
Taking 5G RAN Analytics and Control to a New Level
Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, Zhihua Lai

Microsoft
Cambridge, United Kingdom

ABSTRACT
Open RAN, a modular and disaggregated design paradigm for
5G radio access networks (RAN), promises full programma-
bility through the O-RAN RAN Intelligent Controller (RIC).
However, due to latency and safety challenges, the telemetry
and control provided by the RIC is mainly limited to higher
layers and higher time scales (> 10𝑚𝑠), while also relying
on predefined service models which are hard to change. We
address these issues by proposing Janus, a fully programmable
monitoring and control system, specifically designed with the
RAN idiosyncrasies in mind, focused on flexibility, efficiency
and safety. Janus builds on eBPF to allow third-parties to load
arbitrary codelets directly in the RAN functions in a provably
safe manner. We extend eBPF with a novel bytecode patch-
ing algorithm that enforces codelet runtime thresholds, and
a safe way to collect user-defined telemetry. We demonstrate
Janus’ flexibility and efficiency by building 3 different classes
of applications (17 applications in total, most not achievable
on the existing RIC) and deploying them on a 100MHz 4x4
MIMO 5G cell without affecting the RAN performance.

1 INTRODUCTION
A key transformation of the Radio Access Network (RAN)
in 5G is the migration to an Open RAN architecture, that
sees the RAN functions virtualized (vRAN) and disaggre-
gated. This approach fosters innovation by allowing vendors
to come up with unique solutions for different components
at a faster pace. Furthermore, a new Open RAN component,
called the Radio Intelligent Controller (RIC) [27, 31], allows
3rd parties to optimize the network by building data-driven,
vendor-agnostic monitoring and control applications [9, 20]
over open interfaces standardized by O-RAN [19].

Despite this compelling vision, the opportunity for innova-
tion largely remains untapped for two main reasons. First, the
RAN network functions can generate huge volumes of data at
a high frequency. Capturing, transferring and processing the
data for developing novel RIC applications can put a strain
on compute and network capacity. To overcome this, a con-
ventional approach, standardized by 3GPP [13, 14], defines
a small set of aggregate Key Perfomance Indicators (KPIs)
collected every few seconds or minutes. The O-RAN RIC
extends this idea by providing a new set of standardized aggre-
gate KPIs and data sources [25]. Each KPI is defined through a
service model (a form of a static API that is part of a RIC agent
that is embedded in the vRAN functions [24]) and prescribes

what data can be collected and at which granularity. However,
this approach is slow to evolve and doesn’t scale well. Anyone
who has a use case that doesn’t fit into the existing service
models, needs to specify a new service model with a different
set of KPIs. They then need to work with a selected RIC and
RAN vendor to add support for this service model and go
through a lengthy standardization process, where all O-RAN
vendors must be convinced to support it and implement it.

Second, many key RAN operations, like user radio resource
scheduling and power control must be completed within a
deadline, typically ranging from a few tens of 𝜇s to a few ms.
To meet the deadlines, any related control logic and inference
must run inline inside the vRAN functions, rather than on
the RIC, which has been designed to deal with time-scales >
10ms [78]. The existing RIC approach deals with this issue by
specifying service models tailored to specific use cases, each
with a supported set of policies (e.g., choose one out of𝑁 avail-
able radio resource scheduling algorithms). However, as in the
case of data collection, this approach does not scale, since it
does not allow the flexible introduction of new control and in-
ference algorithms. Furthermore, the real-time nature of many
vRAN operations means that any new functionality added
in order to support a new service model must be completed
within the processing deadline of the vRAN function, since
a deadline violation may cause performance degradation [45]
or even crash a vRAN (as we show in §7.2). This makes RAN
vendors reluctant to add new features and service models.

To address these problems we propose Janus, a system that
provides dynamic monitoring and control vRAN functionality.
Janus extends the RIC by allowing operators and trusted third-
parties to write their own telemetry, control and inference
pieces of code (we call them codelets) that can be deployed at
runtime at different vRAN components, without any assistance
from vendors and without disrupting the vRAN operation. The
codelets are typically executed inline and on vRAN critical
paths, allowing them to get direct access to all important in-
ternal raw vRAN data structures, to collect arbitrary statistics
and to make real-time inference and control decisions.

While Janus significantly enhances the RIC capabilities, by
decoupling the vRAN implementation from the data collec-
tion and control operations, it also comes with its own set of
challenges. The first has to do with flexibility. It is unclear how
much and which RAN monitoring data is required to build
useful apps and what control knobs should be exposed to
codelet developers. We solve this by identifying key locations

and interfaces (we call them hooks) within the standard vRAN
architecture that provide rich and diverse data from a few col-
lection points, as well as allow us to unlock a wide range of
real-time control applications. We also build a toolchain that
allows developers to define arbitrary output data structures to
ship the collected data to the RIC. Finally, we identify a small
set of carefully curated control functions (we call them actua-
tor functions) that can be called by codelets loaded in control
hooks, to alter the RAN behavior in real-time (e.g. change
power, resource block allocation, etc). We show in §4 that O-
RAN service models can be implemented as Janus codelets,
and can also enable fast and efficient control and inference
operations (e.g., radio resource allocation and interference
detection), not possible using the O-RAN RIC.

The second challenge is about safety of execution. While
codelets are provided by trusted parties, they can still have er-
rors and inefficiencies in terms of invalid memory accesses or
high execution times, leading to corruption of data, violation
of real-time deadlines and ultimately, to the crash of the vRAN
functions. We solve this challenge, by providing a sandboxed
execution environment based on eBPF [3, 92], which solves a
similar problem in the Linux kernel [2]. Codelets are written
in C and are compiled into eBPF bytecode. The eBPF byte-
code runs inside an eBPF virtual environment inlined in the
vRAN’s control and data path, and has direct access to selected
internal RAN data structures and control functions. Prior to
loading a codelet, the eBPF execution environment statically
verifies the bytecode [48, 92] and only allows codelets that
are safe in terms of memory accesses to run.

We further extend this model to tailor it to the vRAN require-
ments. We introduce hard, 𝜇s-level control in the execution
latency of codelets through a novel eBPF bytecode patching
mechanism that preempts a codelet that exceeds a certain run-
time threshold. Furthermore, we extend the static verification
process of codelets to cover the newly introduced flexible out-
put data structures and we provide several optimizations to
ensure a non-preemtible design in the fast path (where Janus
codelets run), minimizing Janus’ impact to the performance
of the vRAN. Finally, we integrate Janus with a commercial
5G vRAN stack from CapGemini [35] (based on the Intel
FlexRAN reference design [57]) and with the open source
4G/5G stack of OpenAirInterface (OAI) [26].

In summary, we make the following contributions:
• We propose the first safe and programmable framework for

dynamically introducing flexible monitoring and control
capabilities to vRAN functions with minimal computational
overhead (§3). We illustrate its functionality by developing
new telemetry, control and inference applications on top of
it (17 applications in total) (§4).
• We propose and build mechanisms for enforcing codelet ex-

ecution runtimes and for safe data collection, to ensure that
the vRAN meets its safety and latency requirements (§5).

RU: radio unit

vDU: distributed unit

PHY

MAC

RLC

vCU: centralized unit

Mobile Core

Server Server

F1-U
(> 100Mbps)

F1-C
(~1Mbps)

FAPI
(>100 Mbps)

xRAN
(>1Gbps)

xApp xApp RICxApp xApp RIC

CU-CP

RRC

PDCP
CU-CP

RRC

PDCP

PDCP

SDAP
CU-UP

PDCP

SDAP
CU-UP

~125μs~125μs

~1ms~1ms

> 10ms> 10ms

- Real-time

- Real-time

- Near real-time

Cell tower Far edge Near edge / cloud

TelemetryTelemetry
Control
policy

Control
policyTelemetry

Control
policy

Required latencies:

Figure 1: High-level vRAN architecture and processing
and throughput requirements of vRAN functions.

