverages
the low-cost UART hardware available on MCUs. Each service
represents a discrete unit of functionality, such as an accelerometer,
that can be accessed remotely over the Jacdac bus. Standardized
Jacdac service definitions abstract away the specific hardware that
a module uses. As shown in the accelerometer example, the Jacdac
bus can be extended over WebUSB to allow the web browser to join
the conversation. This enables rapid prototyping of client programs
in the web browser that work against physical Jacdac modules as
well as virtual ones.

3 SERVICE SPECIFICATION LANGUAGE
Service specifications describe the resources that a Jacdac device
can share with other devices on the bus, by precisely defining the
formats of data and requests/responses that can be interchanged
between devices. Services provide abstract, standardized interfaces
that can be used to work with physical hardware resources and
permit devices with the same functionality but different hardware
implementations to be substituted for one another without having
to recompile the application that uses them. For example, two mod-
ules with different accelerometer hardware can replace each other

for an application (Figure 5) that depends on the accelerometer
service (Figure 4).

A service is globally and uniquely identified by its service class,
which should be found in the service catalog, as discussed before.
Once a service is marked stable, any changes to it must not break
backward compatibility, as it may not be possible to update the
firmware on devices that support the service.

3.1 Service Members and Commands/Reports
A service specification consists of mainly of three kinds of members:
register, action, and event declarations. We have seen examples of
register and event declarations already in the accelerometer service.
A question mark following a member’s name indicates that the
member is an optional feature of a service. By default, members are
required (not optional) and must be implemented to conform to the
service specification. More details on registers, actions, and events
are given in the following subsections.

What is common to these declarations is that they are syntactic
sugar over commands and reports, which have a direct translation
into Jacdac packets. Commands are requests to devices on the Jacdac
bus and reports are responses from devices. Commands and reports
have a uniform base structure of an operation code and a payload.
On the command side, payloads serve as arguments (for example,
to a register write command). On the report side, payloads often
serve as “return values” (in the case of the register read operation,
for example).

While commands and reports are often paired, they need not be.
For example, events are reports without an associated command. A
command without a report is an instance of the “fire-and-forget”
pattern (a request that doesn’t have an associated response). As
discussed in Section 6, these communication patterns are also found
in TinyOS and WSDL; in both these systems, as well as Jacdac,
requests and responses are asynchronous operations.

Each command and report can carry a payload, which must be
given a type. The type can be one of the core types, as listed in
Figure 7, a record of fields (each with a core type), a homogeneous

MSR-TR-2023-4, January 2023

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

(a) (b)

Figure 6: (a) system from Figure 2, programmed per Figure 5; (b) digital twins of accelerometer module, LED module, and ESP32
brain (from left to right).

u8, u16, u32, u64 unsigned (1, 2, 4, and 8 bytes)
uM.N unsigned fixed point (𝑀 + 𝑁 ∈ {8, 16, 32})
i8, i16, i32, i64 signed (1, 2, 4, 8 bytes)
iM.N signed fixed point (𝑀 + 𝑁 ∈ {8, 16, 32})
f32, f64 IEEE float and double
bytes byte buffer (until end of packet)
string UTF-8 encoded string (until end of packet)
string0 NUL-terminated UTF-8 string
bool a single byte; 0 = false, true otherwise

Figure 7: Core types supported by Jacdac specification lan-
guage. All types are little endian.

sequence, or a record that ends with a homogeneous sequence.
Each core type may be optionally annotated with a unit (a subset
of SenML 5) Lines 8-12 of Figure 4 declare the register forces to
be a record with three fields (x,y, and z).

Command/report pairs are assigned unique operation codes
based on their associated declaration’s kind (registers, actions, and
events each have their own range of numeric codes, not detailed
here). Syntactic sugar is provided for common cases (such as sensor
registers) so that the specification author need not remember the
proper numeric ranges for operation codes. Commands are distin-
guished from reports in a Jacdac packet by a flag, as discussed in
Section 4.

Variousmodifiers are available for specificationmembers: unique
commands are not idempotent (idempotent is the default semantics
for all commands); volatile registers are described below.

3.2 Compile-time Declarations
For readability, the specification language provides declarations
for naming of values and enumerations of values. Figure 8 shows
a simple specification of a distance sensor. Line 4 declares a read-
only register distance with type u16.16 whose value is in me-
ters (m), as well as two compile-time constants: typical_min and
typical_max, used when visualizing data in the Jacdac dashboard
(eg., for axis scale for plots). The notation @ reading that ends line
4 assigns the code of the reading register to the register distance.

5https://www.iana.org/assignments/senml/senml.xhtml

1 identifier: 0x141a6b8a

2 extends: _sensor

3
4 ro distance: u16.16 m { typical_min =0.02, typical_max =4 }

@ reading

5
6 const min_range ?: u16.16 m @ min_reading

7 const max_range ?: u16.16 m @ max_reading

8
9 enum Variant: u8 { Ultrasonic = 1, Infrared = 2, LiDAR =

3, Laser = 4 }

10 const variant ?: Variant @ variant

Figure 8: Jacdac distance service (partial).

Line 9 of Figure 8 declares an enumeration named Variants,
listing the different kinds of distant sensors, which is then used in
the optional register declaration of variant (option declarations
have a ’?’ trailing the name). Enumerations are meant to be future-
extensible (but not extensible by particular implementations of a
service). Enumerations in services are primarily informational (eg.,
used in the Jacdac dashboard to visualize the sensor).

3.3 Registers
Registers are used for exposing necessary device state and have
three forms:

• const registers do not change until module reset (which
may put it into a new mode), though they most often will
represent constraints imposed by the hardware that are
forever the same. Lines 6 and 7 of Figure 8 use const to
specify the minimum and maximum range of a distance
sensor.

• read-only (ro) registers can be used to expose the value of
relevant sensors, though there often is some conversion
needed from the particular format supported by hardware
to the register type. The distance register declared at Line
4 of Figure 8 is an example of a read-only register.

• read-write (rw) registers are generally used to configure the
hardware and assignments to them are idempotent. Figure 9
presents an excerpt of the LED service that declares a read-
write register pixels at line 6 which is a buffer of 24-bit
RGB color entries (one per LED pixel).

MSR-TR-2023-4, January 2023

https://www.iana.org/assignments/senml/senml.xhtml

Jacdac: Service-based Prototyping of Embedded Systems

1 identifier: 0x1609d4f0

2
3 A controller for small displays of individually

4 controlled RGB LEDs.

5
6 rw pixels: bytes @ value

7
8 A buffer of 24bit RGB color entries for each LED ,

9 in R, G, B order. When writing , if the buffer is

10 too short , the remaining pixels are set to #000000;

11 if the buffer is too long , the write may be ignored ,

12 or the additional pixels may be ignored.

13
14 const num_pixels: u16 # @ 0x182

15
16 Specifies the number of pixels in the strip/ring.

Figure 9: Jacdac LED service (partial).

A ro/rw register may be annotated as volatile indicating that its
value may change independently of any activity on the Jacdac bus.
That is, a volatile register’s value may change based on physical
environmental conditions outside of programmatic control (the
sensor service’s @ reading register is implicitly volatile). This
enables a caching strategy for non-volatile registers that flushes
the (client) cache whenever there is some write to the service. For
volatile registers, cached values will generally become stale very
quickly.

