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Abstract
Proactive transports explicitly allocate bandwidth to each
sender with credits which schedule packet transmission.
While promising, existing proactive solutions share a strin-
gent deployment requirement; they assume the perfect con-
trol of every link and packet in the network. However, the as-
sumption breaks in practice because new transports are usu-
ally deployed gradually over time and legacy traffic always
coexists. In this paper, we present FlexPass, a credit-based
transport that takes deployment flexibility as a first-class
citizen. FlexPass uses a novel combination of network and
end-host designs to solve the problem of co-existence and
gradual deployment. FlexPass leverages a proactive control
loop to send credit-scheduled packets and a complementary
reactive control loop to send unscheduled packets to utilize
the spare bandwidth. Finally, FlexPass prevents queue build-
ups of both scheduled and unscheduled packets, and recovers
lost packets efficiently. Our evaluation on the testbed shows
that FlexPass maintains co-existence with legacy transports
(DCTCP), while preserving the high-performance properties
of the proactive transport. In large-scale simulations, we
show that FlexPass delivers the best incremental benefits
during the gradual deployment. We find traffic upgraded to
FlexPass benefits from the bounded queue and reduced flow
completion time by up to 44% compared to the legacy traffic,
while minimizing the side-effect on the legacy flows.
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1 Introduction
Low latency has become a virtue of modern datacenter net-
works (DCNs). To accommodate the need for low latency,
many efforts have been made on improving datacenter trans-
ports over the past decade. As the link speed in datacenters
scales up to 100Gbps and beyond, flows become “shorter” as
they can be finished in fewer round-trip times (RTTs).
Traditional congestion control algorithms, such as ECN-

based [1, 48] or delay-based [26, 32], are insufficient in such
a trend due to their reactive nature. Therefore, many recent
proposals [9, 13, 18, 35, 36] shift to proactive congestion con-
trol. Instead of iteratively probing the bandwidth, proactive
transports proactively allocate network bandwidth to each
sender as credits so that senders can send scheduled packets
at the optimal rate to achieve high throughput, low queuing
delay, and near-zero packet loss. We refer to these transports
as “credit-based” transports1.
However, despite the outstanding performance, we find

that all the existing proactive transport solutions assume
a perfect single administrative domain where the transport
has full control of every packet and network element. This is
because proactive transports require the complete knowledge
of the network topology, routing, and per-link bandwidth to
allocate credits to schedule packet transmissions. However,
such stringent assumption hardly holds in practice, thus
significantly blocking the production adoption of proactive
transports at scale. Rolling out a new transport at scale is
often a gradual process [15] in which operators start from
a pilot deployment, run various benchmark workloads, and
increase the deployment scale. During the gradual deploy-
ment, legacy flows co-exist with proactive flows, resulting
in a heterogeneous environment. Even after the full deploy-
ment, such heterogeneity still remains due to north-south
traffic (e.g., 18% of total traffic [41]) crossing the boundary
of datacenters, driven by Internet-facing applications and
geo-distributed workloads [38]. Such uncontrolled traffic
can easily break the delicate credit allocation and clip the
desirable properties of proactive transports (§2.2).

When a legacy transport shares the network with a proac-
tive transport, they interfere with each other, causing vari-
ous problems such as link under-utilization or high latency.
Reactive transports will grab some bandwidth, leaving the
available bandwidth for the proactive transport as a variable
that changes over time. This runs into a dilemma. On the one
hand, if the proactive transport allocates credits using the full

1Proactive and credit-based transport are used interchangeably in this paper.
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link capacity, it will cause persistent link over-subscription
and even starve competing reactive flows. On the other hand,
if we use weighted queue isolation and conservatively allo-
cate credits using the minimum guaranteed rate, the proac-
tive transport will suffer from link under-utilization.
Motivated by the problem, we present FlexPass, a new

credit-based proactive transport that takes deployment flexi-
bility as the first-class citizen. By deployment flexibility, we
mean that the solution should be able to preserve the perfor-
mance benefits of proactive transports when co-existing with
legacy traffic, which is the common case in the production en-
vironment. The key challenge for FlexPass is achieving high
throughput and low latency under dynamic network band-
width due to the existence of unpredictable legacy flows. To
this end, FlexPass uses weighted fair queueing at the switch
to reserve static bandwidth for credit allocation, without
starving legacy transports. To achieve high throughput with
partial bandwidth knowledge, FlexPass leverages two con-
trol loops to send packets in parallel: a credit-based proactive
control loop to send scheduled packets based on the mini-
mum guaranteed bandwidth, and a complementary reactive
control loop to send unscheduled packets to utilize the spare
bandwidth left by legacy traffic. On the credit-based control
loop, FlexPass adopts ExpressPass [9] to allocate credits as
ExpressPass can mitigate congestion in the network core,
which is common in production networks due to oversub-
scription. On the reactive control loop, FlexPass uses an
ECN-based algorithm to probe the spare bandwidth. To pre-
serve low latency, FlexPass uses selective dropping at the
switch to prioritize scheduled packets over unscheduled ones
in case of queue build-ups.
We evaluate FlexPass using small-scale experiments on a

ten-node testbed and large-scale simulations. We implement
FlexPass on the host-side virtual NIC built with BESS [17]
for testbed experiments, and in ns-2 [31] for simulations.
Our evaluation shows FlexPass achieves similar performance
as an ideal but impractical weighted configuration while
significantly outperforming the naïve deployment scheme.
For example, FlexPass does not starve legacy flows, achieving
99.9% lower starvation time, defined as a duration of each
transport’s bandwidth is less than 20%, compared to the naïve
deployment scheme. Also, during the gradual deployment,
FlexPass achieves 2.4% to 16% lower average FCT and 18%
to 33% lower 99th percentile FCT for small flows compared
to the naïve deployment.
Contribution. We systematically study the co-existence
problem between credit-based proactive and reactive trans-
ports, which is one of the major hurdles for deploying proac-
tive transports in production datacenters. Motivated by the
above problem, we propose FlexPass, a new credit-based
proactive transport that takes deployment flexibility as the
first-class citizen. We show that a novel combination of ex-
isting techniques solves the problem.

2 Background and Motivation
2.1 Background

Reactive congestion control. Traditional congestion con-
trol algorithms [1, 5, 26, 28, 32, 37, 48] react to congestion
signals (e.g., packet loss, delay, ECN) "after the fact" and it-
eratively adjust the sending rate. However, with the rapid
increase of DCN bandwidth, flows become "smaller", leaving
little time to reach convergence. Furthermore, congestion
events in production DCNs are often short-lived [47]. These
make reactive congestion control algorithms ill-suited to
meet the low latency requirements in high-speed DCNs.
Nonetheless, reactive congestion control still dominates

traffic in production DCNs [25, 26] due to their deployability.
Reactive congestion control does not make strong assump-
tions to the underlying network, e.g., the prior knowledge
of the topology (routing and per-link bandwidth). In pro-
duction DCNs, it is common to see that multiple reactive
solutions are enabled simultaneously for different workloads,
e.g., DCTCP for intra-DC TCP traffic, DCQCN for RDMA
traffic, and BBR/Cubic [7, 16] for wide-area traffic. To support
co-existence, queue isolation is often used [25, 26].
Proactive congestion control. Many recent DCN trans-
port proposals [6, 9, 13, 18, 35, 36] adopt proactive congestion
control algorithms. Proactive congestion control requires
the prior knowledge of the entire network and proactively
allocates bandwidth to all the senders as credits so that
each sender transmits "scheduled packets" at the right rate
to ensure high throughput, low latency, and fast conver-
gence. Different approaches allocate credits in different ways.
For example, FastPass [36] uses a centralized arbiter while
NDP [18], Homa [35], pHost [13], and ExpressPass [9] lever-
age receiver-driven credit allocation. NDP, Homa and pHost
assume the network core is free of congestion and only miti-
gate the congestion at the edge2. ExpressPass does not rely
on this assumption and does not require switch hardware
modification. Hence, in this paper, we incorporate the main
idea of ExpressPass into our design.
Deploying new transports in production. In production
DCNs, gradual deployment is a common practice to enable
new transports. Operators typically start by rolling out the
new transport in a pilot deployment, run various bench-
marks to evaluate performance benefits, and then increase
the deployment scale. For example, Guo et al. took a step-by-
step procedure to roll out RDMA from rack level, to podset
level, and eventually to the entire datacenter [15].