• We present a concrete and optimized implementation of
Janus (§6) and perform a thorough evaluation (§7).
We hope that Janus will be integrated with the O-RAN

RIC controller in the future, to further enhance the Open
RAN architecture towards the ultimate goal of observability,
programmability and automation.

2 BACKGROUND & MOTIVATION
2.1 vRAN Architecture
The 5G RAN consists of a number of layers, illustrated in Fig 1
(e.g., PHY, MAC, RLC). Each layer is responsible for a dis-
tinct set of control and/or data plane operations. For example,
the PHY is responsible for the signal processing and the MAC
for the real-time scheduling of radio resources among the User
Equipments (UEs). The layers are distributed among three
network functions called the Radio Unit (RU), the Distributed
Unit (DU) and the Centralized Unit (CU), which is further bro-
ken down into a control plane and user-plane component (CU-
CP and CU-UP). The RU is typically ASIC or FPGA-based,
while, the CU and the DU are virtualized (i.e., vCU and vDU)
and are running on commodity hardware with general purpose
processors and accelerators [56, 90]. Different components
and layers have different latency requirements(c.f. [32]) and
generate events and data at different rates, as shown in Fig 1.

The communication between the vRAN components is
achieved through open interfaces specified by standardiza-
tion bodies like O-RAN [19] and the Small Cell Forum [41],
and programmability is facilitated through a near real-time
RIC [47]. Network operators install applications (xApps in the
O-RAN terminology) on the RIC to collect data and leverage
it for inference, closed loop network optimization or to report
issues in near real-time (> 10ms). The data collection and con-
trol of the vRAN components is facilitated through service
models that are embedded in the vRAN functions by vendors
and define the type and frequency of data reporting for each
xApp and a list of control policies that the RIC can enforce.2

2.2 vRAN programmability limitations
The initial focus of RIC use cases has been on self-optimizing
networks, anomaly detection and coarse grained radio re-
source allocation [60, 75, 78, 85]. In such use cases, signifi-
cant network events and control decisions occur at a low rate
(10s to 100s per second). This allows xApps to collect all
the required telemetry, perform inference and tune the vRAN
functions through a pre-determined set of control policies.
Unfortunately, this approach has some important limitations:
Data volume limitations: Many applications like localiza-
tion [62], channel estimation [66, 71], interference detec-
tion [63] and beamforming [72] require uplink IQ samples
from the PHY. Transporting all IQ samples to the RIC is in-
feasible 1. The current RIC design overcomes this problem by
specifying the data required in terms of type and frequency in
the service model of each xApp (e.g., as in [37, 38]). The form
of data and any required pre-processing (e.g., sub-sampling
vs. averages) depends on the service model, posing a seri-
ous limitation to interoperability, since vRAN vendors must
implement and support each proprietary service model.
Real-time limitations: Some vRAN control loops (e.g. UE
radio resource allocation and power control) have tight time
constraints (10s of 𝜇s to a few ms). Unfortunately, such time
constraints cannot be met by the current RIC design, that has
an expected latency > 10ms [78]. As in the case of telemetry,
xApps overcome this issue by using a set of policies offered
by service models, which can run inline inside the vRAN
functions. However, this approach doesn’t scale as the number
of available policies increases. For example, several control
algorithms have been proposed for network slicing (e.g., [42,
49, 52, 61, 74, 87]), each tailored to a specific use case. Imple-
menting such algorithms as part of a service model becomes
extremely difficult, since all RAN vendors must adopt them.

2.3 vRAN programmability requirements
Based on the aforementioned limitations, we argue that a new
type of solution is needed for unlocking the true RIC capabili-
ties. Such a solution should meet the following requirements:
(1) Flexible telemetry, where trusted developers can access
raw vRAN data and choose the type, frequency and granular-
ity of the exported data, based on the requirements of their
application and the limitations of the infrastructure.
(2) Capability to implement arbitrary control and inference
logic that can run inline inside the RAN functions in real-time.
(3) A safe execution environment, that guarantees that any
(trusted) code that is running inside the vRAN functions will
not crash the vRAN by performing invalid memory accesses
or by leading to real-time processing deadlines violations.

1It requires more than 5 Gbps per cell for 100 MHz 4 × 4 MIMO

Janus controller

Janus data collector

eBPF verifier

Network API

eBPF bytecode patcher

JIT compiler

Janus device

Janus maps

Network API

Metadata file
generator

Helper and actuator functions

Pre-compiled
Janus hook 1

Pre-compiled
Janus hook M

Janus codelet 1 Janus codelet N

vCU/vDU code

Output thread

PASS

RIC

New Janus components

Modified open source
components

New Janus components

Modified open source
components

Janus codeletsetJanus codeletset

Codelet 1

Codelet 2

Codelet N

...

Janus codeletset

Codelet 1

Codelet 2

Codelet N

...

Janus SDK

Compile
and load

tools

Header
files

Janus SDK

Compile
and load

tools

Header
files

Trusted
operator
Trusted

operator

Figure 2: The high-level architecture of Janus.

3 JANUS OVERVIEW
To overcome the aforementioned limitations, Janus introduces
an inline code execution framework that allows the dynamic
loading of custom telemetry or control/inference code in a
sandboxed environment in the vRAN functions.

3.1 Inline code execution framework
The high-level architecture of Janus is illustrated in Fig 2. We
next describe the main components.
Janus device: A Janus device is any vRAN component (i.e.,
a vCU or vDU process) that allows execution of custom code.
Janus executes the custom code inside an eBPF VM instan-
tiated in userspace [59]. We introduce Janus call points, or
hooks, at selected places in vRAN functions, at which custom
eBPF code can be invoked. The invocation is inlined with the
vRAN code and gives the eBPF code read-only access to a
selected internal vRAN context and helper functions, which
includes various 3GPP-defined data structures (see Table 1
and §3.2). A custom code can be loaded and unloaded dy-
namically from a Janus device, at runtime, without affecting
the device’s performance.We opted for eBPF as the sandbox-
ing technology because it is inlined, fast, supports writing
codelets in a high level language (C) and provides static code
verification. Other approaches, such as Sandbox2 [50] and
SAPI [51], run custom code in separate processes and the IPC
latency is too high. WebAssembly [53] is inlined, but its lack
of static verification can lead to memory violation issues [64].
Janus codelets: A Janus codelet is a custom code that can
be deployed at a single hook on a Janus device at runtime.
Developers write codelets in C and compile them into eBPF
bytecode using the eBPF compiler. Similar to any eBPF pro-
gram, a Janus codelet must be statically verifiable (e.g., code
must introduce memory checks and can only have bounded
loops). Any operations required by the codelet that could be
potentially unsafe (e.g., accessing memory outside of the re-
gion the codelet is allowed to access) can only be performed

3

Hook point vRAN function(s) Context description
Raw UL IQ samples vDU Capture uplink IQ samples sent by RU to vDU through xRAN 7.2 interface [22]

FAPI interface vDU Capture scheduling and data plane packets exchanged between MAC and PHY layers [41]
RLC vDU Capture information about buffers of mobile devices and RLC mode/parameters [15]

F1/E1/Ng/Xn interfaces vCU/vDU Capture control/data-plane messages exchanged between 3GPP interfaces of vCU/vDU/5G core [10–12, 17]
RRC vCU Capture RRC messages exchanged between mobile devices and the base station [16]

Table 1: Janus monitoring hooks introduced in commercial-grade vCU/vDU network functions and OpenAirInterface.

through a set of white-listed helper functions. A codelet does
not keep any state between two invocations. All state must be
stored in an external location called a map. A codelet sends
its telemetry data through a special map to a Janus output
thread running at the device, which forwards it to the Janus
controller. A codeletset is an ensemble of codelets that operate
across multiple Janus hooks of a Janus device and coordinate
with very low latency through shared maps. Codelets across
devices can coordinate through a controller if needed.
Janus controller and SDK: The Janus controller is respon-
sible for controlling the Janus devices and codeletsets. In the
context of O-RAN, it can be implemented as a RIC xApp.
Developers upload their codeletsets to the controller, with
load/unload instructions for one or more Janus devices. Be-
fore the controller allows a codeletset to be loaded, it verifies
safety and termination of each codelet. For this purpose we
augmented the open-source PREVAIL eBPF verifier [48] with
verification for Janus helper functions and output schemas.
The controller further instruments the verified bytecode with
additional control code that pre-empts it if its runtime exceeds
some threshold (see §5.1). The (patched) codelets are JIT
compiled and pushed to Janus devices over the network, along
with metadata files required for enabling the flexible output of
data using protobuf output schemas (see §5.2). The controller
provides a data collector, which collects and deserializes the
data sent from the Janus codelets. Janus also provides an SDK
that allows developers to locally test Janus codelets early in the
development cycle. The SDK includes a compiler, a verifier
and a debugger, as well as the definitions of all the helper
functions and map types that are supported by Janus devices.