A register declaration is syntactic sugar for both a command
(the request to read/write the register’s value) and a corresponding
report (the response with the new value of the register).6

3.4 User-defined Commands/Reports
Asmentioned above, registers are syntactic sugar for a command/re-
port pair, used to expose a devices’ readable/writable memory. Com-
mands can be used to direct a device to take some action. Here is
the simplest form of a command/report pair, used to direct a sensor
to perform calibration:
1 command calibrate @ 0x02 { }

2 report { }

In the above example, both the command and report use operation
code 0x02, where the command requests calibration and the report
is a response indicating that calibration is complete.

3.5 Events
A Jacdac server may perform some computation over the stream of
data from the sensor it encapsulates to detect a pattern. Events are
a mechanism for notifying clients when such patterns are identified.
We have seen examples of events with no payloads in the accelerom-
eter service of Figure 4 (freefall, shake, ...). Jacdac client libraries
provide APIs so that an application program can subscribe to a ser-
vice event of a particular device. Events are reports that are given
special treatment at the protocol level to ensure reliable delivery,
as detailed in Section 4. An event may contain a payload.

6A report is only issued for the read request; for a write request, the client must issue
a separate read command to confirm the value written.

Figure 10: Three layers of Jacdac protocol

3.6 Pipes
Pipes are an application-level mechanism for establishing reliable
one- and two-way point-to-point data links. Sometimes this corre-
sponds to a data-stream in the underlaying service (eg., in a WiFi
service a pipe may represent an open TCP/IP socket). More com-
monly, pipes are used to send a response that may not fit in a single
packet. For example, again in a WiFi service, pipe may be used to
return results of a WiFi network scan:
1 command list_known_networks @ 0x87 {

2 results: pipe

3 }

4 pipe report network_results {

5 channel: u8 {typical_min = 1, typical_max = 13}

6 ssid: string

7 }

The client sends the command that creates the pipe. The server then
reports each network (its name and channel number) in a separate
packet sent over the established pipe, and then closes the pipe. The
pipe report is scoped to share the pipe with the immediately
preceding command.

3.7 Extending Services
If a hardware manufacturer wants to produce a device measuring
cosmic background radiation, which is not currently covered by
a service in the service catalog, they will need to define a new
service (with a random service class for private testing). Our web
tooling allows importing such new services for testing purposes.
If the device is available publicly, the manufacturer is encouraged
to submit the service specification to the catalog, so users can
learn about it and client code can be auto-generated for various
languages.

A more common situation is when an existing service does not
cover all hardware features (eg., an accelerometer has additional
de-noising settings). In this case, the manufacturer needs to im-
plement the existing service, and also provide a mixin service and
implementation covering the additional features. The existing ser-
vice should still work in default settings for clients unaware of the
mixin, while the mixin allows advanced users to access the special
features.

4 PROTOCOL
This section visits the layers of the Jacdac protocol top-down, from
the service layer, to the transport and network layers, as illustrated
in Figure 10. Device identification is introduced between the descrip-
tions of the service (device-unaware) and transport (device-aware)
layers. We illustrate how the protocol maps to the client program

MSR-TR-2023-4, January 2023

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

of Figure 5 that uses the accelerometer and LED ring modules,
represented by the accelerometer and LED services (Figure 4 and
Figure 9, respectively).

4.1 Service Layer
The service layer deals with the commands and reports specified by
the service specification, as detailed in the previous section. Com-
mands and reports are just Jacdac packets, provided to the service
layer by the transport layer via a simple API. Helper functions
provide access to the packet data structure via the abstractions of
registers, actions, events, and pipes.

4.1.1 Control Service. For a device to be recognized on the Jacdac
bus, it must run its own control service.7 The logic for the control
service is generic, parameterized by the set of services a device
supports, and is part of the Jacdac runtime

The main job of the control service is to send a report every 500
milliseconds that advertises the device’s presence on the bus and
the list of services (via service class numbers) it supports. The other
devices (clients) on the bus can inspect these advertisements and
subsequently communicate with the advertised services. The adver-
tisement also includes several flags indicating various protocol-level
capabilities of the device, as well as a “restart counter” that mono-
tonically increases and can be used to detect a device restart.

The control service also offers a set of common commands that
can be used to query/inspect a Jacdac device. For example, the
identify command causes a Jacdac device to perform an action
that allows a user to locate it, usually through blinking an LED.

4.1.2 Processing Commands and Reports. A device acting as a
server (of a particular service 𝑆) will receive commands from the
transport layer for 𝑆 and send reports back (it may also initiate send-
ing of reports on its own). A device acting as a client of a service 𝑆
will send commands (via the transport layer) and receive reports
back. A device may act in the roles of both a client and a server.
The transport layer is responsible for routing commands/reports to
and from the proper services.

Services are addressed by 6-bit indices referring to position of
the service class (32-bit number), as listed in the advertisement
packet. The zero index is reserved for the control service.

A server will generally maintain device-specific state for each
of the services that it supports, usually via an array indexed by
service index; in the simplest case, a device has only two services
(the control service and, say, a button service), and an array is not
necessary.

4.2 Device Identification, Roles, and the Role
Manager Service

Jacdac device identifiers are 64-bits in length and are used to deter-
mine the sending or receiving device, and for devices to remember
one another on the bus. The Jacdac protocol does not support al-
location of unique device identifiers. Instead, each device must be
assigned (or assign itself) a 64-bit device identifier; once assigned, a
device’s identifier must remain constant. As long as identifiers are
generated with appropriate entropy (i.e., using a random number

7https://microsoft.github.io/jacdac-docs/services/control/

generator), there is little chance of identifier collision. If we con-
sider one trillion Jacdac networks size of 200 devices with randomly
chosen 64-bit identifiers, the probability of an identifier collision
in at least one of the networks is 0.1%. The device identifier can be
programmed at the factory, or the device can generate the identifier
by itself upon first boot and store it in non-volatile memory. In
either case, an appropriate source of randomness should be used.

In the example program of Figure 5, the LED and accelerometer
modules are represented by fixed “role” names available in theMake-
Code runtime for Jacdac. The role name accelerometer1 is a static
instance of a Jacdac SensorClient, a client-side representation of
a sensor-based service, specialized for the accelerometer service.
Jacdac’s role manager service keeps a mapping from role names
to device identifiers (and the index of a particular service on that
device). The role manager will eagerly map names to unmapped
devices’ services, unless directed otherwise by the programmer.
Until the role name accelerometer1 is bound to a device identifier
providing an accelerometer service, the event handlers onFaceDown
and onFaceUp in the program will not fire. In the case of multiple
modules with the same set of services, the programmer can direct
the role manager service to explicitly control the mapping of names
to device identifiers.

4.3 Transport Layer
The transport layer deals with Jacdac packets and is responsible
for generating acknowledgements, routing a packet to the correct
service, as well as reliable events and pipes.