However, gradual deployment results in a heterogeneous
environment where the new transport and legacy reactive
transports co-exist. Even after the full deployment in a dat-
acenter, such heterogeneity still exists due to north-south
2Given the low average network utilization, production datacenters in-
tentionally adopt oversubscribed topologies to reduce cost, thus leaving
congestion in the network core. For example, Singh et al. [43] report that
around 37.2% of packet drops happen in the network core.
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Figure 1. [Simulation] Aggregate throughput of DCTCP and
ExpressPass / HOMA flows competing for a 10Gbps link.

traffic crossing the boundary of datacenters. For instance,
Roy et al. showed that around 1/6 of Facebook’s datacenter
traffic was north-south traffic (Table 3 of [41]).

2.2 Key Challenges in Co-existence

The superior performance of proactive transports comes
from stringent deployment assumptions: the prior knowl-
edge of the entire network (e.g., topology, link capacity, and
routing) and the capability to control the transmission of
every packet. However, these assumptions do not hold in pro-
duction DCNs where new transport and legacy transports
always co-exist. Proactive transports are generally incom-
patible with such a heterogeneous environment as legacy
traffic will break the delicate credit allocation, thus clipping
the desired properties of proactive transports. On the other
hand, the performance of legacy traffic is also degraded. This
is because proactive transports may not effectively detect or
react to congestion when competing the link capacity with
legacy traffic. Thus, legacy reactive flows will be starved
by proactive flows and significantly back off, thus suffering
from large completion times.
To evaluate the impact of proactive transport flows on

legacy reactive flows, we conduct a simple simulation using
a dumbbell topology with a 10Gbps bottleneck. Figure 1 (a)
shows that the starvation occurs when a DCTCP [1] flow
compete with a ExpressPass [9] flow on the bottleneck link.
Figure 1 (b) shows that the starvation also occurs with 16
HOMA [1] and 16 DCTCP flows 3. Despite mechanism differ-
ences, both ExpressPass and HOMA allocate credits based on
the full link capacity without awareness of the co-existing
reactive flows. In contrast, DCTCP cuts the window upon
detecting queue build-ups and ends up using only 5% of the
link capacity. We note that the starvation of reactive flows
is also common with other combinations of proactive and
reactive transports.
We outline existing approaches to congestion control co-

existence and discuss their shortcomings in supporting the
incremental deployment of proactive congestion control.

3HOMA uses 8 strict priority queues at the switch. We map DCTCP flows
to the highest priority queue. As HOMA maintains at most RTTbytes of
in-flight data per flow, a single HOMA flow may not starve a DCTCP flow.
However, multiple HOMA flows can easily starve DCTCP flows.

Weighted Fair Queueing is the most widely used approach
to enable the co-existence of multiple transports [3, 25]. Op-
erators map traffic to different switch queues by tagging
packets with different Differentiated Services Code Point
(DSCP) values. At the switch, operators use Deficit Weighted
Round Robin (DWRR) [42] as the scheduling algorithm to
avoid starvation. Operators also carefully tune parameters
of dynamic buffer management [10] to ensure that a single
transport will only use a proper fraction of the switch buffer.
Although this approach seems promising, it cannot ef-

fectively multiplex proactive and reactive transports. This
is because proactive transports require prior knowledge of
the available bandwidth of each link. When there is only a
single proactive transport, the available bandwidth is exactly
the link capacity. When a proactive transport and a reactive
transport are scheduled by DWRR, we can only know the
minimum guaranteed bandwidth for the proactive transport.
The actual available bandwidth varies across time as it de-
pends on both the DWRR setting and the demand of the
reactive traffic. On the one hand, if the proactive transport
uses the minimum guaranteed bandwidth to allocate credits,
it will cause link under-utilization when there is not enough
reactive traffic. On the other hand, if the proactive transport
uses the full link capacity to allocate credits, it will cause con-
gestion and a series of performance problems when reactive
traffic exists.

The reader may wonder about the feasibility of adjusting
queue weights based on the fraction of proactive traffic. As
datacenter traffic is highly volatile, this approach requires
network operators to monitor per-link traffic and update
per-port settings in a real-time manner. In addition to queue
weights, operators also need to adjust the per-link credit
allocation rate accordingly. Such real-time monitoring and
distributed update at datacenter scale are very expensive and
hence unlikely to be adopted in production DCNs.
Strict Priority Queueing. We note that giving a strictly
higher priority to the proactive transport is not an option be-
cause it deprioritizes all the legacy traffic regardless of their
importance. Many legacy flows crossing deployment bound-
aries (rack/cluster/datacenter) are of significant importance
for applications, e.g., a search request from the Internet. If
we blindly deprioritize all the legacy traffic, we are likely to
degrade the end-to-end application performance.
Network separation. Another more aggressive isolation
approach is using physically separated networks to isolate
different transports, e.g., one for new proactive transport and
the other one for legacy traffic. Specifically speaking, the
host can have multiple NIC ports with each port connected
to a physically separated network. Each network has its own
switches, links, and routing protocols [49]. While this ap-
proach can completely eliminate the interference of different
transports, it significantly increases the economic (e.g., hard-
ware purchase and cooling) and operation costs, which are
top priorities for DC operators and cloud providers. Hence,
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operators are very unlikely to take this option to deploy
proactive transports at a large scale.

3 Goal and Approach

3.1 Goals

Design goal. Our goal is to design a practical proactive
transport, named FlexPass, with the following three key
proprieties:
• FlexPass must preserve the high-performance properties
of proactive congestion control, e.g., high throughput,
bounded queue, and zero timeouts.

• FlexPass flows must not induce harm on legacy transports.
For example, it should not cause starvation or interfere
with the congestion signal of legacy traffic.

• FlexPass must provide gradual deployability with incre-
mental benefit; partial deployment of a new transport
should introduce a corresponding performance gain.

Non-goals. FlexPass is not a generic building block like Ae-
olus [20] and TLT [29] to augment different transports. In
addition, our goal is to provide reasonable performance iso-
lation instead of perfect per-flow fairness among transports.

3.2 Design Decisions

Queue isolation is unavoidable. Proactive congestion con-
trol requires accurate prior knowledge of per-hop bandwidth
information. However, this requirement completely breaks
when reactive flows and proactive flows co-exist in the same
queue. Thus, to prevent interference we use weighted fair
queuing (WFQ) to guarantee the minimum bandwidth for
each transport. This ensures that 1) legacy flows will not be
starved and 2) proactive transports at least know the mini-
mum guaranteed bandwidth and can use it to allocate credits,
which ensures that the scheduled data packets are delivered
by the network without any loss. However, this approach
also causes link under-utilization as proactive flows cannot
use spare bandwidth left over by reactive flows.

Receive Credit

Window open up

Receive Reactive ACK

Loss detection

Timeout

Receive Reactive DupAck

Reactive 
Slowdown

Detect 
Lost Block

Allocate
packets to 

subflow

Reactive
cwnd update

New Application Data

Figure 3. FlexPass assigns a segment to its sub-flow on credit
reception, reactive loss detection, and new app data.

Split FlexPass flows into proactive and reactive sub-flows.
To address link under-utilization, we introduce a reactive com-
ponent in FlexPass that probes spare bandwidth in an op-
portunistic manner. A FlexPass flow is split into a proactive
sub-flow and a reactive sub-flow. The reactive sub-flow shares
the same queuewith the proactive sub-flow, instead of directly
competing with legacy traffic which is in a different queue.

The reader may think that the co-existence of reactive sub-
flows and the proactive sub-flows is essentially equivalent to
the scenario where proactive traffic and reactive traffic share
the same switch queue. However, the key difference is that
FlexPass controls both reactive and proactive sub-flows. This
enables us to cooperatively schedule packet transmissions of
two sub-flows to achieve bounded delay and zero timeouts.
Scheduling sub-flows for low latency. The two sub-flows
exhibit distinct properties. The proactive sub-flow delivers
predictable low latency because it schedules packet transmis-
sions based on the minimum guaranteed bandwidth, while
the reactive one can achieve high throughput. The question
then is how we utilize the two control loops to deliver both
bounded queuing delay and high throughput. The reactive
sub-flow essentially carries “unscheduled” packets whose
deliveries are not guaranteed. Hence, loss recovery must be
carefully designed to minimize the end-to-end flow comple-
tion time. In Section 4, we show how FlexPass solves these
problems.