3.2 New vRAN RIC capabilities
We describe the new monitoring and control capabilities that
Janus enables, through a simple, yet realistic, example (List-
ing 1). The example refers to a Janus codelet developed for
the vDU of OpenAirInterface [26]. The codelet is invoked by
a hook that is introduced at the FAPI interface ([88], Fig 1).
FAPI messages are C structures with information about the
scheduling of radio resources to UEs. In this codelet, a counter
maintaining the number of captured FAPI messages is sent
to the data collector once every 1000 events. While simple,
this codelet captures important features that demonstrate the
power of Janus over the conventional RIC design.

1 struct janus_load_map_def SEC("maps") countermap = {
2 .type = JANUS_MAP_TYPE_ARRAY ,

3 .key_size = sizeof(uint32_t),
4 .value_size = sizeof(uint32_t),
5 .max_entries = 1,
6 };
7
8 struct janus_load_map_def SEC("maps") outmap = {
9 .type = JANUS_MAP_TYPE_RINGBUF ,

10 .max_entries = 1024,
11 .proto_msg_name = "output_msg",
12 .proto_name = "output_msg",
13 .proto_hash = PROTO_OUTPUT_MSG_HASH ,
14 };
15
16 SEC("janus_ran_fapi")
17 uint64_t bpf_prog(void *state) {
18 void *c;
19 uint32_t index = 0, counter;
20 nfapi_dl_config_request_pdu_t *p, *pend;
21 output_msg s;
22
23 struct janus_ran_fapi_ctx *ctx = state;
24 p = (nfapi_dl_config_request_pdu_t *)ctx ->data;
25 pend = (nfapi_dl_config_request_pdu_t *)ctx ->data_end;
26
27 if (p + 1 > pend) return 1;
28
29 if (p->ndlsch_pdu > 0) {
30 c = janus_map_lookup_elem (&countermap , &index);
31 if (!c) return 1;
32 counter = (*(int *)c + p->ndlsch_pdu);
33 if (counter == 1000) {
34 s.counter = counter;
35 janus_ringbuf_output (&outmap , &s, sizeof(s));
36 counter = 0;
37 }
38 }
39 return 0;
40 }

Listing 1: Example Janus codelet

Secure access to rich vRAN data: The state argument in
line 17 of Listing 1 is the context passed to the Janus hook that
contains a pointer to a vRAN FAPI structure [41, 81] (line 24).
It describes the scheduling allocation for a particular downlink
slot, comprised of more than 20 fields per user, including
modulation and coding scheme, transport block size, allocated
resource blocks, MIMO etc. The verifier ensures read-only
access to the internal vRAN context information. Due to the
modular vRAN design, there is a small number of similar
interfaces specified in different standards (3GPP, Small cell
forum) that carry all relevant state across vRAN components.
By adding hook points at these interfaces we can give Janus
developers access to a large trove of vRAN telemetry. We
have identified and implemented these hooks (Table 1) and we
demonstrate in §4 how they can be used to enable multiple RIC
applications without modifying a single line of code inside the
vRAN functions. Note that the implementation of an interface
may differ across vRAN vendors (e.g., in terms of C struct
memory layout). Due to the flexibility of Janus, we were able

4

Hook point Actuator helper function Type of control
Inter-slice radio resource scheduling allocate_slice_rbs() Distribute radio resource blocks across slices
Intra-slice radio resource scheduling allocate_ue_rbs() Make scheduling decisions for UEs within a slice

Uplink power control set_uplink_ue_power() Control uplink power of UEs
Link adaptation set_ue_mcs() Adjust the maximum modulation & coding scheme for scheduled UEs

Table 2: Janus control hooks introduced in commercial-grade vDU network functions and OpenAirInterface.

to adjust to the observed differences while maintaining the
same codelet functionality with minor codelet changes.
Statefulness: Janus codelets rely on shared memory regions
known as maps to store state across consecutive invocations
and to exchange state with other codelets (c.f. §4 and appen-
dix A.1). Janus provides various map types for storing data,
including arrays, hashmaps and Bloom Filters. In this example,
we maintain a counter of FAPI packets using a single-element
array map (lines 1-6). On each invocation, the counter refer-
ence is restored from memory through a helper function (line
30) and incremented with the new number of packets (line 32).
Various safety checks are required to enable static verification
(e.g. lines 27 and 31).
Flexible output schemas: Janus codelets can send arbitrary
telemetry data to the data collector using flexible output schemas
through a special type of ringbuffer map (lines 8-14). This
map is linked to a codelet-specific protobuf schema defined by
the codelet developer (see §5.2). This example uses a custom
protobuf schema called output_msg (line 21), with a single
counter field (line 34). The data is exported to the data collec-
tor through a helper function (line 35). This flexibility allowed
us to implement the data models currently available in the
O-RAN RIC specs without modifying a single line of code in
the vRAN, after our Janus vRAN hooks were in place.
Safe & expressive custom control operations: Janus codelets
cannot directly modify the state of the vRAN. Instead, modifi-
cation of the vRAN behavior is done through actuator helper
functions, provided by the vRAN vendors, which are responsi-
ble to apply the changes decided by the control codelet. Given
the small number of real-time control loops in the vRAN func-
tions that only modify standard compliant 3GPP parameters
(present in the implementations of all RAN vendors), we be-
lieve that the use of actuator helper functions is reasonable.
Based on this, we identified and implemented a number of con-
trol hooks, listed in Table 2, which, we believe, capture most
of the critical tight control loops that can be used for novel
control applications. As an example, we used the inter-slice
radio resource scheduling hook point to implement 3 network
slicing algorithms from the literature in OAI (see §4), by mod-
ifying the number of resource blocks allocated to each slice
using the allocate_slice_rbs() actuator helper function.

4 NOVEL JANUS USE CASES
Here, we illustrate the values of Janus using several representa-
tive examples of telemetry, inference and control applications
that we built (for evaluation see §7).

Name Type LOC Short Ref
Total DL PRB Usage M 207 KPM1 5.1.1.2.1 [13]
Total UL PRB Usage M 171 KPM2 5.1.1.2.2 [13]

Distr. of DL PRB Usage M 232 KPM3 5.1.1.2.3 [13]
Distr. of UL PRB Usage M 197 KPM4 5.1.1.2.4 [13]

Total num. of initial DL TBs M 152 KPM5 5.1.1.7.1 [13]
Total num. of DL TBs M 156 KPM6 5.1.1.7.3 [13]

Total num. of initial UL TBs M 155 KPM7 5.1.1.7.6 [13]
Total num. of UL TBs M 157 KPM8 5.1.1.7.8 [13]

Raw DL scheduling info M 137 RAW1 -
Raw UL scheduling info M 150 RAW2 -
Interference detection I 265 ID -

ARIMA I 81 ML1 [33]
Decision tree I 10495 ML2 [45]
Random forest I 51 ML3 [98]

Earliest deadline first slicing C 174 SL1 [52]
Static slicing C 41 SL2 [74]

Proportional fair slicing C 384 SL3 [74]
Table 3: Monitoring (M), control (C) and inference (I)
Janus use cases we developed, with lines of code (LOC).