Figure 11 presents a simplified view of a Jacdac packet. A packet
contains only one device identifier (rather than both source and
destination identifiers, as in IP). If the bit JD_FLAG_COMMAND in the
flags field is set, the packet is a command packet and device_id is
the destination device receiving the packet; otherwise, the packet is
a report packet and device_idr is the source device broadcasting
information on the bus. Sometimes, report packets will be broadcast
without a preceding command (most prominently, in the case of
advertisements and events). The maximum packet size is 252 bytes,
which limits the size of a service payload to 236 bytes, which we find
is sufficient for communication and control of many sensors and
actuators. Devices are also allowed to further restrict the maximum
size of received commands.

An acknowledgement should be sent if the bit
JD_FLAG_ACK_REQUESTED

is set in flags. The acknowledgement packet includes the CRC of
the packet being acknowledged. Finally, to support broadcast to all
services on the bus (regardless of device), if the bit

JD_FLAG_ID_IS_SERVICE_CLASS

in the flags field is set then the device_id field of the packet will
be interpreted as a service class number, and the packet will be
dispatched to all services on the bus with that class number.

Besides the support for acknowledgements, the transport layer
is similar to UDP [Postel et al. 1980], as no delivery guarantees are
provided. Since the two packets for a command/report pair may
be separated by other packets, we provide support in the Jacdac
runtime (a client of the protocol) to wait for the response (report) to
a request (command). Support for TCP-like reliability and ordering
also can be added [Postel et al. 1981], as discussed below.

MSR-TR-2023-4, January 2023

https://microsoft.github.io/jacdac-docs/services/control/

Jacdac: Service-based Prototyping of Embedded Systems

1 struct jd_packet_t {

2 uint16_t crc; // crc and following 2 fields are from frame

3 uint8_t flags; // various flags (see #defines below)

4 uint64_t device_id; // sending/receiving device , per flags

5
6 uint8_t service_index; // which service does this packet refer to

7 uint16_t service_opcode; // the operation within the service

8 uint8_t service_size; // size of the service payload

9 uint8_t data [236]; // payload

10 }

11
12 // COMMAND bit set: device_id is the receiver of a command

13 // COMMAND bit clear: the device_id is sender of a report

14 #define JD_FLAG_COMMAND 0x01

15
16 // an ACK should be issued with CRC upon reception

17 #define JD_FLAG_ACK_REQUESTED 0x02

18
19 // the device_id contains target service class number

20 #define JD_FLAG_ID_IS_SERVICE_CLASS 0x04

Figure 11: Jacdac packet structure (simplified).

4.3.1 Events. The transport layer has special queue-based logic
for reliable sending of events. To communicate a discrete event
reliably, the transport layer sends two identical repetitions of the
event packet after the initial packet, with a 20-100ms gap between
them. As typical packet loss is well under 1%, this ensures packet
reception. The gaps between repetitions are relatively large to limit
problems with reception queues at the client being temporarily
full (which in our experience is the main cause of packet loss), or
interrupts being temporarily blocked. The event packets contain a
per-device counter, incremented for every event sent (but not for
the repetitions). This lets the client process the events in the correct
order, even if some are lost.

4.3.2 Pipes. Pipes are unidirectional reliable streams. They are
typically opened by the client sending a command to the server,
which includes the client address and a pipe port number. The server
then sends requested data as one or more packets to the client
address, re-sending each packet (with 20ms gaps) until an ACK is
received from the client (or timeout is reached). Pipe packets include
the port number, as well as an incrementing counter. Typical use
of pipes is to read a value of a “register” that does not fit in a single
packet.

4.3.3 Running Example. Returning to the example program of Fig-
ure 5, once the program roles accelerometer1 and ledStrip1
are bound to the accelerometer module the LED ring module, the
face_up and face_down events (reports) generated by the accelerom-
eter module will be routed to the corresponding event handler in
the program. The programmer does not need to know about the de-
tails of the protocol, the device identifiers, or the low-level encoding
of the accelerometer service (the operation codes).

The method setAll of the ledStrip1 client fills a pixel buffer
with the given color and sends a register write command (packet)
to the LED ring module that writes the buffer to the pixel register
of the device. Again, the client wrapper abstracts over the details
of the protocol.

Figure 12: Jacdac transmission over the wire

4.4 Network Layer: Single Wire Serial
A Jacdac frame contains a list of Jacdac packets (of length at least
one), which all share the same device identifier and flags. The frame
also contains a cyclic redundancy code (CRC). The Jacdac single
wire serial (SWS) protocol is used to transmit a Jacdac frame over
the wire, and requires an MCU with following basic functionality:

• Transmitting and receiving UART-style bytes at 1Mbaud in
half-duplex mode (bytes are 10 bits long and are composed
of 1 start bit, 8 data bits, and one stop bit);

• A GPIO with an internal or external 10-50kΩ pull up and
support for interrupts, implemented in hardware or in soft-
ware by spin waiting;

• The ability to keep time, via instruction counting or a hard-
ware timer;

The MCU is not required to have UART hardware—we implemented
SWS on PADUAK 8-bit MCUs (US$0.03) via bit-banging in software.

Any Jacdac device can initiate a transmission at any time. Be-
cause of this, devices must assert control over the bus before send-
ing any bytes. This is where SWS differs from simple half-duplex
UART: a device wanting to start transmitting checks if it is not in
the middle of reception and that the line is not currently low; only
then does the device bring the line low for 11 to 15 microseconds
(start pulse), as shown in Figure 12. A collision is possible if another
device at about the same time also determines the line to be high,

MSR-TR-2023-4, January 2023

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

and pulses it low. The window for such a collision is typically a few
clock cycles (under 1𝜇s), resulting in typical collision rate of 0.1%
for fully-utilized bus.

After the start pulse, the device waits at least 50𝜇s (to allow other
devices time to set up reception) and starts UART transmission of
bytes, followed by an end pulse of 11 to 15 microseconds (such
pulses are recognized as break “characters” by UART hardware
making them convenient frame markers).

The receivers also have upper time limits on gaps between the
start pulse, bytes of transmission, and the end pulse. If these are
exceeded, any data is dropped, and the receivers go back to waiting
for start pulse. Thus, there is no condition that disrupts the bus for
very long.

5 EVALUATION AND DISCUSSION
This section evaluates and discusses the impact of the design de-
cisions on the cost, generality, and performance of Jacdac. Jacdac
offers a tradeoff compared to using traditional embedded communi-
cation methods like I2C and SPI. Jacdac brings ease of use: dynamic
device discovery, hot-plugging, error resilience and standardized
services (Section 5.2). This is paid for by using additional MCUs (Sec-
tion 5.1) and additional wire time (Section 5.4). We argue that the
costs are small and the benefits large, enabling more programmers
to participate in building embedded systems.

A previous paper [?] evaluated the usability of Jacdac: we cre-
ated and distributed 50 Jacdac kits, each with two brains and 8-10
modules, for an internal user trial with over 80 participants, over
half of whom had non-technical backgrounds. They used Jacdac
and MakeCode to build a variety of devices for the accessibility
domain. Participants found the Jacdac modules easy to work with
because of the immediate identification of modules and their ser-
vices (via the integration of Jacdac into theMakeCode programming
environment).