4 FlexPass Design
Figure 2 presents an overview of FlexPass design with three
main components:
Sender. FlexPass uses ExpressPass [9] and DCTCP [1] to
control packet transmissions of the proactive sub-flow and
reactive sub-flow, respectively. We choose ExpressPass as it
can mitigate congestion in both network edge and core using
commodity switch hardware. In contrast, other state-of-the-
art schemes such as NDP and HOMA require modification
of switch hardware or cannot mitigate the congestion at the
network core.We choose DCTCP as it is well adopted [25, 43]
in production DCNs. The two congestion control algorithms
run independently without sharing any states, but FlexPass
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coherently manages packet transmissions and loss recovery
across the two.
For each flow, a FlexPass sender maintains a single FIFO

queue as its send buffer. When a credit packet of the proac-
tive sub-flow arrives, the proactive sub-flow will pull a data
packet from the send buffer to transmit. Reactive sub-flows
are ACK-clocked and employ cumulative ACK with selective
acknowledgment. If an arriving ACK opens up the window,
the reactive sub-flow will transmit a data packet. We present
more details on co-scheduling the two sub-flows in §4.2.
Switch. FlexPass requires three queues per egress port to
isolate traffic: Q0 for credit packets, Q1 for FlexPass data
packets (both proactive and reactive sub-flows), and Q2 for
legacy traffic4.
As required by ExpressPass, we give Q0 a strict high pri-

ority to ensure that credit packets will not be delayed due to
data packets in Q1 and Q2. We also configure rate-limiting
with a very small buffer (<1 KB) at Q0 to drop excessive cred-
its. Q1 and Q2 are scheduled using Deficit Weighted Round
Robin (DWRR) to avoid starvation. As we adopt DCTCP for
reactive sub-flows, we enable RED/ECN marking on Q1. We
introduce more details in §4.1.
Receiver. At the receiver side, FlexPass reassembles mes-
sages using data packets from proactive and reactive sub-
flows, and delivers them to the application. The receiver also
supports per-packet ACK for both proactive and reactive
sub-flows.
4.1 Enabling Co-existence in the Network

As a deployment-friendly transport protocol, FlexPass should
be able to preserve the performance benefits of proactive con-
gestion control when co-existing with legacy traffic. There
are two co-existence problems with distinct requirements:
• Co-existence between FlexPass and legacy traffic: Legacy
traffic can be first-party workloads running different trans-
ports and third-party workloads, e.g., Internet traffic, and
traffic between tenants’ VMs. As we lack full control, we
aim to enforce weighted fair sharing between legacy and
FlexPass traffic without causing starvation.

• Co-existence between proactive and reactive sub-flows of
FlexPass: Unlike the legacy traffic, FlexPass has control
over its own reactive sub-flow, which should only use
spare bandwidth left by legacy traffic. When there is a
sufficient amount of legacy traffic, reactive sub-flows must
not occupy any bandwidth. In addition, in any situation,
we must bound the buffer occupancy of the reactive sub-
flows to preserve low latency benefits.

Co-existence with legacy traffic. At the switch, FlexPass
leverages three queues to isolate FlexPass and legacy traffic.
We assign each traffic to the designated queues below:
• Q0: proactive credit packets.
4Operators may use multiple queues to further isolate different types of
legacy traffic. Without loss of generality, we assume operators only use a
single queue for legacy traffic in this section.
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New data segment 
from application
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retransmission

Receive ACK

Lost
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Figure 4. Per-packet state machine at the sender.

• Q1: FlexPass data packets (both proactive and reactive).
• Q2: legacy reactive traffic.
We set the queue weight for Q1 and Q2 to𝑤𝑞 (0 < 𝑤𝑞 < 1)

and 1−𝑤𝑞 , respectively.𝑤𝑞 denotes the portion of bandwidth
we would like to reserve for FlexPass in the network. We
configure Q0 to high priority over the others and enforce
rate limiting of credit packets. The original ExpressPass [9]
sets the credit rate limit to the point where data packets fully
utilize the link capacity. However, in the case of the FlexPass,
proactive sub-flows should only take the minimum guaranteed
bandwidth to allocated credits. Therefore, FlexPass sets the
credit rate limit scaled down to𝑤𝑞 , so that the proactive sub-
flow can take up to 𝑤𝑞 of the line rate. Note that FlexPass
does not require 𝑤𝑞 to match with the actual proportion
of FlexPass traffic in the network. Unlike other proactive
transports, the performance of FlexPass is insensitive to the
value of𝑤𝑞 (refer to Appendix A).
Co-existence between two sub-flows. When proactive
and reactive sub-flows co-exist, the reactive sub-flow should
only use spare bandwidth without causing queue buildups. A
straightforward solution is using two queues to further iso-
late proactive and reactive sub-flows and giving the proactive
queue a higher priority. This approach can achieve desired
bandwidth sharing, but can cause serious out-of-order ar-
rivals, thus bringing many challenges to loss recovery.

Realizing this limitation, we seek an approach that achieves
desired bandwidth sharing and queue bound inside a switch
queue. We notice that once the reactive sub-flow uses exces-
sive bandwidth, there will be switch queue buildups. There-
fore, as long as we bound the buffer usage of reactive packets,
we can ensure that the reactive sub-flow only uses the spare
bandwidth. To this end, FlexPass uses a combination of ECN
marking and selective dropping.

As shown inmany ECN-based congestion control schemes
[1, 48], reactive sub-flows can react to the congestion before a
loss happens, thus achieving lower average queue occupancy.
However, ECN marking itself is not sufficient, as it does not
guarantee a queue bound, and cannot handle bursty flows,
i.e. incast. We need a more aggressive approach to throttle
reactive traffic in case of many concurrent flows.
To this end, we further introduce selective dropping [20,

29] onto the FlexPass queue (Q1) to limit the queue buildup of
reactive sub-flow. When the queue length of the reactive sub-
flow exceeds a certain threshold, the switch drops incoming
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packets from reactive sub-flows. Packets from proactive sub-
flows are still not dropped until the entire queue length
exceeds the buffer limit. This mechanism effectively limits
the queue buildup of reactive sub-flows. Selective dropping
can be implemented using color-aware dropping [20, 29], a
feature supported by a wide range of commodity switches.
Selective dropping brings two key benefits. First, it can

quickly throttle the reactive sub-flow when no bandwidth is
available for the reactive sub-flow. Unlike other mechanisms
(e.g. ECN [1]) which require at least 1-RTT for congestion
avoidance, selective dropping proactively drops the packet
inside the switch fabric and thus results in quicker throt-
tling of reactive flows. Second, selective dropping ensures
bounded delay. As proactive sub-flows using ExpressPass
already have a low queue bound, the entire queue length of
the FlexPass queue (Q1) is eventually bounded.

To enable FlexPass at a switch, the operator only needs to
allocate two additional queues (Q0 and Q1), configure queues
(priority, rate limiting, buffer), and map traffic to them based
on DSCP. These configurations can be applied incremen-
tally through switch OS commands without rebooting the
switch or reloading switch configurations. Hence, legacy
traffic remains unimpacted during the switch configuration.
Example. When both FlexPass and legacy trafficwith enough
demands co-exist in the same link, proactive sub-flow of Flex-
Pass gets 𝑤𝑞 × LinkRate, and legacy traffic gets the rest –
(1−𝑤𝑞)×LinkRate, ensuring the co-existence between Flex-
Pass and legacy traffic. Note reactive sub-flow of FlexPass
gets no bandwidth. In contrast, when there is only FlexPass
traffic in the link, the proactive sub-flow of FlexPass gets
𝑤𝑞 × LinkRate, and the reactive sub-flow gets the rest.

4.2 Sub-flow Scheduling at the Host

Given the bandwidth allocation between proactive and reac-
tive sub-flows mentioned in §4.1, FlexPass must assign data
segments to the two sub-flows correspondingly, recover lost
packets, and ensure in-order delivery at the receiver side.
State machine. A FlexPass sender keeps a per-packet state
machine to track whether a packet has been transmitted or
delivered. Figure 4 shows the state machine with five states:
• Pending: The data packet is in the pending state if it has
never been transmitted.

• Sent as reactive/proactive:When a packet is sent either
as reactive or proactive, it is marked “sent as reactive (or
proactive)”.