Flexible monitoring: We use Janus to implement codelets
that allow us to extract KPIs specified in the KPM model of
O-RAN [21] (lines 1-8 in Table 3), as well as raw schedul-
ing data (lines 9-10) without having to change a single line
of code in the vRAN functions. This demonstrates the abil-
ity of Janus to build new and change existing O-RAN ser-
vice models [31, 47] on the fly, without undergoing a lenghty
standardization process. For example, we were able to col-
lect the downlink total Physical Resource Block (PRB) usage
KPI [13], by tapping into our Janus FAPI hook of Table 1 and
capturing the nfapi_dl_config_request_pdu_t struct that
was described in Listing 1 and which contains the number of
PRBs allocated to each user at each scheduling decision. The
contents of this struct were stored in a Janus map, averaged
over a period of 0.5ms and sent out to the Janus data collector.
Low overhead, real-time inference: To demonstrate how
Janus can overcome the data volume limitation, described
in §2.2, we developed a codeletset that detects external radio
interference by transforming an already operational 5G radio
unit into a spectrum sensor. Our codeletset is composed of
two codelets that use maps for coordination. The first detects
idle slots when there are no 5G transmissions (installed at the
FAPI hook of Table 1). The second samples interference dur-
ing the detected idle slots (installed at the IQ samples hook of
Table 1). The flexibility of Janus allows us to adjust the fidelity
and overhead of the interference detector as needed, by speci-
fying a number of parameters in terms of which antenna ports
and symbols to collect IQ samples from, with what frequency

5

(e.g., every reception slot or every 10ms) and granularity (e.g.,
raw IQ samples vs average energy per resource block). As we
show in §7.2, performing this inference inline in the vRAN,
instead of exporting raw IQ samples to the RIC, allowed us to
reduce the telemetry bandwidth by a factor of 40. A similar ap-
proach can be used to implement other inference use cases that
require radio channel telemetry data in a different format (e.g.,
wireless localization [62, 86] and channel estimation [37, 38]).

Furthermore, many RAN control loops require real-time pa-
rameter prediction, since the prediction freshness has a direct
impact on the network performance [28, 29, 40, 46, 66, 83,
89, 98, 100]. Due to the O-RAN RIC latency, xApps provide
predictions that are 10s of milliseconds old, while real-time
inference is currently not supported [23, 77]. Using Janus,
we were able to build codelets that perform inference inside
the vRAN functions with prediction latency under 10ms. We
demonstrate this functionality by building the inference mod-
els listed in lines 12-14 of Table 3. The first is an ARIMA
time-series model for the prediction of user signal quality,
following a methodology similar to [33]. The second is a
quantile decision tree for the prediction of signal processing
task runtimes, using the methodology in [45]. More complex
models, such as the Random Forest in [98], are more diffi-
cult to implement in Janus C code, as they result in a large
number of bytecode instructions (> 100K) making the veri-
fication process slow (> 20 minutes). To overcome this, we
added Janus support for Random Forests in the form of a
map (JANUS_MAP_TYPE_ML_MODEL). A pre-trained serialized
random forest model can be passed to Janus and linked to
this map during the codelet loading. Janus parses the serial-
ized model to verify it and reconstructs it in memory. The
model can then be accessed by the codelet for inference using
a helper function janus_model_predict(). This approach is
similar to the serialization feature offered by frameworks like
Tensorflow for micro-controllers [91] and could be extended
to other commonly used ML models (e.g., LSTM). For more
details about this process, please see appendix A.4.
Real-time control: Many enterprise applications require net-
work slicing for stricter service QoS guarantees [39, 44] .
Existing O-RAN service models allow for a set of pre-defined
slice scheduling policies [34, 60, 85] that control scheduling
at 10s of milliseconds granularity. Using Janus, we enabled
real-time slicing with arbitrary scheduling policies with a
granularity of 0.5-10ms, something impossible with today’s
RIC model. We relied on the inter-slice radio resource sched-
uling hook of Janus from Table 2, which is invoked by the
MAC scheduler in the beginning of each scheduling period.
The hook receives the scheduling state of the base station as
context (number of devices, the slice they belong to, buffer
sizes, signal quality etc). Using this hook, we were able to
implement three network slicing schedulers as Janus codelets,

as listed in Table 3 (lines 15-17). All three schedulers ap-
ply their scheduling decision to the base station using the
allocate_slice_rbs() actuator helper function of Table 2.

5 SYSTEM DESIGN CHALLENGES
5.1 Runtime control
The existing eBPF verifier can assert memory safety and ter-
mination – if a codelet does not provably terminate (e.g. due
to unbounded loops), it is rejected. However, as explained
in §2.3, it does not give sufficiently tight guarantees on the
codelet worst-case execution time.

5.1.1 Challenge of estimating runtimes. One simple approach
to estimating the worst-case execution time is to analyze the
maximum number of eBPF instructions a codelet can exe-
cute. This information is inferred through static analysis for
the codelet’s longest path, taking into account bounded loops.
However, it is very difficult to translate the number of in-
structions into the expected runtime, as this can depend on a
number of factors, including the CPU clock, the memory and
cache hierarchy, the translation of the eBPF instructions to
JIT code etc. [36, 94]. An additional challenge for Janus are
the helper functions, whose execution time can widely vary
between functions and across parameter values.

To illustrate these challenges, consider the codelets in List-
ings 2 and 3. Both perform a 1000 iterations loop, with the first
calling a helper function inside the loop. The verifier indicates
that the codelet of Listing 3 requires 64 more instructions com-
pared to the one of Listing 2. However, for a reference Xeon
Platinum 8168 CPU @ 2.7GHz, we observe that the codelet
of Listing 2 is more expensive (runtime of 4.3 𝜇s vs 2.4 𝜇s for
the codelet of Listing 3). This is because the helper function
incurs a more significant overhead compared to the multiplica-
tion and addition instructions of the other codelet, indicating
that the maximum number of instructions per codelet is not a
good proxy of the max runtime.

1 for (int k = 0; k < 1000; k++) {
2 index = 0;
3 c = janus_map_lookup_elem (&counter , &index);
4 s.counter = k + 10;
5 }

Listing 2: Loop w/ helper function (avg runtime: 4.3 𝜇s)
1 for (volatile int k = 0; k < 1000; k++) {
2 counter += i;
3 counter2 = counter * i;
4 s.counter += counter2;
5 i++;
6 }

Listing 3: Loop w/o helper function (avg runtime: 2.4 𝜇s)
5.1.2 Enforcing runtime through bytecode patching. To ad-
dress these challenges, Janus injects instructions in the eBPF
bytecode that measure the codelet execution time while run-
ning and preempts it if a threshold is exceeded. As illustrated
in Fig 3, a helper function (mark_init_time()) is added at
the beginning of the codelet, which stores the current time

6

….
10: r1 = 1400
11: r2 = 1
12: *(u32 *)(r10 - 4) = r2
13: r3 = *(u32 *)(r10 - 4)
….

01: mark_init_time()
02: freq_counter = 0
….
12: r1 = 1400
13: r2 = 1
14: freq_counter += 1
15: if freq_counter != freq goto +7 <23>
16: freq_counter = 0
17: store register state to stack
18: r0 = runtime_limit_exceeded()
19: if r0 == 0 goto +2 <32>
20: r0 = 65535
21: exit
22: restore register state from stack
23: *(u32 *)(r10 - 4) = r2
24: r3 = *(u32 *)(r10 - 4)

Checkpoint after instruction 11

Injected runtime check code

Original codelet eBPF bytecode

Patched codelet eBPF bytecode

Initial timestamp

Figure 3: Simplified version of code patching process.

(using Intel’s rdtsc instruction) in a thread local variable.
The patcher introduces checkpoints in selected locations that
invoke a helper function (runtime_limit_exceeded(), line
18 in Fig 3), which checks the elapsed runtime of the codelet
since mark_init_time() and compares it against a threshold.
If the threshold is exceeded, the codelet is forced to exit and
return an error (lines 19-21 in Fig 3). The runtime threshold
is specified per codelet during the loading of the codeletset
(see appendix A.1 and Listing 6). Finally, the patcher updates
all jump offsets to account for the injected instructions. This
approach allows us to verify the patched bytecode for safety,
ensuring that any modifications made by the patcher do not
affect the safety of the codeletset.