Since that paper, Jacdac modules have become commercially
available via KittenBot. They produced 2000 kits containing seven
Jacdac modules each, all of which passed our conformance tests,
available via the Jacdac web dashboard (detai below).

5.1 Cost
From the outset, Jacdac was designed to ensure that its hardware
implementation would be low cost and flexible. The protocol can
be implemented on 8-bit MCUs such as the PADAUK PMS150C,
PMS171B and PMS131 which run at 8MHz and have 64-96 bytes of
RAM and 1000-1500 words of program memory. These processors
don’t provide UART hardware support, so our implementation uses
bit-banging implemented via cycle-counted assembly language.
These processors cost as little as US$0.03 (pre-pandemic Shenzhen
pricing for 1k units or more). The KittenBot kit uses the PADUAK
PMS131 for all seven modules.

In addition to the MCU itself, a handful of discrete components
are required to interface to the Jacdac bus for reliable operation:
an RLC low-pass filter, a clamping diode and two electrostatic dis-
charge protection diodes. If a server is powered from the Jacdac bus
it typically also requires a low-dropout linear regulator (~US$0.03,
Shenzhen pricing).

For modules that use a very low-cost peripheral such as an
or a push button, the total bill-of-materials (BoM) cost can be as
little as ~US$0.10 in quantities of 1k units (pre-pandemic Shenzhen
pricing). More sophisticated services may need more expensive
sensors and/or a more capable MCU. For many of our prototypes
we have used the STM32G030F6P6 (8kB RAM, 32kB ROM; US$0.51
ST Micro list price for 1k quantities). Our cheapest Jacdac brain is
based on the RP2040 MCU and has a BoM cost of ~US$1.50.

5.2 Generality
Jacdac is a platform, so it is natural to consider how well it can
support a range of hardware peripherals and how difficult it is to
extend the platform to support new hardware. We have designed
and deployed over 40 different Jacdac modules (some using the same
set of services, but with different underlying hardware). We have
also created various Jacdac adaptors so that various computers can
act as Jacdac brains (BBC micro:bit, Raspberry Pi, laptop/desktop).

Table 1 provides an overview of 22 services we created to support
these modules, categorizes them and describes how much code was
needed to implement the server code supporting them. As shown
in the second column of the table, we classify services into four
basic kinds:

• UX-in services are mainly for user interface where we
expect a person to take some action, such as push a button,
twist a knob, or move a slider; such services may also be
used for sensing (in particular, the rotary encoder service);

• sensor services are mainly for monitoring the environment,
though a number of them may be used for user input (in
particular, the accelerometer, flex, and motion services);

• actuator services generally cause some sort of motion to
occur, though this may not be visible to the user;

• UX-out services are mainly for presenting information to
the user.

Not surprisingly, UX-in and sensor services are described mainly by
a few read-only registers and some events, though their operating
envelope may need to be characterized by a few constant registers.
Actuator and UX-out services, on the other hand, make more use
of read-write registers and commands. Most of the services’ logic
is implemented by well under 100 lines of C code, especially for
sensors, which have a fairly simple structure given by the abstract
sensor service. The accelerometer service is noteworthy for the
number of events it can raise; its implementation requires more
code to identify the events.

At its upper-edge, the service code uses the Jacdac runtime to
communicate in the language of commands and reports. At the
lower-edge, it communicates with specific hardware. The services
are parameterized in one of three ways, based on the nature of the
underlying hardware:

• GPIO: many modules have very simple hardware that
can be accessed directly via general-purpose input/output
(GPIO) pins; in these cases, the service initialization routine
is parameterized by a struct providing pin mapping and
other domain-specific information (services: button, buzzer,
rotary encoder, switch, motion, servo, relay, motor);

• analog sensor: a few sensors provide a simple analog value,
for which Jacdac provides an analog service based on an

MSR-TR-2023-4, January 2023

Jacdac: Service-based Prototyping of Embedded Systems

Service Kind rw ro const cmds. events LOC Flash
Button UX-in 2 1 3 69 300

Potentiometer UX-in 1 1 72 292
Rotary encoder UX-in 1 2 120 406

Switch UX-in 1 1 2 48 152
Accelerometer sensor 1 2 1 12 248 758
Air Pressure sensor 2 26 56

Flex sensor 1 1 54 176
Humidity sensor 2 2 25 56

Illuminance sensor 2 26 56
Light level sensor 2 1 72 292

Motion sensor 1 3 1 49 162
Soil moisture sensor 2 1 72 292
Temperature sensor 2 3 26 56

TVOC sensor 2 2 26 56
UV index sensor 2 1 26 56

Motor actuator 2 3 136 473
Relay actuator 1 2 62 182
Servo actuator 5 1 4 119 422
Buzzer UX-out 1 2 87 228

Dot Matrix UX-out 2 3 85 204
Display UX-out 3 1 4 144 624

Vibration motor UX-out 1 85 168
Table 1: Selection of services (22 out of 96, divided into four broad kinds) and their characteristics: columns rw, ro, const give
the number of read-write, read-only and constant registers in the service, while commands and events count the number of
those service members, respectively; LOC is the number of lines of C code to implement the service logic (on top of the Jacdac
protocol runtime), and Flash is the number of bytes the compi service code occupies.

analog-to-digital converter (services: flex, light level, soil
moisture, potentiometer);

• complex sensor: the remaining modules/services are gen-
erally more complicated sensors with their own integrated
circuitry that is accessed via I2C or SPI, requiring driver
code as shown in Table 2, typically under 200 lines of C
code (with no dependence on the Jacdac runtime).

As can be seen in Table 2, we have used a variety of hardware
sensors for the same service (namely, accelerometer, air pressure,
temperature, and humidity).

5.3 Platform Code Size
For server code, there are two major implementations, one written
in standard C99 and the other written in PADAUKmacro-assembler.
The C99 implementation is used mostly for Jacdac servers/mod-
ules using STM32F0 and STM32G0 MCUs. The smallest in each
family are STM32F030x4 with 4kB of RAM and 16kB of flash, and
STM32G030x6 with 8kB of RAM and 32kB of flash. In the past year
we have not used STM32F0 as they are difficult and expensive to
obtain, while the STM32G0 (produced using newer fabs with 90nm
process) are readily available.

5.3.1 C99 Servers. As an example of code size, the C99 implemen-
tation of a temperature/humidity module with STM32G030 MCU
includes:

• 0.6kB of service and driver code (as indicated in Tables 1
and 2);

• 0.9kB of generic sensor code;
• 4.8kB of service framework, control service, and various

queues;
• 6.6kB of MCU-specific HAL code (RTC, ADC, I2C, UART,

pins, startup);
• 0.3kB of glue code;
• 0.8kB of runtime support (integer division; the standard C

library is not used);

for a total of 14kB of compi code. At runtime, around 3kB of RAM
are consumed, 1kB of which is debug logging buffer and 0.5kB is
stack. The rest is mostly Jacdac queues. We had no need to further
optimize the RAM usage of the C implementation, but it is possible.