• Lost: When the sender detects a packet loss, the lost
packet is marked “Lost”.

• ACKed: Upon ACK arrival, corresponding data packets
are marked “ACKed” and removed from the send buffer.

Scheduling transmission on two sub-flows. When a sub-
flow is available for further packet transmissions, the Flex-
Pass sender assigns data segments to the sub-flow and starts
transmissions. This happens when (1) the sender receives a

credit packet of the proactive sub-flow, and (2) the window of
the reactive sub-flow opens up. This is similar to the shared
send buffer design of MPTCP [40], where the scheduling on
each sub-flow is done on transmission time rather than in
advance. Note that, reactive sub-flows can immediately trans-
mit data during the first RTT, whereas proactive sub-flows
need to wait for one RTT for credits [20].
When credit and ACK packets arrive at the sender, Flex-

Pass makes state transitions and transmits packets as follows:

• Receive a credit packet: The sender can transmit one
data packet using the proactive sub-flow. FlexPass can
either transmit a new packet (“Pending”) or retransmit a
packet (“Lost”, “Sent as reactive”). To accelerate loss
recovery, FlexPass gives the highest transmission priority
to the “Lost” packets. Next, to reduce spurious retrans-
missions, FlexPass prioritizes “Pending” packets over
“Sent as reactive” packets. Note that FlexPass retrans-
mits unacked reactive packets (“Sent as reactive”) for
efficient loss recovery. We will explain the rationale at the
end of this subsection when we describe the loss recovery.

• Receive an ACK of the reactive sub-flow: The sender
marks corresponding data packets as either “ACKed” or
“Lost”, depending on whether the ACK indicates a loss
(“Sent as reactive”→ “ACKed”, “Sent as reactive”
→ “Lost”), and slides the window of the reactive sub-
flow. In addition, if the ACK opens up the window, it will
trigger further transmissions of new packets via reactive
sub-flow (“pending” → “Sent as reactive”). Unlike
the proactive sub-flow, the reactive sub-flow is not used
for retransmissions.

• Receive an ACK of the proactive sub-flow: The sender
marks the corresponding data packet as ACKed. (“Sent
as proactive” → “ACKed”).
Each FlexPass data packet carries two sequence numbers as

in MPTCP [40]. One indicates the sequence within the entire
FlexPass flow for reassembly, and the other is used within
each sub-flow for congestion control and loss detection. Note,
each flow and sub-flow has its own sequence number space.
Loss recovery. FlexPass employs ACK-based loss detection.
Each sub-flow leverages the per-sub-flow sequence number
to detect losses individually. When the receiver receives a
packet, it checks the per-sub-flow sequence number and
sends a cumulative ACK (with SACK-enabled) back to the
sender. Unlike data packets, the ACK packet only carries the
per-sub-flow sequence number as the sender maintains the
mapping from the per-flow sequence number to the per-sub-
flow sequence number. As we assume no reordering due to
routing inside a network, the senderwill detect losses (update
packet state into “Lost”) upon receiving a duplicated ACK.
However, unlike TCP, FlexPass does not immediately re-

transmit lost packets upon detection.When an ACK notifying
a loss arrives at the sender, we mark the packet as “Lost”,
update the window size using the DCTCP algorithm, but still
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slide the left edge of the window of the reactive sub-flow.
FlexPass only uses the proactive sub-flow to retransmit lost
packets. This is because the delivery of proactive packets is
guaranteed without experiencing congestion losses. In con-
trast, reactive packets are subject to selective dropping. There-
fore, inspired by Aeolus [20], we choose to use the proactive
sub-flow as the highly reliable channel for loss recovery.

This loss recovery mechanism effectively mitigates conges-
tions when a FlexPass flow is competing with legacy reactive
flows. When FlexPass flows are competing with legacy reac-
tive flows, FlexPass does not allocate bandwidth for the reac-
tive sub-flow. Thus, retransmitting packets via the proactive
sub-flow instead of the reactive sub-flow would accelerate
loss recovery. In contrast, naïve loss recovery mechanism (i.e.
MPTCP with ExpressPass and DCTCP sub-flows) would have
to wait for the reactive sub-flow to complete its loss recovery.
Optimizing for tail latency. Although the loss recovery
design above seems promising, the ACK-based loss detection
can lead to timeouts in case of tail losses [29]. For example,
consider a flow with two packets, where the first is sent
via the proactive sub-flow and the second packet is sent
via the reactive sub-flow. Assume the second packet gets
dropped. The sender can only rely on timeout to detect it,
thus significantly increasing the flow completion time.

To optimize for tail latency, the proactive sub-flow proac-
tively retransmits an unacknowledged segment assigned to
the reactive sub-flow. The reason is that when reactive flows
suffer from a tail loss, it results in a long timeout, dramati-
cally increasing the FCT. To minimize redundant traffic in
the network, we only trigger such “proactive retransmis-
sion” when the proactive sub-flow has no more “Lost” or
“Pending” packets to send. Note that our simulation results
show that proactive retransmission generates only 0.7% of
redundant retransmission in traffic volume,when 50% of hosts
switched to FlexPass.5 At the receiver side, redundant pack-
ets are identified by per-flow sequence number and discarded
during reassembly.
In summary, upon receiving a credit packet, the sender

transmits a data packet via the proactive sub-flow in the
following order:

1. “Lost”: When the sender detects the loss, the sender
performs loss recovery instead of transmitting new data.
This is to accelerate loss recovery and reduce the re-
ordering of segments.

2. “Pending”: If there is no lost packet, the sender trans-
mits new data.

3. “Sent as Reactive”: Otherwise, the sender retrans-
mits an unacknowledged segment assigned to the reac-
tive sub-flow. We call this “proactive retransmission”.

5Web search workload. We use DCTCP for the legacy traffic. The deploy-
ment ratio is the fraction of ExpressPass/FlexPass-enabled racks. Refer to
§6 for the detailed settings.
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Figure 5. [Simulation] 99%-ile FCT comparison of FlexPass
with different schemes under a realistic workload.

At the receiver side, FlexPass reassembles the data packets
received via the proactive and reactive sub-flows. FlexPass
uses the per-flow sequence number to reorder packets.
4.3 Discussions

Alternative flow splitting schemes. A few existing trans-
port designs split a flow into multiple sub-flows. For example,
RC3 uses two sub-flows (a primary control loop and a re-
cursive low priority (RLP) control loop) running in different
priorities to take advantage of available link capacity. To pre-
vent redundant transmissions, the primary loop transmits
data from the beginning, and the RLP loop transmits data
from the end of the flow. When designing FlexPass, we also
consider this design. However, we do not adopt this for two
reasons. First, this scheme implicitly requires prior knowl-
edge of the entire flow/message before the transmission. In
other words, this scheme cannot be used for applications
that continuously generate traffic [4], e.g. video streaming.
Second, this scheme also requires a much larger reordering
buffer (e.g., half of the flow size). In contrast, our design does
not have these problems.

We use simulations to compare FlexPass and FlexPass that
use RC3’s flow splitting. Figure 5 (a) shows the 99%-ile flow
completion times (FCTs) of small flows and average reorder-
ing buffer size in two different allocation schemes under a
realistic workload5. Compared to using RC3, FlexPass uses
less reordering buffer, while exhibiting comparable FCTs.
Alternative queuing scheme. Instead of putting both proac-
tive and reactive sub-flows into a single queue (Q1), an obvi-
ous alternative is to assign proactive sub-flows into Q1, and
put reactive sub-flows into Q2. At first glance, this scheme
looks very promising; Q1 will have near-zero queuing and
very low queue bounds even without selective dropping.
Proactive sub-flows would have very low delay bounds.
Nonetheless, we do not adopt this design because reac-

tive data packets can suffer from serious queuing delays and
losses due to the bursty legacy traffic in Q2. The large queu-
ing delay at Q2 also increases the size of the required reorder
buffer as it will take longer for the sender to detect losses.
While the reactive data packets are trapped inside the switch
queue due to the long queuing delay, the sender may retrans-
mit them via “proactive retransmission” when the sender has
sent out all the remaining data packets. This will increase
redundant traffic. Note that assigning each traffic a different
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ECN marking or selective dropping threshold still cannot
prevent reactive sub-flows from experiencing the same prob-
lem. We compare FlexPass with the alternative in Figure 5 (b)
under a realistic workload.5 The alternative scheme fails to
achieve comparable performance with FlexPass.
Readers may wonder why FlexPass does not simply use

three queues for proactive, reactive, and legacy flows, re-
spectively. This obvious alternative, however, has two major
drawbacks. First, this incurs severe reordering within a Flex-
Pass flow, which requires a large reordering buffer at the
host side. Second, FlexPass would no longer have a low delay
bound, due to the queue buildup in the reactive sub-flow
queue. The increase in the queuing delay of the reactive
sub-flow would bring a longer FCT of the entire flow.
Credit waste mitigation. Perfect credit allocation is chal-
lenging at scale as it requires perfect coordination among all
the links. For example, a sender may receive excessive credits
from multiple receivers, and unavoidably wastes some cred-
its due to the bottleneck of the sender’s NIC. The credit waste
problem has been widely identified and different proactive
transports adopt different credit allocation enhancements,
e.g., source downgrading in pHost [13], over-commitment in
Homa [35], credit feedback control in ExpressPass [9], and
token clocking in dcPIM [6].