The time check is implemented as a helper function, be-
cause it calls the Intel rdtsc instruction, which does not have
a counterpart in the eBPF instruction set. The helper function
call invalidates eBPF registers r0 - r5, which could be storing
state from the normal codelet execution flow. To ensure verifi-
ability, Janus stores and reloads the values of those registers
(lines 17 and 22 in Fig 3). This requires that codelets have
at least 48 bytes free in their stack (eBPF functions have 512
bytes stacks). We believe that this is a reasonable requirement,
given that codelets can always use maps to store more state.
Points of injection: A key question when patching is where
to inject the checkpoints. We want to limit the maximum num-
ber of instructions 𝑁 between two consecutive checkpoints to
reduce the effect of the runtime jitter (shown in Listings 2 - 3).
However, each checkpoint incurs overhead (a call to the helper
function runtime_limit_exceeded(), saving and restoring
registers, etc.). All this adds up to more than ∼24ns per check-
point for a reference Xeon Platinum 8168 CPU @ 2.7GHz. To
keep the overhead low, Janus spreads the checkpoints using
the greedy Algorithm 1. Initially, Janus adds checkpoints right
after the invocation of helper functions marked by the vendors
as long lasting and thus potentially unsafe, if used often (line
2). Next, it uses the static analysis of the verifier to enumerate
(from shortest to longest) all the simple paths from the first
instruction of the codelet to the last, as well as all the cycles.
For each path, Janus adds a checkpoint every 𝑁 instructions
(lines 11-14). The algorithm takes into account checkpoints
that have already been added during the traversal of other

Algorithm 1: Checkpoint injection decision
Data: 𝑁 > 0, list 𝐹 of codelet instructions, where long lasting helper

functions are called, ordered list 𝑃 of all simple codelet paths
from first to last instruction and cycles (increasing length)

Result: List𝐶 of checkpoint instructions positions
1 𝐶 ← {};
2 foreach instruction 𝑓 in 𝐹 do𝐶 ← 𝐶 + 𝑓 ;
3 foreach 𝑝 in 𝑃 do
4 ins← 0;
5 fins← first instruction of 𝑝;
6 foreach instruction 𝑖 in 𝑝 do
7 ins← ins + 1;
8 if 𝑖 has already checkpoint then
9 ins← 0;

10 else
11 if ins = 𝑁 then
12 𝐶 ← 𝐶 + 𝑖;
13 ins← 0;
14 end
15 end
16 end
17 if 𝑝 is cycle and no checkpoint was added then
18 𝐶 ← 𝐶 + fins;
19 end
20 end

paths. If a checkpoint is found, the counting of instructions is
reset, using the existing checkpoint as the starting point (lines
8-9). At least one checkpoint is added on each cycle even if the
distance is smaller than 𝑁 (lines 17-19). This guarantees that
a checkpoint can always be reached once every 𝑁 instructions.

For finer control, Janus allows vendors to instrument check-
points in their long lasting helper functions using a macro
(RUNTIME_LIMIT_EXCEEDED), which performs a similar oper-
ation as the patch of Fig. 3. For example, in the case of the
random forest model discussed in §4, we added such checks
after the inference of each estimator (tree) of the model.

Even for a few checkpoints, the overhead can become sig-
nificant (e.g., in codelets with tight loops). To further reduce
the overhead, the patch code performs checks with a sampling
frequency (1 out of 𝑀 checkpoint hits). The patcher adds a 32-
bit counter in the eBPF stack and performs a check only when
this counter reaches some value (line 15 of Fig 3, right); other-
wise, the execution flow jumps back to the original bytecode
instruction, This way, a check is guaranteed to be performed
at least once every 𝑀 × 𝑁 instructions.
Pre-empted control loops: Each control hook must provide
a default control decision, if a loaded control codelet is pre-
empted and does not come up with one. A pre-empted codelet
returns a CONTROL_FAILED code and the default action pro-
vided by the RAN vendor is executed (as shown in Listing 4).
For example, in the case of the inter-slice radio resource
scheduling hook of Table 2, the default action of the vendor
could be to assign the radio resource blocks equally among
the slices. Similarly, for the link adaptation hook, it could

7

be to set a robust modulation and coding scheme, that will
provide low error rate regardless of the signal conditions of
the attached UEs. Finally, Janus provides a helper function
check_preemption(), which allows a codelet to check if it
was pre-empted during its previous run. This allows codelets
to reset their operation, if they have dirty state.

1 decision = hook_custom_janus_control_operation(ctx);
2 if (decision != CONTROL_SUCCESS)
3 decision = call_default_control_operation(ctx);

Listing 4: Pseudo-code for Janus custom control hook

5.2 Flexible and verifiable output schemas
Janus allows the definition of arbitrary user-defined output
schemas, loaded with the codelet at runtime. The output data
is transmitted over a network to a centralized controller (more
details in appendix A.2). Janus serializes the data using pro-
tobufs. However, adding arbitrary schemas can compromise
safety. Specifically Janus has to deal with two challenges.

1 message Example {
2 repeated in t 32 element = 1;
3 }
4 Example . e lement max_count:16

Listing 5: Example of output schema definition with
variable size fields (up to 16 elements).

The first is making sure that codelets cannot generate arbi-
trarily large serializable messages, which could violate mem-
ory safety. Protobuf messages are defined by the developer
and can contain variable size fields (e.g. repeated fields or
strings). The Janus verifier is not aware of the actual size of a
message at compile time, hence it cannot statically verify it.
To overcome this problem, Janus requires an upper bound for
all protobuf schemas with variable-sized fields in the message
specification, as shown in Listing 5. Janus allocates the max-
imum message size for the C representation exposed to the
codelet, and reports the size to the verifier (in this case 16×
sizeof(int32) + sizeof(int16) = 66B). This allows for
static verification at the expense of slightly increased memory
consumption (which is not a bottleneck in a vRAN system).

The second challenge is making sure that an incorrectly for-
matted message cannot lead to memory violations. Consider
a case where a programmer allocates a 30B memory chunk,
casts it as an Example message, sets the number of elements to
be 16 and calls the protobuf encoder. Since the memory chunk
is too small for 16 elements, the encoder will attempt to en-
code from a memory outside the allocated chunk, which may
lead to a segfault. To ensure memory access safety, we modify
the verifier to assert that the memory passed to the protobuf
encoder is always equal to the maximum possible size (66B
in this case). Bugs like the one above will still be functionally
incorrect and send garbled data, but do not violate safety.

6 IMPLEMENTATION & INTEGRATION
Here, we provide more details about the implementation of
the Janus components and their integration with a real vRAN.
Janus device: The Janus device is implemented in C as a li-
brary that can be dynamically linked to vRAN functions. It is
based on a usermode implementation of eBPF [59], which we
extended to add support for the Janus maps, helper functions
and the mechanism for exporting output data. Overall, we had
to add ∼5K lines of code to the basic implementation. The
Janus device code was developed without making any assump-
tions about the threading model of the vRAN functions (e.g.,
affinity of the threads that call hooks, their scheduling policy
and priority etc.). However, Janus can be configured to allow
the further optimization of the library if such information is
known. We have taken great care in ensuring that the fast-path
of Janus (where hooks might be invoked in time-critical parts
of the vRAN functions), will never be blocked or pre-empted.
You can find more details about our real-time optimizations
in appendix A.5.
Janus controller: The Janus controller is written in Go (data
collector) and Python (codelet loader/patcher), with ∼4K lines
of code. The controller communicates with Janus devices
through a TCP-based API using protobuf. This could be re-
placed by other interfaces, like O-RAN RIC E2 interface. For
the codelet verification, we used the open source PREVAIL
verifier [48], which we extended with ∼1K lines of code to add
support for Janus specific functionalities (i.e., helper functions,
maps etc). Finally, the Janus patcher relies on pyelftools [1]
and LLVM [8] to manipulate the codelets’ ELF file contents.
Janus SDK: The Janus SDK is written in Python (∼1K lines
of code) and shares parts of its codebase with the Janus con-
troller. It relies on LLVM for the compilation of codelets to
eBPF bytecode, on eBPF [59] for the conversion of the byte-
code to x86 JIT code and on nanopb [6] for the compilation
of protobuf messages for the codelets’ output schemas.
vRAN integration: Integrating Janus to vRAN functions is
simple and fast. To demonstrate this, we integrated Janus
devices to two vRAN software implementations as a proof-of-
concept. One is the commercial-grade 5G vCU/vDU imple-
mentation developed by CapGemini [35], and based on Intel’s
FlexRAN PHY design [57]. The other is the open source
OAI [26]. Both are written in C/C++ and the integration and
linking of Janus code was straightforward. For the integration
of Janus we had to add approximately 50 lines of initialization
code in each vRAN function that we tested, as well as ∼30
lines of code for each new hook we introduced.