The Jacdac implementation for STM32x0 also includes a boot-
loader, which allows for updating device firmware over Jacdac (from
a web browser). The bootloader contains a very simplified Jacdac
implementation and is 3kB in size. The bootloader must fit together
with the module implementation in the flash of the MCU. Thus, for
STM32F030x4 with 16kB of flash, we disable some optional features,
resulting in firmware sizes of around 12-13kB. Again, we have not
looked at further size optimizations due to our switch to the larger
and cheaper STM32G0 chips.

5.3.2 Paduak Servers. While the C99 code makes quite standard
use of buffers and queues, the PADAUK implementation uses a very
different approach. As the PADUAK chips have 64-128 bytes of RAM,
we only keep one packet buffer (of 24 bytes) for both reception and
transmission. Only 6 bytes are allocated for stack, which is also

MSR-TR-2023-4, January 2023

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

Hardware Description LOC Flash
ADS1115 Analog-to-digital converter 265 727

KX023 Accelerometer 123 228
KXTJ3 Accelerometer 104 352

QMA7981 Accelerometer 218 290
LSM6DS Accelerometer + gyroscope 161 648
CPS122 Air pressure 111 388

LPS33HWTR Air pressure 203 652
MPL3115A2 Air pressure 151 494

SHT30 Temp. and humidity sensor 108 464
SHTC3 Temp. and humidity sensor 115 536
TH02 Temp. and humidity sensor 118 475

DS18B20 Temperature probe 91 357
MAX31855 Thermocouple interface 71 288
MAX6675 Thermocouple interface 71 272

AW86224FCR Vibration motor controller 82 186
LTR390UV Visible + UV light sensor 129 463

SGPC3 TVOC (air quality) sensor 177 650
Table 2: Jacdac-independent driver code for a variety of hard-
ware sensors and actuators. LOC is the number of lines of C
code and Flash is the number of bytes of the compi code.

used for interrupt handlers, so function calls are severely limited.
The UART is implemented in software, with bit-banging.

After a packet is received it is immediately processed. A single
bit of memory is allocated for every possible packet response (eg.,
a request to get temperature register, would set a “temperature
get pending” bit), with two additional bytes allocated for a single
ACK. If any packet pending bits are set, and the transmission proce-
dure successfully starts the low pulse, the remaining ∼62𝜇s before
transmission of actual data are used to construct packet in memory
based on the pending bit (which is cleared) and the state of the
service.

In all, implementation of various analog services, as well a but-
ton, fits in the 1000-1500 words of one-time programmable (OTP)
memory on the chip. Every word is a PADAUK instruction, so this
would translate to around 2-3kB of ARM Thumb machine code.
We believe Jacdac could be implemented completely using custom
silicon, without a general MCU, using strategies like the ones used
in PADAUK.

The KittenBot modules all use a relatively high-end PADAUK
(US$0.06 PMS131 with 96 bytes or RAM and 1500 words of ROM),
allowing some of them to support two services at a time (rotary
encoder exposes the built-in button as a separate button service),
and others to use larger packets (8 s require 3 bytes each, resulting
in 24 bytes payload and thus 40 byte packet).

5.3.3 Clients. The size of client code vastly depends on the level
of abstraction and programming language used. The simplest C
implementation adds a few kilobytes, compared to server code.
The MakeCode implementation, with a much higher abstraction
level and less efficient translation from Static TypeScript to ARM
machine code is tens of kilobytes. The TypeScript implementation
for web browsers is hundreds of kilobytes.

5.4 Performance
It is important to see Jacdac performance in light of its intended
use: to create an embedded system from a small network of low-
bandwidth sensors and actuators, with one to two handfuls of
devices (modules and brain). It has been designed with robustness
and ease of implementation in mind, rather than for low latency
and high throughput.

5.4.1 Overhead. Sending a Jacdac packet using the Single Wire
Serial (SWS) protocol of Section 4.4 takes, on average, 384𝜇s of wire
time plus 10𝜇s for every byte of command payload. Often there is
no payload, and otherwise it tends to be short, though it can be
up to 236 bytes. This results from the SWS running at 1Mbaud (1
million bits per second, with 10 bits sent per byte due to start and
stop bits), the wire arbitration protocol, and the packet structure.

For wire arbitration, SWS requires a start pulse (∼12𝜇s), ∼50𝜇s
gap, data transmission, stop pulse (∼12𝜇s), and requires spacing
between packets of 100-200𝜇s (randomly chosen to avoid collisions).
On average this comes to 224𝜇s of overhead per packet. Jacdac
packets have a 16-byte header, which includes the CRC, device
identifier, other routing information, and command code (but not
payload). This comes to 160𝜇s.

For example, an advertisement packet has at least an 8-byte
payload, so takes 464𝜇s, and is sent every 500ms. Thus, with 10
devices the bus is 1% saturated by advertisement packets, while
1000 devices would completely saturate the bus.

Typically, sensors that stream data are the largest users of wire
time. A single sensor streaming at 2kHz would saturate the bus,
so we advise streaming at not more than 50Hz. It is also possible
to pack several readings in a single packet (or frame), to support
sampling rates in the kHz range.

As for latency, the time between a module deciding to send a
packet, and the packet being received by the client is typically
under 500𝜇s. This is sufficient for most use cases, but may not be
fast enough for hard real-time use.

5.4.2 Comparison to I2C and SPI. I2C typically runs at 100kHz
or 400kHz (though faster modes are sometimes used). I2C latency
at 100kHz is comparable to Jacdac on SWS, while I2C throughput
at 400kHz is comparable to Jacdac using large payload sizes. I2C
most often uses 7-bit addressing, so cannot support more than
127 devices, and in reality addresses are typically fixed for a given
device type limiting usable networks to a handful.

SPI can run at 50MHz or more, depending on MCU and periph-
erals. At these frequencies, the latency and throughput are much
better than Jacdac over SWS. However, SPI typically requires sepa-
rate addressing wires from the MCU, limiting network sizes to a
handful of devices.

Both SPI and I2C have severe limitations on cable lengths (typ-
ically under 30cm), whereas Jacdac on SWS can run over a few
meters of wire.

5.4.3 Power Consumption. STM32G0-based sensors use around
50𝜇A for the MCU and power regulation, plus whatever sensor is
using (typically very little). Thus, a full system with a few sensors
and a brain can be on the order of 1mA, which can run for months
on a smartphone-sized battery.

MSR-TR-2023-4, January 2023

Jacdac: Service-based Prototyping of Embedded Systems

(a) (b)

Figure 13: Device tree view of an accelerometer module: (a) shows the registers associated with the control service; (b) shows
the registers and events associated with the accelerometer service.

The low-cost PADAUK-based sensors use more current - around
1mA each. This is because they can’t be put to sleep between in-
coming Jacdac packets, as they take a whole millisecond to wake
up (unlike the STM32). This could be reduced dramatically with
custom silicon support.

5.5 Security
Themain attack surface introduced by the bus architecture of Jacdac
is related to supply chains. A rogue device masquerading to be, say
a button, could secretly listen to packets from other devices and
even pretend to be the brain.