FlexPass mitigates this problem from another perspective
by using the reactive sub-flow to utilize any spare bandwidth
in the network, not only that left by legacy traffic, but also
that wasted by imperfect credit allocation. In large-scale
simulations (Figure 10), we find that FlexPass can achieve
better link utilization than ExpressPass at 100% deployment.
Handling proactive data packet losses. The proactive
sub-flow does not experience any congestive loss by its de-
sign. Nonetheless, in practice, it can still experience non-
congestion losses, e.g. due to the switch failures. To this end,
we add an ACK-based loss recovery mechanism and a recov-
ery timer to the proactive sub-flow. Once the sender detects
a loss on the proactive sub-flow, FlexPass gives the highest
transmission priority to the lost packet. Upon timeout, the
sender will re-request credit and resume recovery.
Extensibility of FlexPass. In FlexPass, we adopt Express-
Pass [9] for credit allocation as it can mitigate the congestion
in the oversubscribed networks using commodity switch
hardware. FlexPass can also apply other credit allocation
algorithms, e.g., pHost [13] and dcPIM [6] in non-blocking
networks with per-packet load balancing. In particular, the
approach of FlexPass is useful for many transports that make
assumptions on the network, since FlexPass alleviates strin-
gent requirements on the prior knowledge of the network.
Also, we adopt DCTCP [1] for reactive sub-flows, as it is well-
adopted in production environments. We can also consider
applying other reactive congestion control algorithms (e.g.,
loss-based, latency-based, or ECN-based) for the reactive
sub-flows. We leave this as our future work.
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offload
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Figure 6. FlexPass network stack
Deployment scenario of FlexPass. To deploy FlexPass,
operators need to upgrade both the switch configuration
and the host networking stack. First, operators roll out the
FlexPass switch configuration to every switch6. Note that the
upgraded switch configuration does not affect legacy flows.
Once the switch configuration is deployed, operators can
gradually upgrade the host networking stack to FlexPass. We
assume that operators deploy FlexPass in a per-rack manner,
but operators may take different deployment strategies, e.g.,
per-host, per-VM.

Operators do not need to adjust the queue weight param-
eter𝑤𝑞 during the deployment of FlexPass, nor after the full
deployment. Adjusting𝑤𝑞 during the deployment process is
impractical since we need to update the parameters for each
host. In fact, there are negligible performance differences
between maintaining the initial𝑤𝑞 after the full deployment
and adjusting𝑤𝑞 despite the impracticality (Figure 18).

5 Implementation
Host network stack. Our prototype provides high perfor-
mance and backward compatibility to network applications
without modifications. To achieve these goals, we implement
FlexPass’s transport protocol using Berkeley Extensible Soft-
ware Switch (BESS) [17] and build a library libflxpass to
enable applications to use FlexPass transparently. Figure 6
shows the architecture of FlexPass. libflxpass is a library
in user space. It overrides the C runtime library to hook net-
work system calls, e.g., send() and recv(), and exchanges
application data with BESS via Unix domain socket. This
enables legacy applications to use FlexPass without modifi-
cations.
BESS is an extensible software switch that exploits high-

performance kernel bypass I/O framework (DPDK). We im-
plement FlexPass’s transport protocol according to §4.2 as a
BESS module and insert it into the existing data path. A Flex-
Pass packet has Ethernet, IP, UDP, FlexPass headers, and a
payload. We use the IP and UDP headers to store the connec-
tion information (e.g., IP addresses and ports) and leverage
the FlexPass header to store the information for reliable
transmission. In the IP header, we use five DSCP values to
distinguish packets in the network, including proactive data,
6NIC is essentially a special type of edge switch, in addition to physical
switches in the network. Thus, the same configuration to support FlexPass
should be applied to NICs. In VM-based cloud deployment, virtual switches
connecting VMs also need to be upgraded as such.
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reactive data, credit, FlexPass control packets (e.g., ACK), and
legacy traffic. FlexPass header has 18 bytes in total, contain-
ing per-flow sequence number (4 B), per-sub-flow sequence
number (4 B), and information required for ExpressPass.
For high performance, we also implement TCP segmen-

tation offload (TSO), large receive offload (LRO), and jumbo
frame support. We further implement logic to check and
fall back to kernel TCP, if the remote host does not support
FlexPass. We added 5.7k LoC to implement FlexPass on BESS.
Switch configuration. We allocate three queues per port
and classify proactive credit packets into Q0, FlexPass data
packets (both proactive and reactive) and control packets
into Q1, and legacy reactive packets into Q2. Packets are
classified into different queues based on their DSCP values.
FlexPass requires selective dropping and ECN marking

at Q1 to throttle excessive reactive sub-flows. To minimize
packet losses, we want to trigger ECN marking before selec-
tive dropping. Aeolus [20] implements selective dropping by
using RED/ECN to drop non-ECN-capable packets. However,
this approach will disable normal ECN marking.

Realizing this limitation, we use color-aware dropping [29]
at switches to implement selective dropping while keeping
RED/ECN to mark packets. A wide range of commodity
switching chips (e.g., Broadcom Tomahawk and Trident se-
ries [21–24]) support this feature, which leverages per-packet
metadata called color (red, yellow, and green). By setting up
the access control list (ACL), operators can designate packet
colors, for example, by mapping a certain DSCP value to
a color. Operators can associate a buffer threshold for each
color within the same queue. Switches keep track of the queue
length of packets in each color, and drop incoming packets
if the length exceeds the associated threshold. To selectively
drop reactive data packets, we mark reactive data packets as
red and set a buffer threshold to limit red packets. This buffer
threshold should be larger than the ECN marking threshold.
We assume all the switches are fully upgraded to support
FlexPass before gradually deploying FlexPass at hosts. Note
this upgrade to switch does not affect legacy flows at all.

6 Evaluation
We evaluate FlexPass using testbed experiments and ns-2
simulations [31]. Our main findings are as follows:
• Our testbed experiments show FlexPass co-exists well
with legacy transport and it achieves high-performance
properties of proactive congestion control, including high
throughput and zero timeouts. (§6.1)

• In large-scale simulations, we compare FlexPass with
other alternative deployment schemes; FlexPass provides
gradual deployability with the best incremental benefits.
During the deployment, FlexPass improves the 99%-ile
FCT and keeps the average FCT low, while posing mini-
mal harm to legacy traffic. FlexPass improves the 99%-ile
FCT of small flows up to 44% after full deployment. (§6.2)

• Through a series of targeted simulations, we show that
FlexPass can deliver incremental benefits under a higher
load. We further explore the space of parameters and eval-
uate the trade-off relationship of such parameters. (§6.3)

6.1 Testbed Experiments

Setup. We build a testbed with 9 servers connected to a
Netberg Aurora 720 switch which uses Broadcom Tomahawk
ASIC and OpenSwitch 2.0.4 as the switch OS. Each server
has an Intel 10GbE NIC and runs Linux kernel 5.4.0. We
set RTOmin of kernel TCP to 4ms. We enable three queues
at the switch. We set a strict high priority on the credit
queue (queue 0), and enable DWRR on the remaining queues
(queue 1 and 2) with equal queue weight. We set𝑤𝑞 to 0.5 and
limit the bandwidth of the credit queue to ≈0.4% of the link
capacity, which allows proactive sub-flows to take up to half
of the link capacity. We use five DSCP values to differentiate
proactive data packets, reactive data packets, credit packets,
FlexPass control packets, and legacy packets. At queue 1, we
mark proactive data packets and FlexPass control packets as
green, and reactive data packets as red by configuring QoS
DSCP mapping. We set the buffer threshold of red packets
(selective dropping threshold) to 100 kB and set the ECN
marking threshold to 60 kB.
Microbenchmark with long-running flows. Maintain-
ing co-existence with the legacy congestion control is one
of the key goals of this paper. We conduct an experiment to
verify how FlexPass fairly shares the bandwidth with legacy
reactive flows and how the existing approach fails to achieve
co-existence. We build a two-to-one topology connected via
a single switch. Each sender generates a single 50MB flow.