7 PERFORMANCE EVALUATION
7.1 Experimental setup
Hardware and software setup: For the evaluation of Janus
we use a server equipped with 48 physical cores (Intel Xeon

8

(a) 100MHz 4×4Foxconn RU
and 5G smartphones

2 3 40.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 3 40.0 0.2 0.4 0.6 0.8 1.0
vDU processing CPU cores

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(m

s)

Processing deadline
Max processing runtime
Codelet time budget

(b) vDU DL/UL max processing
time/deadline per TTI and time
budget for Janus codelets

Figure 4: vRAN testbed infrastructure and performance

Platinum 8168 @ 2.7GHz) and 196GB of RAM with hyper-
threading disabled. The server is running Linux v5.15 with the
PREEMPT_RT real-time patches applied [82] and optimizations
for real-time performance, including disabled P and C-States
and hugepages of 1GB. We opted for this configuration, as it
is typical for the deployment of vRAN functions [45, 58, 93].

For the evaluation, we use three setups. The first is an end-
to-end setup, composed of the commercial grade 5G vRAN
stack from CapGemini [35], with integrated Janus devices (see
§6), a commercial-grade 5G core, a 100MHz 4 × 4 Foxconn
radio unit and 5G OnePlus Nord smartphones (Fig 4a). Our
vRAN is x86-based and, except for LDPC [55], all tasks run
on x86 processors. Using this setup, we are able to generate a
max of 1Gbps downlink and 45Mbps uplink traffic. This setup
is instrumented with Janus collecting IQ samples, FAPI and
RLC data (see Table 1). In the second setup we instrument 4G
OAI with hooks to RRC/F1 and FAPI data, as well as the inter-
slice radio resource allocation hook of Table 2. The final setup
provides a dummy Janus device, which is a single-threaded
process that runs in a loop and invokes codelets attached to
Janus hooks. We use this setup for microbenchmarks (§7.3).

In all setups, the Janus hooks are being invoked by threads
that have their affinity set to a single core and are scheduled
using the SCHED_FIFO policy (non-preemptible), with a sched-
uling priority of 94. For all our runtime measurements, we use
a time measuring framework based on the guidelines in [76].
Codelet time budgets in vRAN: We use our 5G RAN setup
to determine how much time we can allocate to Janus codelets
without affecting the RAN performance. We focus on the PHY
layer of the vRAN DU, as all other layers have less stringent
timing requirements. Transmissions and receptions of packets
in the PHY occur in Transmission Time Intervals (TTIs) of
a fixed duration [45]. Using our CapGemini vRAN setup we
measure the runtimes of the PHY per TTI when fully saturated
with 4x4 MIMO traffic (1Gbps DL and 45Mbps UL) over a
period of 15 minutes. In Fig 4b we show the maximum run-
times for uplink and a downlink as a function of the number

of required CPU cores. We also plot the processing deadline
for the given configuration based on the vendor guidelines.
The difference (orange), is the maximum runtime budget for
Janus codelets, and it varies from 200 𝜇s to 600 𝜇s.

While these numbers may seem high, in practice the limits
are much smaller for several reasons. Some codelets may be
executed multiple times per TTI. For example, the IQ sam-
ple processing from §4 is called 14 times per TTI (one per
OFDM symbol). Furthermore, multiple codelets can be loaded
on different hooks, sharing the overall time budget. Finally,
more demanding PHY configurations, such as massive MIMO
(which we are not able to evaluate at the moment), will likely
leave less spare CPU time for Janus hooks. Our design goal
assumes a codelet run-time budget can be as low as 20𝜇s.

7.2 End-to-end system evaluation
Here we explore the behavior and benefits of Janus in a real
end-to-end deployment, by demonstrating the flexibility of ex-
tracting telemetry data using Janus codeletsets and the safety
provided by Janus when loading the codelets. For the safety
part, we focus our evaluation on the runtime control mecha-
nism described in §5.1. The effectiveness of the static analysis
of the eBPF verifier that is used by the Janus controller is
extensively studied in [48]. Similarly, we point the reader to
the references of Table 3 for the performance results of the
algorithms we used for our implemented codelets.

We use the interference detection application described in
§4 as a representative example codeletset for our analysis. We
deploy a USRP software-defined radio as an external interferer
that generates a repetitive interference pattern with 5s of inter-
ference and 5s of silence. A spectrum view of the interference
is shown in Fig 5a (thin spikes) during a real 5G downlink
transmission. We run downlink iperf measurements between
one of the OnePlus Nord 5G phones and the 5G vRAN and
we see about 30% of packet loss when the interferer is active.
While running the measurement, we load the Janus codelets
for interference detection, described in §4. We implement a
simple interference detector at the controller that continuously
tracks the mean and the variance of the input signals per re-
source block and declares interference if the input is larger than
the mean plus 3 times standard deviation. We show in Fig. 5b
that this approach successfully detects all interfering periods.
Codelet patching prevents RAN crashes: Next, we show
how Janus can effectively deal with codelets that, while verifi-
able, can be unsafe for the operation of the vRAN due to long
execution times. We wrote a different codelet for the same
experiment that is correct, but deliberately written to be inef-
ficient. It allocates 13KBs of memory for a temporary struct,
memsets the memory with zeroes byte by byte in a tight for
loop and then copies the IQ samples passed by the hook one by
one in a second for loop before sending them to the controller.

9

(a) Spectral view of interfer-
ence (background spikes) in
presence of a 5G downlink
transmission.

0 50 100 150
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l n
or

m
. I

Q
 s

am
pl

es
 e

ne
rg

y

Detected energy
Energy threshold
Interference flag

(b) Observed energy, interfer-
ence detection threshold and
flagged interference.

Figure 5: Spectral view of interference and detection us-
ing data collected through Janus.

0 10 20 30 40 50 60
Codelet runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Unpatched codelet

Patched codelet

(a) Runtime CDF of unsafe
codelet with and without
patches applied

0 50 100 150
Data collection rate (Mbps)

Naive data collection
Codelet pre-processing

0 2 4 6 8 10
Time (s)

0

1

2 1e5

Naive data collection
Codelet pre-processing

(b) Rate of data collection and
runtime of codeletsets for inter-
ference detection use case.

Figure 6: Pre-emption of unsafe codelet and benefits of
programmability with codelets for data collection

Our deliberately inefficient codelet is verified as correct by
the verifier, as it is deemed safe in terms of memory access, as
well as provably terminates (bounded loop). However, once
this codelet is loaded to our end-to-end vRAN deployment
unpatched, it crashes the vRAN. As it can be seen by the
CDF in Fig 6a, this codelet runs for 51.4 𝜇s on the median
and 52.2 𝜇s on the 99.999 percentile. Given that the hook of
the raw IQ samples is called 14 times for each TTI (one per
OFDM symbol), the codelet runs for a total of 719.6 𝜇s on
average, which is greater than the 600 𝜇s time budget that we
have for the UL chain of the vRAN (shown in Fig 4b).