Thus, sensitive services (typically ones related to the internet
connection) should not be used on the same bus as untrusted devices.
Typically, this is implemented by bundling the sensitive services
with the brain and connecting them internally. We have recently
introduced restricted modifier on packet specifications which
instructs the brain to only accept them from a trusted connection
(eg., USB to the computer) and never send them on the single-wire
Jacdac bus. This allows for configuration of connection strings,
WiFi passwords etc.

5.6 Working with Jacdac via the web browser
To get the most from Jacdac’s service-based approach to working
with sensors/actuators, we developed a web stack to make it possi-
ble to work with Jacdac without the need to download and install
the tool chains or development environments usually associated
with embedded development.

A Jacdac module with USB-C connector is used to extend the
Jacdac bus over USB so that a web browser that supports WebUSB
(Chrome, Edge) can join the bus, sending and receiving Jacdac
packets using the TypeScript port of the Jacdac runtime. We have
created a set of React components that are parameterized by Jacdac
service specification (compi to JSON), upon which a Jacdac web
site is based, with the following features:

• the device dashboard displays digital twins of the Jacdac
devices that are on the bus (see Figure 6);

• the device tree shows all the information about all con-
nected devices and their services — Figure 13 shows a screen
snapshot of the device tree for an accelerometer module;

• the device tester recognizes a device on the bus, and will
run a set of automated and manual tests for its services, if
any are available. Figure 14(a) shows the device tester when
the ring module from KittenBot is present on the Jacdac
bus.

• the packet console displays a filterable log of all the Jacdac
packets sent over the bus.

The web-based service-aware tooling proved to be very useful for
working with KittenBot, the hardware manufacturer based in China
that produced the Jacdac modules shown in Figure 3. Figure 14(b)
shows the ring modules being tested in the factory.

For each Jacdac service we generated a MakeCode extension
(library) that allows all (web-based) MakeCode editors to work with
Jacdac, as shown in Figure 5. The digital twins allow the MakeCode
programmer to see what Jacdac modules have been attached to the
bus; they are offered the option to load the extensions needed to
workwith thosemodules. Additionally, MakeCode’s brain simulator
allows the user’s program to run in the web browser against the
Jacdac modules on the bus, for a first-class debugging experience
before compiling and flashing their application to the physical
brain.

6 RELATEDWORK
This section compares Jacdac with other approaches to composing
embedded systems, interfacing with hardware, and connecting
microcontroller-based hardware together.

6.1 TinyOS
Perhaps the most closely related work to Jacdac in terms of core
abstractions (though with fairly different goals and end-users in
mind) is TinyOS [Gay et al. 2005; Levis et al. 2005], a framework
for building embedded systems from a set of components, each
described by a module interface in the nesC language. [Gay et al.
2003] Specifically, the Jacdac abstractions of commands and re-
ports, which correspond to decoupled, asynchronous requests and

MSR-TR-2023-4, January 2023

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

(a) (b)

Figure 14: (a)Web-based Jacdac device tester, showing tests for services on ring; (b) the device tester being used to test KittenBot
ring modules at the factory.

responses, are quite similar to TinyOS “commands” and “events”,
which are termed a “split phase” interface. TinyOS is tightly depen-
dent on the nesC programming language [Gay et al. 2003], in which
the framework is written, while Jacdac adopts a neutral stance with
respect to the client and server programming languages.

TinyOS’s focus is on a modular framework that supports whole
program optimization, which benefits from a static approach where
all code, application (client) and hardware-specific (servers), is com-
bined together. [Levis 2012] Jacdac, on the other hand, focuses on
dynamic discovery and hot-swapping to support rapid prototyping
with hardware modules. The starting point for Jacdac is to separate
the client code and server code on different MCUs, using a new
wire protocol to join them on a bus. There are a number of benefits:
true memory/fault isolation of client and server code, substitution
of hardware modules without any change to client code (no re-
compilation). TinyOS, in comparison, uses a number of techniques
to prevent a component’s memory from being corrupted by the
code of a different component [Cooprider et al. 2007] and requires
recompilation when hardware needs to be changed.

Of course, it also is worth noting that two decades separate
TinyOS and Jacdac. First, very low-cost and low-end, yet still capa-
ble of running Jacdac, MCUs are available, allowing us to place an
MCU on each module. Second, application-level MCUs are much
more powerful, while retaining a (US) one-dollar cost. This has led
to a shift in how these devices are programmed: from assembly,
via subsets of C, via full C and C++, towards high-level languages
like Python and JavaScript, making embedded programming much
more accessible. Jacdac is a continuation of that rise in abstraction
levels to the hardware space.

6.2 IDLs for Distributed Computing and DSLs
for Device Drivers

There is a long and rich history of interface definition languages
(IDLs) for specifying the abstract interfaces to components/services
in a language-independent manner, ranging from object-oriented
models for distributed computing with (default) remote procedure
call (RPC) semantics [Exton et al. 1997] to stateless models with
four-way transmission semantics such as WSDL [(W3C) [n.d.]].

Jacdac follows the WSDL paradigm with respect to transmission
options, but simplified/adapted for embedded systems as discussed
previously in Section 3.

Also relevant are domain specific languages (DSLs) for aiding the
development of device drivers [Conway and Edwards 2004; Méril-
lon and Muller 2001; Mérillon et al. 2000; Ryzhyk et al. 2009; Sun
et al. 2005]. Devil [Mérillon et al. 2000] addresses the error-prone
nature of writing the C programs that interface with specific hard-
ware, especially as hardware documentation often is ambiguous
or inaccurate, by providing a formal specification of the functional
interface to hardware, from which C stubs can be generated. Devil
models the interface to a device via three levels of abstractions: at
the port level, the lowest level, there is a physical address space
of bytes; on top of that, named registers are specified as constant
width (untyped) bit vectors, at offsets off the base addresses of ports;
finally, at the top-level, variables cast registers (or slices of registers
and/or their concatenation) into an atomic C type (such as int), or
are C structures consisting of fields similarly defined in terms of
registers.

Many device driver DSLs follow this basic paradigm of inter-
facing to the C type system, as the goal is to aid the developer
in writing correct C device drivers. In contrast, the goal of Jacdac
specifications is to capture the functional interface to a wide class of
devices at a higher-level of abstraction, while supporting a packet-
based protocol (rather than a C interface). Towards this end, Jacdac
provides a more expressive type system with support for units, uses
a logical address space rather than physical, and provides support
for actions and events, as well as registers.

6.3 Embedded Protocols and Construction
Toolkits

We analyze existing protocols with respect to three dimensions
used to guide the design of Jacdac:

• Standardized service interfaces: Protocols such as USB (and
Jacdac) abstract hardware via standard interfaces so that
devices with similar functionality can act as drop in replace-
ments for one another. However, most of the interfaces

MSR-TR-2023-4, January 2023

Jacdac: Service-based Prototyping of Embedded Systems

provided by protocols for MCUs are low-level and do not
provide this level of abstraction.

• Communication paradigm: While some communication pro-
tocols support only direct links between two devices (1:1),
others define specific roles for devices on the network to
reduce the complexity of peripherals therefore creating 1:N
interconnects. To enable more flexible peer to peer sce-
narios others adopt an N:M communication paradigm, as
Jacdac does.