Figure 9 (a) depicts the throughput when one DCTCP flow
and one ExpressPass flow compete for a single 10Gbps link
in our testbed. When the ExpressPass flow exists, the DCTCP
flow takes only 9.3% of the link capacity, while the Express-
Pass flow takes the rest, as pointed out in §2.2. This may
cause starvation during the phased rollout of new conges-
tion control, resulting in high tail latency of legacy flows.
In contrast, Figure 9 (b) shows the throughput when the
DCTCP flow and the FlexPass flow compete under the same
scenario. In this case, DCTCP and FlexPass flows take 51%
and 48% of the link bandwidth respectively. To quantify the
degree of legacy flows’ starvation during the phased rollout
of new congestion control, we measure the starvation time
in Figure 9 (c), which shows the duration of each transport’s
bandwidth being less than 20%. While ExpressPass shows
97% of the starvation time, FlexPass does not starve legacy
flows (<0.1%) and co-exists with legacy congestion control.
We further explore the bandwidth allocation between

proactive and reactive sub-flows under multiple scenarios.
Figure 7 (a) shows when only one FlexPass flow exists in-
side the link. As proactive sub-flows can take up to half of
the link capacity, reactive sub-flow takes the rest and fully
utilizes the link. In contrast, Figure 7 (b) shows when two
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FlexPass flows compete for the bottleneck link. Two proac-
tive sub-flows from each flow try to take up to half of the link
capacity, which brings the starvation of reactive sub-flows.
Each flow fairly shares the bandwidth and mainly transmits
the data using the proactive sub-flow. When a DCTCP and
FlexPass flow compete, as in Figure 7 (c), both DCTCP and
FlexPass use half of the link capacity, which is the minimum
guaranteed bandwidth for each flow. Note that the proactive
sub-flow tries to take up half of the link capacity, and the
reactive sub-flow can hardly occupy the bandwidth.
Incast.We show that FlexPass does not experience any time-
out even in a high incast degree. We create an 8-to-1 incast
and measure the maximum FCT while increasing the num-
ber of flows. The receiver generates multiple synchronized
requests toward 8 hosts, and they respond with a 64 kB-sized
response. The requests are evenly distributed to each host.
We report the average of the longest FCT of two runs.

Figure 8 shows themaximum FCT for kernel DCTCP stack,
ExpressPass, and FlexPass. DCTCP experiences a timeout
with more than 48 flows. Since DCTCP is a reactive conges-
tion control that barely handles bursty flow arrivals, it cannot
recover from tail loss without a timeout. In contrast, Express-
Pass and FlexPass do not trigger any timeout, reducing the
maximum FCT compared to DCTCP up to 83.5%. Note that
FlexPass shows better FCT than Expresspass at a high incast
degree. This is because the reactive sub-flow can utilize the
first RTT before the credit arrives, as in Aeolus [20]. This
especially brings benefits for small flows.

6.2 Large-scale Simulations

We use ns-2 simulations to evaluate FlexPass and other al-
ternative deployment schemes to transit traffic from DCTCP
to FlexPass/ExpressPass in large-scale networks.
Settings. We simulate a 3-tier Clos 40Gbps topology. The
topology has 8 core switches, 16 aggregation switches, 32
ToR switches, and 192 hosts. The topology has a 3:1 over-
subscription ratio at the ToR switch level. We set per-link
propagation delay and host delay to 4 𝜇𝑠 and 2 𝜇𝑠 , respec-
tively, which results in 28 𝜇𝑠 base RTT across the core switch
(6 hops). Each switch has 8 40Gbps ports and a 4.5MB shared
buffer. We implement a dynamic buffer management mech-
anism according to [10], and set the egress dynamic buffer
threshold to 1/4. As required by ExpressPass, we use ECMP
routing with symmetric hash for fabric load balancing.

For ExpressPass, we set aggressiveness factor 𝛼 to 2.0, the
minimum change 𝑆𝑚𝑖𝑛 to 1 credit per RTT, and the maximum
change 𝑆𝑚𝑎𝑥 to 50Mbps which corresponds to 1Gbps of
returning data. For DCTCP, we set the minimum RTO to
4ms, and the ECN marking threshold to 100 kB, which is
high enough to use 40Gbps throughput.
Schemes compared. We evaluate the following schemes.
• Naïve: Naïve deployment of ExpressPass without any
measure to maintain co-existence. ExpressPass data pack-
ets and legacy traffic (DCTCP) co-exist in the same queue.
ExpressPass allocates credits according to the line rate.

• Oracle Weighted Fair Queueing (oWF): ExpressPass
data packets and legacy DCTCP traffic are separated us-
ing two queues scheduled by DWRR. The ideal queue
weight and credit allocation rate depend on the fraction
of ExpressPass traffic, which varies across time and space
in production DCNs. In our controllable simulations, to
explore the best performance that weighted fair queueing
can achieve, we use the prior knowledge of the total frac-
tion of ExpressPass traffic to compute the queue weight
and credit allocation rate in advance and apply them to
all the switches and hosts.

• Layering (LY) [45] scheme overlays congestion control
of DCTCP and ExpressPass. This scheme adds a window
limit on the top of ExpressPass, adjusted according to the
DCTCP algorithm. ExpressPass data traffic and legacy
traffic co-exist in the same queue. This scheme effectively
mitigates the starvation of legacy traffic and provides fair
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Figure 10. [Simulation] FCTs during the transition from
DCTCP to the new transport.
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Figure 11. [Simulation] FCTs during the transition from
DCTCP to the new transport (mixed traffic).

co-existence, since a data packet can only be sent when a
credit packet arrives and the window allows.

• FlexPass: We use equal weights for FlexPass (Q1) and
legacy traffic (Q2) regardless of the deployment ratio. At
Q1, we set the selective dropping threshold and ECN
marking threshold to 150 kB and 65 kB. Note 65 kB is high
enough for reactive sub-flows to use spare bandwidth.

Benchmark workloads. We evaluate the above schemes
under two scenarios: one with only background traffic, and
the other one with mixed traffic where background traffic
and foreground incast traffic co-exist. We generate back-
ground traffic based on realistic flow size distributions of
the web search workload [2]. We choose a pair of hosts ran-
domly as the source and destination for each flow. Flows
arrive according to a Poisson process. We vary the flow ar-
rival rate to set the network load (utilization) of the core
(up links of ToR) to 50%. In a mixed traffic scenario, we
set 10% of the total traffic volume as foreground traffic. To
generate foreground traffic, we randomly select a receiver,
and each of the other hosts sends four 8 kB flows to the re-
ceiver. We assume all switches are configured to support
FlexPass/ExpressPass before deployment at hosts, and vary
the fraction of FlexPass/ExpressPass-enabled racks from 0%
to 100%. A flow uses FlexPass/ExpressPass only if both end-
points are FlexPass/ExpressPass-enabled.
We use flow completion time (FCT) as the main perfor-

mance metric. We consider the average FCT across all flows,
which reflects bandwidth utilization, and the 99th percentile
FCT for small flows (<100 KB), which reflects the tail latency.
Incremental benefit. Figure 10 shows the results with only
background flows under four deployment schemes at differ-
ent stages of deployment. In general, FlexPass and weighted
fair sharing (WF) schemes greatly reduce the FCT of small
flows with few side effects during deployment, but naïve de-
ployment of ExpressPass and layering (LY) exhibit significant
performance degradation during deployment.