We then patch the codelet using the Janus patcher and we
re-load it to the vRAN with a runtime threshold of 5 𝜇s. As it
can be seen in Fig 6a, the patched version of the codelet is pre-
empted early and so the median runtime now becomes exactly
5 𝜇s and the 99.999 percentile becomes 5.04 𝜇s. While this
codelet no longer sends IQ samples out (as it is pre-empted),
the vRAN remains protected, as no deadlines are violated.
Reduction in data collection bandwidth: In the same inter-
ference detection example, the two codelets coordinate their
outputs to reduce the overall data collection bandwidth, as ex-
plained in §4. In order to evaluate the benefit of coordination,

we also implement the same scenario using a more centralized
approach where the coordination happens at a RIC. In this
approach, two codelets independently send all of the sched-
uling data and the raw IQ samples to the controller (∼ 13KB
of data per symbol) instead of correlating their inputs locally
and sending only IQ samples for the idle slots.

For these setups, we measure the throughput for sending the
output data to the Janus collector, as well as the runtime of the
two codeletsets, as is illustrated in Fig 6b. As it can be seen at
the top sub-plot of the figure, the naive interference detection
method results in a data collection rate of 172Mbps, while the
pre-processing method inside the vRAN results in a collection
rate of only 4.5Mbps, almost 40× less. The runtime of the
codelets with pre-processing is lower by ∼ 3.5 𝜇s compared to
the naive case, despite the extra pre-processing work. This is
because the naive approach requires a memset and a memory
copy of 13KBs each time the codeleset sends the raw IQ
samples out, while the pre-processing approach only requires
∼400B per call. Custom pre-processing is impossible with the
O-RAN RIC, since a service model has been specified for the
use case and integrated by the RAN vendors.
Codelets runtimes: Due to lack of space we don’t discuss
each scenario from §4 in detail. Instead, we report the median
and tail (99.999) runtimes of the 17 codelets of Table 3 in
Fig 7, using the shorthand names of the table as a reference.
We consider the worst case execution case for each codelet
(i.e., maximum number of devices, maximum bandwidth etc).
The reported times are for patched codelets. We use a patching
distance 𝑁 = 60 for checkpoints and a sampling frequency
of 𝑀 = 10 (see §7.3 for details on the choice of parameters).
We observe that the runtime of all the codelets is well below
the 20𝜇s time budget discussed in §7.1 (< 8𝜇s for the worst
codelet), with the most demanding being the slicing sched-
ulers (SL1 and SL3), the interference detection codeletset
(ID) and the raw scheduling data monitoring codelets (RAW1
and RAW2). We further demonstrate this by deploying all the
codelets marked as monitoring in Table 3 on our 5G vRAN
deployment at the same time, while saturating the network
with traffic (1Gbps DL and 45Mbps UL). We do not observe
any change in the link performance after loading the codelets.

7.3 Microbenchmarks
Patching overhead and reactiveness: Here, we explore the
behavior of the patching process (§5.1), by studying the most
computationally demanding codelets of Table 3, based on the
runtime results of §7.2 (i.e., RAW1, ID, SL1 and SL3). The re-
maining codelets of Table 3 present similar patching behaviors
and thus are omitted, due to space constraints.

First, we study Algorithm 1 in terms of the number of
introduced checkpoints for various checkpoint distances 𝑁 .
As we can see in Fig 8a, the more instructions a codelet has

10

0 2 4 6 8
Time (s)

KPM1
KPM2
KPM3
KPM4
KPM5
KPM6
KPM7
KPM8
RAW1
RAW2

ID
SL1
SL2
SL3
ML1
ML2
ML3

Co
de

le
ts

Median
99.999 percentile

Figure 7: Patched codelets (Table 3) worst-case runtime.

(listed under the label of each codelet), the more checkpoints
are introduced. Moreover, as we increase 𝑁 , the number of
checkpoints drops. The number of checkpoints is in almost all
cases slightly higher than the number of instructions divided
by 𝑁 , meaning that some checkpoints have a distance smaller
than 𝑁 , if the code was to be executed sequentially. Inspection
of the bytecode reveals that the excess checkpoints are mainly
introduced in tight loops (< 𝑁 instructions), which, if unrolled,
form a block of more than 𝑁 instructions, demonstrating that
our patching algorithm can effectively capture such cases.

Next, we study the behavior of codelets for various patching
distances (parameter 𝑁) and sampling frequencies (parameter
𝑀). The results in Fig 8b show the runtime of patched codelets
without a runtime threshold, compared to the unpatched ver-
sion. The runtime overhead can become significantly high
for a small 𝑁 (e.g. more than 100% for ID), because runtime
checks are executed very often, while reducing the sampling
frequency can help (e.g., as shown in the case of 𝑁 = 10 and
𝑀 = 30 for ID). On the other hand, a large value of 𝑁 and
a reduced sampling frequency (large 𝑀) is translated to less
runtime checks, leading to higher mean and tail latencies for
pre-empting codelets, as shown in Fig 8c (runtime threshold
set to 400ns). For 𝑁 = 60 and 𝑀 = 30, the tail runtime of
RAW1 and ID is almost 100% more than the runtime threshold.
Based on our evaluation of all the codelets of Table 3, we find
that the values 𝑁 = 60 and 𝑀 = 10 draw the best balance
between runtime overhead and pre-emption latency.

Finally, we compare the checkpoint method of Algorithm 1,
with an alternative method proposed in [95, 96], where check-
points are introduced on each basic block of the control flow
graph of the patched code. For the basic blocks method, we
use a sampling frequency of 𝑀 = 30, which yields similar pre-
emption tail latency results to the Janus patcher for 𝑁 = 60
and 𝑀 = 10. As shown in Fig. 8d, the basic blocks approach
incurs in most cases higher runtime overhead (99.999 tail)
compared to the Janus patcher (e.g., more than 2× higher
overhead for the SL1 codelet). The reason for this increased

Median 99.9 99.999
Single empty janus hook < 1ns < 1ns < 1ns

10 empty janus hooks < 1ns 10ns 10ns
Table 4: Median/tail execution time of empty Janus hook.

overhead is that in many cases, basic blocks can be very small
(2-3 instructions). If such a basic block is visited often (hot
code), then the instructions added by the checkpoint can more
than double its runtime, even if sampling frequency checks
are used. The approach taken by Janus is more disciplined in
the sense that it allows the RAN operator or vendor to choose
the exact number of instructions between two checkpoints.
Janus hook overhead: To measure the overhead of idle Janus
hooks, we use the dummy Janus device and measure the
elapsed time for calling a single or 10 Janus hooks, without any
codelet loaded, over 2M iterations. The results are presented
in Table 4 for the median, 99.9 and 99.999 percentile. As we
can observe, in the case of a single hook call, the overhead
is negligible (< 1ns) for all cases. The difference goes up to
10ns for the 99.9 and 99.999 percentile in the case of the 10
hooks (∼ 1ns per hook call). We conclude that adding hooks
to the vRAN code has negligible impact on its performance.
Codelet overhead when extracting data: We next evalu-
ate the codelet overhead when copying data to the output
messages and placing it into the output map (this does not
include the overhead of the output thread and protobuf serial-
ization). We base our benchmarking on a protobuf message
SizeMessage1 defined as part of the benchmarking suite of
the protobuf library [79]. This message contains 62 fields in to-
tal, both simple (e.g., int32, int64, bool) and variable sized
(string and repeated fields). We write a codelet that popu-
lates a SizeMessage1 with random content and for different
message sizes, and sends it. As we can observe in Fig 9a, for
small packet sizes (< 2KB) the execution runtime both at the
median and the tail remains below 1 𝜇s and then gradually
increases for large packet sizes, but always remains below
2𝜇s even for jumbo packets of 9KB. In practice, none of the
codelets that we wrote for the use cases in §4 required to send
monitoring packets of more than 2KB, meaning that the output
overhead for most practical scenarios is very low.
Networking overhead: Finally, we measure the overhead of
the output thread that serializes protobuf messages and sends
them over the network to the controller. We use the same setup
as in the previous experiment and we measure the maximum
achievable packet sending rate. The results are illustrated with
the blue line in Fig 9b. For small packets (< 500𝐵), Janus can
serialize and send more than 80kpps in a single output thread,
which drops to 20kpps when sending jumbo packets of 9KB.
Based on the telemetry codelets (§4), the number and size
of packets for a single cell, even in the most demanding use
cases, falls within the orange area of Fig 9b. This means that a

11

RAW1
(190 ins)

ID
(294 ins)

SL1
(256 ins)

SL3
(783 ins)

Codelets

0

20

40

60

80

N
um

be
r

of
 c

he
ck

po
in

ts

N=10
N=30
N=60

(a) Number of checkpoints
based on maximum distance 𝑁

between checkpoints.