• Dynamic device/service discovery: Once a device has been
connected, some protocols perform automatic service dis-
covery to load the correct driver to operate a device. With-
out automatic service discovery, applications require prior
knowledge of any software required to operate the device
and its services. Applications also need to be recompiled to
support new devices.

6.3.1 Wired Protocols. Widely used and highly efficient, I2C and
SPI are the protocols of choice when connecting on-board periph-
erals to MCUs [Corcoran 2013; Leens 2009; Semiconductors 2000].
Driver writers use (statically assigned) peripheral addresses and
adhere to individualized peripheral register maps to interact with
and configure peripherals.

Almost as widely used as I2C and SPI, RS232, also known as
UART (Universal Asynchronous Receiver Transmitter), is designed
for point-to-point, full-duplex communications between twoMCUs [Semi-
conductor 1998]. RS232 defines the format of bytes rather than the
specification of packets, giving developers freedom over the packet
structure. RS422 builds on RS232, but instead adopts a 1-to-many
paradigm (1:N), and RS485 builds on both, applying amany-to-many
(N:M) paradigm [200 2000; Soltero et al. 2002].

One-wire brings both communication and power to low-cost
MCU-based peripherals connected to a single wire bus [Awtrey
1997]. Each peripheral draws power from the bus, provided by
a single host, storing charge that is used to temporarily power
peripherals during communications.

USB (Universal Serial Bus) [Specification 2000] is designed for
dynamically connecting peripherals to personal computers. Instead
of providing just a physical transport like I2C, SPI, and UART, USB
contributes an entire stack that hides the complexities of address
allocation and the transmission of packets to peripherals. The ab-
stract driver model of USB enables the plug-and-play of peripherals
and for driver reuse between devices.

While protocols enable easy user interactions and fast, efficient
communications between the embedded device and peripherals, the
development and debugging experience requires specialist tools and
knowledge. Jacdac aims to simplify the development and debugging
process, and is inspired by the dynamism of USB, and the low-cost,
simple, universal, and free-form communications of RS232.

6.3.2 Integrating embedded devices and peripherals. .NET Gad-
geteer is a modular electronics toolkit that enables the integration
of peripherals to a central MCU using a custom cable and socket
system [Villar et al. 2012] supporting communication via UART, I2C
and SPI. YAWN is based on UART and requires one host to control
peripherals [Thar et al. 2018]. E-TAG and i*CATch peripherals are
pre-programmed with unique I2C addresses [Lehn et al. 2004; Ngai

et al. 2010]. Other work enhances I2C using additional protocols to
add on-the-fly address allocation [Sankaran et al. 2009].

While many of the above toolkits have succeeded in enabling
the integration of embedded devices and peripherals, most of these
solutions have worked within the constraints of static protocols
and use higher-level APIs to simplify access to them, rather than
changing the stack to support a true separation of concerns between
client and server code, as done with Jacdac.

7 CONCLUSION
We have presented Jacdac, a platform for the dynamic composition
of embedded systems from microcontrollers and hardware periph-
erals such as sensors and actuators. Central to the design of Jacdac
is the specification of services, used to standardize the access to
sensors/actuators and other hardware on the Jacdac bus, supported
by a protocol that effectively separates application logic (on clients)
from hardware (on servers), while enabling the dynamic discovery
of devices and their services. As we have shown, a true service
architecture can be achieved at very low cost and with acceptable
overhead. Using modern web technologies, Jacdac also provides a
universal development and debugging environment for beginner
embedded systems developers.

While our focus was on supportying prototyping, Jacdac also
makes it easier to manufacture tens or hundreds of identical in-
stances of a device. Mass production techniques are typically cost-
prohibitive at these quantities, while traditional prototyping with
lots of wires is very difficult to repeat exactly. Of course, for large
enough production runs it is more economical to use traditional
mass production. Jacdac modules can be easily assembled due to
standardized mounting holes.8 The holes can also carry power and
data, which allows for dispensing with cables. Jacdac brains can
also include built-in sensors and actuators. These can be exposed in-
ternally, using the Jacdac service architecture, regardless if external
Jacdac modules are present or not.

REFERENCES
2000. Selecting and Using RS-232 , RS-422 , and RS-485 Serial Data Standards.
ARM. 2017. The Arm Mbed IoT Device Platform. (2017). https://www.mbed.com/
Dan Awtrey. 1997. Transmitting data and power over a one-wire bus. Sensors-The

Journal of Applied Sensing Technology 14, 2 (1997), 48–51.
Thomas Ball, Peli de Halleux, and Michal Moskal. 2019. Static TypeScript: an imple-

mentation of a static compiler for the TypeScript language. In Proceedings of the
16th ACM SIGPLAN International Conference on Managed Programming Languages
and Runtimes, MPLR 2019, Athens, Greece, October 21-22, 2019, Antony L. Hosking
and Irene Finocchi (Eds.). 105–116.

Christopher L. Conway and Stephen A. Edwards. 2004. NDL: a domain-specific
language for device drivers. In Proceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’04),
Washington, DC, USA, June 11-13, 2004, David B. Whalley and Ron Cytron (Eds.).
ACM, 30–36. https://doi.org/10.1145/997163.997169

Nathan Cooprider, Will Archer, Eric Eide, David Gay, and John Regehr. 2007. Efficient
Memory Safety for TinyOS. In Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems (Sydney, Australia) (SenSys ’07). Association
for Computing Machinery, New York, NY, USA, 205–218. https://doi.org/10.1145/
1322263.1322283

Peter Corcoran. 2013. Two wires and 30 years: A tribute and introductory tutorial to
the I2C two-wire bus. IEEE Consumer Electronics Magazine 2, 3 (2013), 30–36.

James Devine, Joe Finney, Peli de Halleux, Michał Moskal, Thomas Ball, and Steve
Hodges. 2018. MakeCode and CODAL: Intuitive and Efficient Embedded Systems
Programming for Education. In Proceedings of the 19th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems

8https://microsoft.github.io/jacdac-docs/ddk/design/ec30/

MSR-TR-2023-4, January 2023

https://www.mbed.com/
https://doi.org/10.1145/997163.997169
https://doi.org/10.1145/1322263.1322283
https://doi.org/10.1145/1322263.1322283
https://microsoft.github.io/jacdac-docs/ddk/design/ec30/

Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal

(Philadelphia, PA, USA) (LCTES 2018). Association for Computing Machinery, New
York, NY, USA, 19–30. https://doi.org/10.1145/3211332.3211335

James Devine, Michal Moskal, Peli de Halleux, Thomas Ball, Steve Hodges, Gabriele
D’Amone, David Gakure, Joe Finney, Lorraine Underwood, Kobi Hartley, Paul
Kos, and Matt Oppenheim. 2022. Plug-and-play Physical Computing with Jacdac.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 3 (2022), 110:1–110:30.
https://doi.org/10.1145/3550317

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio
Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: Yesterday, Today,
and Tomorrow. Springer International Publishing, Cham, 195–216. https://doi.org/
10.1007/978-3-319-67425-4_12