FlexPass cuts 99%-ile FCT of small flows by up to 44%when
fully deployed, and generally provides the best 99%-ile FCT
across different deployment scenarios. Moreover, FlexPass
causes nearly no harm toward the overall average FCT during
and after deployment. FlexPass maintains high utilization at
any stage of deployment. Note that FlexPass is even better

than the original ExpressPass (oWF and naïve) at 100% de-
ployment. As discussed in §4.3, this is because the reactive
sub-flow of FlexPass fully utilizes the spare bandwidth, in-
cluding the bandwidth wasted by imperfect credit allocation.

In contrast, naïve deployment of ExpressPass has a severe
impact on both tail latency and throughput. Although it
reduces 99%-ile FCT when fully deployed (up to 31%), this
harms the performance of legacy flows, inflating the tail
latency by up to 72% during deployment. Also, the layering
scheme (LY) does not improve performance during and after
deployment. This is because, under the layering scheme, the
window may unnecessarily limit packet transmissions, even
if there is no other legacy traffic competing for the link. This
will cause serious bandwidth waste, and greatly increase the
FCT of short flows, which can finish in a few RTTs at the
line rate. Note FlexPass outperforms the oracle weighted fair
queueing (oWF) in our evaluation. This is because oWF’s
queue weight and credit allocation cannot be perfect due to
variations in the fraction of ExpressPass and legacy traffic
across links and time.
Figure 11 shows the simulation results with both fore-

ground and background flows. The observation is similar
to that with only background traffic; FlexPass brings the
reduction of FCT up to 44% with only 13% of performance
degradation during deployment, while other schemes exhibit
up to 60% of performance degradation during deployment.
Takeaway 1. During the deployment of FlexPass, it shows
similar performance as the oracle weighted fair queuing, which
is close to ideal but impractical.
Coexistence. Figure 12 and Figure 13 show the simulation
results with only background flows under the same deploy-
ment scenario. We plot legacy reactive flows (DCTCP) and
proactive flows (FlexPass/ ExpressPass) into two different
lines. The naïve deployment of ExpressPass causes severe
side effects, increasing the tail latency of the legacy flows
up to 87%. This comes with a 127% increase in the standard
deviation of FCT, which drastically reduces the predictability.
In contrast, FlexPass causes only a minimal amount of harm
to legacy traffic during the deployment. Legacy traffic only
experiences a 19% increase in the standard deviation of FCT.
Note the performance of FlexPass is similar to that of the
oracle weighted fair queuing scheme (oWF).
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Figure 12. [Simulation] 99%-ile FCT (<100 kB) by the type of flows during the transition.
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Figure 13. [Simulation] Standard deviation of FCT of small flows (<100 kB) by the type of flows during the transition.

Latency benefits. We show that FlexPass also preserves
the low latency benefit of proactive transports. Figure 12 (d)
shows that traffic converted to FlexPass experiences better
tail latency under co-existence. When FlexPass is fully de-
ployed, FlexPass improves the 99%-ile FCT by 44% compared
to legacy traffic (DCTCP). FlexPass provides even better FCT
improvement than naïve ExpressPass deployment. As men-
tioned above, this is because FlexPass can better utilize the
pre-credit phase than ExpressPass.
Bounded queue. Note that Q1 maintains a bounded queue,
as the maximum queue buildup of reactive sub-flows is lim-
ited under the selective dropping threshold (150 kB). How-
ever, the queue occupancy is much smaller than the maxi-
mum even though, to utilize spare bandwidth, reactive traffic
requires moderate buffer space. To show this, we measure
the average and 90%-ile queue buildup of Q1 (FlexPass queue)
during the deployment. We find that the maximum queue
buildup reaches the peak at 50% deployment, and the queue
buildup is usually much lower than the threshold. On av-
erage, it reaches 10.6 kB including 6.15 kB of the reactive
packets. In 90%-ile, it reaches 29 kB including 21 kB of re-
active packets. At full deployment, the average and 90%-ile
queue length reduce to 22.0 kB and 73.9 kB respectively, in-
cluding 13.3 kB and 44.7 kB of reactive packets. Note that
FlexPass does not incur excessive retransmissions due to se-
lective dropping. FlexPass only experiences <0.1% of packet
drop due to the selective dropping at full deployment.
Multiple workloads. We also show the simulation results
withmultiple realistic workloads, including cache follower [41],
data mining [14], and Hadoop [41]. FlexPass improves 99%-
ile FCT up to 63% with minimal side-effect toward legacy
traffic. Please refer to Appendix A for detailed results.

9
9

%
-i

le
FC

T 
(m

s)

0

1

2

3

4

5

0% 25% 50% 75% 100%
Deployment %

Load 10%
Load 40%
Load 70%

(a) ExpressPass

0

1

2

3

4

5

0% 25% 50% 75% 100%
Deployment %

9
9

%
-i

le
FC

T 
(m

s)

Load 10%
Load 40%
Load 70%

(b) FlexPass
Figure 14. [Simulation] 99%-ile FCT of small flows during
the transition under different network loads.

Takeaway 2. During the deployment, the legacy traffic re-
mains unaffected by the introduction of FlexPass. Traffic con-
verted to FlexPass benefits from the low latency and bounded
queue length of proactive transports even under the co-existence.

6.3 Deep Dive

Sensitivity to network load. We evaluate FlexPass and
other schemes under different network loads. We measure
99%-ile FCT of small flows (<100 kB) during the deployment
with only background traffic, while varying the network uti-
lization. Figure 14 (a) illustrates the performance penalty dur-
ing the deployment of ExpressPass. At a low load (less than
20%), ExpressPass rarely experiences performance degra-
dation during deployment, as the chance for DCTCP and
ExpressPass flows to co-exist in the same link is very low.
However, as link utilization increases, the performance gets
more penalized. Especially, DCTCP traffic experiences time-
outs when the load is higher than 60%. In contrast, as shown
in Figure 14 (b), FlexPass does not show performance degra-
dation during deployment, even at a very high load (70%).
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Additional findings. We also report simulation results re-
garding the impact of the selective dropping threshold and
the queue weight configuration (𝑤𝑞) in Appendix A. We
summarize our findings below.
• Lower selective dropping threshold reduces FCT when
FlexPass is fully deployed, but results in worse average
throughput, due to increased packet drops.

• FlexPass is insensitive to the configuration of the queue
weight(𝑤𝑞), unlike ExpressPass where the mismatched
weight configuration brings a high penalty in tail latency.

7 Related Work
The literature of datacenter transport is vast, from traditional
reactive congestion control [1, 26–28, 32, 48] to proactive [9,
13, 18, 35, 36], from loss recovery [8, 12, 34, 44, 46] to flow
control [11, 39]. In the interest of the space, we only discuss
the ideas that are most relevant to FlexPass.
Hu et al. [20] proposed Aeolus to enable proactive trans-

ports to transmit data using the spare bandwidth in the "pre-
credit" phase. FlexPass uses similar techniques but addresses
a different problem. In FlexPass, the reactive sub-flow sends
packets to use the spare bandwidth left by legacy traffic dur-
ing the flow’s whole lifetime, not limited to the pre-credit
phase. FlexPass and Aeolus use selective dropping to limit
the impact of unscheduled (reactive) packets on scheduled
(proactive) packets, but leverage different switch features to
implement this idea.
Some transport designs also split a single flow into mul-

tiple sub-flows, but address different problems. Multipath
TCP (MPTCP) [40] leverages multiple paths for a single TCP
connection to provide better redundancy and maximize re-
source utilization. MP-RDMA [30] applies this idea to RDMA
in datacenters. In FlexPass, two sub-flows complement each
other on the same path. RC3 [33] leverages multiple sub-
flows in different priorities to quickly take advantage of the
available bandwidth from the first RTT. RPO [19] takes a
similar approach to RC3 to improve network utilization of
receiver-driven transport. FlexPass does not use multiple
priority queues to separate sub-flows in the network, and
uses a different approach to split the flow into sub-flows.