Chris Exton, Damien Watkins, and Dean Thompson. 1997. Comparisons between
CORBA IDL & COM/DCOMMIDL: Interfaces for Distributed Computing. In TOOLS
1997: 25th International Conference on Technology of Object-Oriented Languages and
Systems, 24-28 November 1997, Melbourne, Australia. IEEE Computer Society, 15–32.
https://doi.org/10.1109/TOOLS.1997.681859

David Gay, Phil Levis, and David Culler. 2005. Software Design Patterns for TinyOS. In
Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (Chicago, Illinois, USA) (LCTES ’05). Association
for Computing Machinery, New York, NY, USA, 40–49. https://doi.org/10.1145/
1065910.1065917

David Gay, Philip Alexander Levis, J. Robert von Behren, Matt Welsh, Eric A. Brewer,
and David E. Culler. 2003. The nesC language: A holistic approach to net-
worked embedded systems. In Proceedings of the ACM SIGPLAN 2003 Confer-
ence on Programming Language Design and Implementation 2003, San Diego, Cal-
ifornia, USA, June 9-11, 2003, Ron Cytron and Rajiv Gupta (Eds.). ACM, 1–11.
https://doi.org/10.1145/781131.781133

Frédéric Leens. 2009. An introduction to I2C and SPI protocols. IEEE Instrumentation
& Measurement Magazine 12, 1 (2009), 8–13.

David I Lehn, Craig W Neely, Kevin Schoonover, Thomas L Martin, and Mark T Jones.
2004. e-TAGs: e-textile attached gadgets. (2004).

Philip Alexander Levis. 2012. Experiences from a Decade of TinyOS Development. In
10th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2012, Hollywood, CA, USA, October 8-10, 2012, Chandu Thekkath and Amin Vahdat
(Eds.). USENIX Association, 207–220. https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/levis

Philip Alexander Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason L. Hill, Matt Welsh, Eric A. Brewer, and
David E. Culler. 2005. TinyOS: An Operating System for Sensor Networks. In
Ambient Intelligence, Werner Weber, Jan M. Rabaey, and Emile H. L. Aarts (Eds.).
Springer, 115–148. https://doi.org/10.1007/3-540-27139-2_7

FabriceMérillon andGillesMuller. 2001. DealingwithHardware in Embedded Software:
A General Framework Based on the Devil Language. In Proceedings of The Workshop
on Languages, Compilers, and Tools for Embedded Systems (LCTES 2001), June 22-23,
2001 / The Workshop on Optimization of Middleware and Distributed Systems (OM
2001), June 18, 2001, Snowbird, Utah, USA, Seongsoo Hong and Santosh Pande (Eds.).
ACM, 121–127. https://doi.org/10.1145/384197.384214

Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Marlet, and Gilles Muller.
2000. Devil: An IDL for Hardware Programming. In Proceedings of the 4th Conference
on Symposium on Operating System Design & Implementation - Volume 4 (San Diego,
California) (OSDI’00). USENIX Association, USA, Article 2.

Grace Ngai, Stephen CF Chan, Vincent TY Ng, Joey CY Cheung, Sam SS Choy, Win-
nie WY Lau, and Jason TP Tse. 2010. i* CATch: a scalable plug-n-play wearable
computing framework for novices and children. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. ACM, 443–452.

Jon Postel et al. 1980. User datagram protocol. STD 6, RFC 768, August.
Jon Postel et al. 1981. Transmission control protocol. STD 7, RFC 793, September.
Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. 2009.

Automatic device driver synthesis with termite. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA,
October 11-14, 2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM,
73–86. https://doi.org/10.1145/1629575.1629583

Rajesh Sankaran, Brygg Ullmer, Jagannathan Ramanujam, Karun Kallakuri, Srikanth
Jandhyala, Cornelius Toole, and Christopher Laan. 2009. Decoupling interaction
hardware design using libraries of reusable electronics. In Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction. ACM, 331–337.

Dallas Semiconductor. 1998. Fundamentals of RS-232 serial communications. (1998).
Philips Semiconductors. 2000. The I2C-bus specification. Philips Semiconductors 9397,

750 (2000), 00954.
Charles R. Severance. 2014. Massimo Banzi: Building Arduino. IEEE Computer 47, 1

(2014), 11–12. https://doi.org/10.1109/MC.2014.19
Manny Soltero, Jing Zhang, Chris Cockrill, et al. 2002. 422 and 485 standards overview

and system configurations. Texas Instruments Application Report (2002), 1–33.
Universal Serial Bus Specification. 2000. Revision 2.0.
Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam. 2005. HAIL: a

language for easy and correct device access. In EMSOFT 2005, September 18-22,
2005, Jersey City, NJ, USA, 5th ACM International Conference On Embedded Software,
Proceedings, Wayne H. Wolf (Ed.). ACM, 1–9. https://doi.org/10.1145/1086228.

1086230
Jan Thar, Sophy Stönner, Florian Heller, and Jan Borchers. 2018. YAWN: yet another

wearable toolkit. In Proceedings of the 2018 ACM International Symposium on Wear-
able Computers. ACM, 232–233.

Nicolas Villar, James Scott, Steve Hodges, Kerry Hammil, and Colin Miller. 2012. .NET
Gadgeteer: A platform for custom devices. In International Conference on Pervasive
Computing. Springer, 216–233.

World Wide Web Consortium (W3C). [n.d.]. Web Services Description Language
(WSDL) Version 2.0. https://www.w3.org/TR/wsdl/. W3C Recommendation 26
June 2007.

MSR-TR-2023-4, January 2023

https://doi.org/10.1145/3211332.3211335
https://doi.org/10.1145/3550317
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/TOOLS.1997.681859
https://doi.org/10.1145/1065910.1065917
https://doi.org/10.1145/1065910.1065917
https://doi.org/10.1145/781131.781133
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/levis
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/levis
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1145/384197.384214
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1109/MC.2014.19
https://doi.org/10.1145/1086228.1086230
https://doi.org/10.1145/1086228.1086230
https://www.w3.org/TR/wsdl/

	Abstract
	1 Introduction
	2 Overview
	2.1 Accelerometer Service
	2.2 Accelerometer Module: Hardware
	2.3 Accelerometer Module: Firmware and Jacdac Protocol
	2.4 Brain/Client Programming
	2.5 Dashboard and Digital Twins
	2.6 Summary

	3 Service Specification Language
	3.1 Service Members and Commands/Reports
	3.2 Compile-time Declarations
	3.3 Registers
	3.4 User-defined Commands/Reports
	3.5 Events
	3.6 Pipes
	3.7 Extending Services

	4 Protocol
	4.1 Service Layer
	4.2 Device Identification, Roles, and the Role Manager Service
	4.3 Transport Layer
	4.4 Network Layer: Single Wire Serial

	5 Evaluation and Discussion
	5.1 Cost
	5.2 Generality
	5.3 Platform Code Size
	5.4 Performance
	5.5 Security
	5.6 Working with Jacdac via the web browser

	6 Related Work
	6.1 TinyOS
	6.2 IDLs for Distributed Computing and DSLs for Device Drivers
	6.3 Embedded Protocols and Construction Toolkits

	7 Conclusion
	References