8 Conclusion
In this paper, we introduce FlexPass, a practical credit-based
transport designed to co-exist with legacy traffic by pro-
viding deployment flexibility. FlexPass leverages a combi-
nation of switch features and end-host designs to achieve
fair co-existence with legacy traffic, while preserving the
high-performance property of proactive transport. FlexPass
ensures co-existence with legacy traffic by isolating Flex-
Pass and legacy traffic using multiple queues, and allocating
credits according to the minimum guaranteed bandwidth. To
preserve the great properties of proactive transport, FlexPass
splits a single flow into proactive and reactive sub-flows, and
schedules two sub-flows at the host to maximize the link

utilization and facilitate loss recovery. Our evaluation shows
that FlexPass preserves the property of proactive transport
including high-throughput, bounded queue, and zero time-
outs. We verify that FlexPass is gradually deployable and
delivers incremental benefits as the deployment progresses
through extensive simulations.
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Appendix A Additional simulation results

Result with multiple workloads. Figure 15 and Figure 16
show the simulation results with only background flows un-
der four different realistic workloads, while varying the frac-
tion of FlexPass/ExpressPass-enabled racks. As mentioned
in §6.2, FlexPass and oracle weighted fair sharing (oWF)
schemes greatly reduce the FCT of small flows with few side
effects during deployment across all workloads. Naïve de-
ployment of ExpressPass and layering (LY) exhibit significant
performance degradation during deployment.
FlexPass cuts 99%-ile FCT of small flows by up to 63%

when fully deployed and generally provides the best 99%-
ile FCT across different deployment scenarios and different
workloads. Moreover, FlexPass does nearly no harm toward
the overall average FCT during deployment and after de-
ployment. This shows FlexPass maintains high utilization
at any degree of the deployment. In contrast, naïve deploy-
ment of ExpressPass has a severe impact on both tail latency
and throughput during deployment. Although naïve deploy-
ment brings a reduction in 99%-ile FCT when fully deployed
(up to 77%), this harms the performance of legacy DCTCP
flows and thus inflates the tail latency up to 72% during the
deployment.
Impact of the selective dropping threshold. For differ-
ent values of the selective dropping threshold, we show that
there is a trade-off relationship between the 99%-ile FCT of
small flows and the overall average FCT when FlexPass is
fully deployed in Figure 17. A small selective dropping thresh-
old enforces lower queue build-ups of reactive packets inside
switches. What is more, this also reduces queue build-ups of
proactive packets. This is because a lower threshold value
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(d) Hadoop [41]
Figure 15. [Simulation] 99%-ile FCTs of small flows during the transition from DCTCP to ExpressPass.
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Figure 16. [Simulation] Overall average FCTs during the transition from DCTCP to ExpressPass.
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Figure 17. [Simulation] Trade-off between overall average
FCT and 99%-ile FCTs of small flows as selective dropping
threshold changes.
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Figure 18. [Simulation] Trade-off between the degradation of
legacy flows during deployment and 99%-ile FCTs when fully
deployed as queue weight setting (𝑤𝑞) changes.

reduces the RTT and the variance of RTT, and the lower vari-
ance of RTT leads to lower queue build-ups of proactive pack-
ets [9]. This results in better tail latency at full deployment.
However, as a lower threshold means more packet drops,
overall throughput gets worse, and average FCT increases,
especially with the threshold smaller than the ECN marking
threshold. In contrast, a high selective dropping threshold
reduces the amount of proactively dropped reactive packets.
This brings an increase in the overall throughput.
Impact of the queueweight setting (𝑤𝑞). In previous eval-
uations, we equally set the queue weight for FlexPass queue
(Q1) and legacy traffic queue (Q2) (𝑤𝑞 = 0.5). However, this
queue weight setting may not be always optimal. Figure 18
shows the trade-off between the maximum degradation of
the tail FCT of small legacy flows and the tail FCT of small
flows on full deployment of FlexPass.

When𝑤𝑞 , the queue weight for FlexPass (Q1), is smaller
than 0.5, legacy traffic gets more minimum guaranteed band-
width and thus the maximum degradation of 99%-ile FCT
of legacy flows is alleviated. However, when fully deployed,
decreasing 𝑤𝑞 reduces the amount of data transmitted us-
ing proactive sub-flow, This dilutes the high performance of
proactive transport and results in higher tail FCTs. Note that
ExpressPass is even more sensitive to this tradeoff – weight
fair sharing of ExpressPass with mismatched queue weight
setting results in a high penalty in tail latency of small flows.

Appendix B Artifact Appendix

B.1 Abstract

The artifact includes our implementation of FlexPass on
ns-2 simulator. Our simulator demonstrates how FlexPass
provides gradual deployability with the best incremental
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benefits. We provide an automated script to run all necessary
simulations to reproduce the figures in the paper.

B.2 Description & Requirements

How to access. The source code of FlexPass simulator is
available at https://github.com/kaist-ina/ns2-flexpass. We
also provide a pre-built docker image at ghcr.io/kaist-ina/ns2-
flexpass (recommended). The detailed instruction for the ar-
tifact evaluation is described at README.md in the repository.
Hardware dependencies. The evaluation does not require
any special hardware. However, it is recommended to run
evaluations on machines with many CPU cores. We tested
our artifact on Intel Core i9-9900K (16 logical cores) with
32GB of RAM.
Software dependencies. Generic Linux system (x86-64)
with Docker installed. We tested our artifact on Ubuntu 20.04
LTS with Docker 20.10.7.
Benchmarks. All workloads and automation scripts are
already included in the repository. A Tcl script located at
/scripts/large-scale.tcl simulates 3-tier Clos 40Gbps topology
with 192 hosts, and performs the simulation as described in
§6.2. Also, we included a set of realistic workloads (search,
cachefollower, etc.) in /workloads directory in the repository.

B.3 Set-up

We provide a pre-built Docker image for evaluation. To set
up the Docker image, use the following command:
docker pull ghcr.io/kaist-ina/ns2-flexpass

B.4 Evaluation workflow

Major Claims.
• (C1): When compared to other alternative deployment
schemes, FlexPass achieves the best incremental benefits
where FlexPass improves 99%-ile FCT and keeps the aver-
age FCT low, while posing minimal harm to legacy traffic.
This is proven by Experiment (E1) and (E2) described in
§6.2 whose results are illustrated in Figure 10 to Figure
13.

• (C2): FlexPass improves the 99%-ile FCT of small flows
after full deployment. This is proven by Experiment (E1)
described in §6.2 whose results are illustrated in Figure
12.

• (C3): Compared to an alternative deployment scheme,
FlexPass does not show significant performance degrada-
tion during deployment, even at a very high load. This
is proven by Experiment (E3) and (E4) described in §6.3
whose results are illustrated in Figure 14.

Experiments.
• Experiment (E1): [5 human-minutes + 20-compute-cpu-
hour] Evaluate FCTs (Flow Completion Times) of the back-
ground traffic during the transition from DCTCP to the
new transport. Conduct in total of 20 Simulations by vary-
ing the deployment % (0%, 25%, 50%, 75%, and 100%) and

the deployment scheme (naïve, oracle weighted fair queue-
ing, layering, and FlexPass).

• Experiment (E2): [5 human-minutes + 20-compute-cpu-
hour] Conduct the same experiment with E1 but with
mixed traffic (background + foreground traffic). 10% of
the total traffic volume is set as foreground traffic.

• Experiment (E3): [5 human-minutes + 60-compute-cpu-
hour] Evaluate FlexPass and the naïve deployment scheme
under different network loads. Conduct in total of 60 Sim-
ulations by varying the deployment % (0%, 25%, 50%, 75%,
and 100%), link load (from 10% to 70%), and the deploy-
ment scheme (naïve, and FlexPass).

[Execution]Weprovide a script for automation (/run_simulations.py).
This script will automatically run all the simulations above.
As each simulation runs in a single thread, the given script
automatically leverages multiple CPUs to parallelize simula-
tions. Run the following command to run the script:
docker run --rm -it \

-v $(pwd)/result:/ns-allinone-2.35/ns-2.35/outputs \

ghcr.io/kaist-ina/ns2-flexpass \

python ./run_simulations.py

The result will be stored in result directory. After the simu-
lations, the result directory should contain fct_###.out files,
where ### is an experiment ID designated at /run_simulations.py.
[Results] We also provide a script for analyzing obtained re-
sults and drawing figures from the results (/generate_figure.py).
This script will parse the simulation result, analyze the result
(compute 99%-ile FCT, average, etc.), and finally draw the
figures (Figures 10 - 14). Run the following command to run
the script:
docker run --rm -it \

-v $(pwd)/result:/ns-allinone-2.35/ns-2.35/outputs \

ghcr.io/kaist-ina/ns2-flexpass \

python ./generate_figure.py

The CSV files and figures (in PNG) will be also stored in the
result directory. After running the script, the result directory
should contain fig#.png and fig#.csv, where # is the figure
number.
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