RAW1 ID SL1 SL3
Codelets

0

5

10

15

20

25

Ti
m

e
(

s)

Unpatched
N=10, M=10
N=10, M=30
N=30, M=10
N=30, M=30
N=60, M=10
N=60, M=30
99.999 tail

(b) Average and tail runtime
overhead with different patch-
ing configurations and without
threshold.

RAW1 ID SL1 SL3
Codelets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e
(

s)

runtime threshold

N=10, M=10
N=10, M=30
N=30, M=10
N=30, M=30
N=60, M=10
N=60, M=30
99.999 tail

(c) Average and tail pre-
emption reactiveness for 0.4𝜇s
runtime threshold

RAW1 ID SL1 SL3
Codelets

0

10

20

30

40

50

60

70

Pa
tc

hi
ng

 r
un

ti
m

e
ov

er
eh

ea
d

% Janus
Basic Block, M = 30

(d) 99.999 tail runtime over-
head for Janus and basic
block patching compared to
unpatched codelet.

Figure 8: Analysis of codelet patching behavior and comparison with alternative approaches.

0 2 4 6 8
Packet size (KB)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
de

le
t

ex
ec

ut
io

n
ru

nt
im

e
(

s) Median
99.9 percentile
99.999 percentile

(a) Codelet execution runtime

0 2 4 6 8
Packet size (KB)

0

20

40

60

80

100

kp
ps

x1 cell

x4 cells

Serialization w/ send
Serialization w/o send

(b) Max kpps

Figure 9: Codelete execution runtime and maximum kpps
for SizeMessage1 message [79] with fields of varying size.

single Janus device can handle up to 4 cells (light blue and or-
ange area) for demanding use cases and more than double for
lightweight monitoring. Currently, the main bottleneck is the
serialization of the output messages. This can be seen with the
orange line of Fig 9b, since even when we drop packets instead
of sending them, we only see a 25% increase in the output rate.
This could be further reduced by replacing socket-based UDP
operations with kernel bypassing (e.g. DPDK).

8 DISCUSSION AND RELATED WORK
Pushing arbitrary code to vRAN functions - The works
in [43, 73] argue about the need for real-time RAN programma-
bility, by loading arbitrary code in the vRAN functions at run-
time. While these works are conceptually similar to Janus, they
don’t propose a safe way to implement such features and ac-
knowledge that the safety concerns make their proposal unac-
ceptable for realistic deployments. They are also only shown to
operate on lower-end setups (up to 20MHz SISO with 10× less
throughput than what we show for Janus) and don’t provide
access to high throughput data streams such as IQ samples.
Patching code with checkpoints - Adding compiler-assisted
checkpoints has been studied in the literature as a way of
improving fault tolerance by periodically saving the software
state (e.g., in intermittent energy systems) [67, 68, 80, 99, 101].

The choice of checkpoints in such systems is typically made
with the goal of minimizing the energy overhead without
affecting recoverability, which leads to different design choices
compared to the pre-emption goal of Janus. Closer to Janus,
the works in [95, 96] focus on adding checkpoints for asserting
whether the allotted worst-case execution time of a real-time
system has been exceeded. Contrary to Janus, such checks
require hardware assistance and checkpoints are added in
every basic block of the running program, which, as shown in
§7.3 has a higher overhead compared to the Janus patcher.
RAN data collection - A number of works in the vRAN
space offer solutions for data collection, ranging from API
specifications (e.g., O-RAN RIC E2 service model [24, 85]
and FlexRAN API [43]) to elaborate logging systems (e.g. OAI
T-tracer [7], SCOPE data collection module [30])). However,
such solutions offer no flexibility to adapt the type, volume
and frequency of collected data based on the application’s
needs, which is one of the main design goals of Janus. Similar
observations can be made for data collection solutions in the
eBPF space, which either offer a fixed set of metrics (e.g.
Hubble [5]) or data can only be exported in certain formats
(e.g. counters and histograms as in ebpf_exporter [4]).
Support for complex ML models using Janus maps- As
discussed in §4, the development of large ML-models (e.g.,
Random Forests) inline in Janus C code is challenging, mainly
due to the big size of the generated bytecode and its implica-
tions to verification. We believe that our proposed map-based
approach for loading ML models in a serialized format and
performing inference through helper functions is powerful,
considering that a large number of use cases proposed in the
RAN space rely on the same models (e.g., Random Forests,
LSTMs and RNNs [18, 40, 54, 66, 84, 89, 97, 98]). There-
fore, we are planning on extending this approach to support
additional widely-used ML models beyond Random Forests.

12

9 CONCLUSIONS
In this work we presented Janus, a fully programmable and
safe monitoring and control framework for 5G RAN. It allows
operators to load custom codelets with custom data models
in real-time, significantly increasing flexibility offered by the
existing O-RAN RIC. We demonstrated this flexibility by
building and evaluating 17 applications in 4 different classes
(most not achievable with O-RAN RIC). Janus achieves safety
using static verification and codelet pre-emption. Its modular
design makes it is easy to add to existing vRAN products. We
hope that Janus will be eventually adopted by the O-RAN
community to help accelerate innovation in the Open RAN.

REFERENCES
[1] 2021. pyelftools. https://github.com/eliben/pyelftools.
[2] 2022. Awesome eBPF. https://github.com/zoidbergwill/awesome-

ebpf.
[3] 2022. eBPF. https://ebpf.io/.
[4] 2022. ebpf_exporter. https://github.com/cloudflare/ebpf_exporter.
[5] 2022. Hubble exported metrics. https://docs.cilium.io/en/stable/

operations/metrics/#hubble-exported-metrics.
[6] 2022. nanopb. https://github.com/nanopb/nanopb.
[7] 2022. OAI T Tracer. https://gitlab.eurecom.fr/oai/openairinterface5g/-

/wikis/T.
[8] 2022. The LLVM compiler infrastructure. https://llvm.org/.
[9] O-RAN Working Group 3. 2021. Use Cases and Requirements. O-

RAN.WG3.UCR-v01.00 (2021).
[10] 3GPP. 2018. 3GPP TS 38.410: NG general aspects and principles.

(2018).
[11] 3GPP. 2018. 3GPP TS 38.463: E1 Application protocol (E1AP).

(2018).
[12] 3GPP. 2019. 3GPP TS 38.470: F1 general aspects and principles.

(2019).
[13] 3GPP. 2020. 3GPP TS 28.552: Management and orchestration: 5G

performance measurements. (2020).
[14] 3GPP. 2020. 3GPP TS 32.425: Performance Management (PM); Perfor-

mance measurements for Evolved Universal Terrestrial Radio Access
Network (E-UTRAN). (2020).

[15] 3GPP. 2020. 3GPP TS 38.322: Radio Link Control (RLC) protocol
specification. (2020).

[16] 3GPP. 2020. 3GPP TS 38.331: Radio Resource Control (RRC) protocol
specification . (2020).

[17] 3GPP. 2020. 3GPP TS 38.420: Xn general aspects and principles.
(2020).

[18] Javed Akhtar, Krunal Saija, Narayanan Ravi, Shekar Nethi, and Sap-
tarshi Chaudhuri. 2021. Machine Learning-based Prediction of PMI
Report for DL-Precoding in 5G-NR System. In 2021 IEEE 4th 5G
World Forum (5GWF). IEEE, 105–110.

[19] ORAN Alliance. 2019. O-RAN WhitePaper-Building the Next Gener-
ation RAN. O-RAN Alliance, Tech. Rep., Oct (2019).

[20] ORAN Alliance. 2020. O-RAN use cases and deployment scenarios.
White Paper, Feb (2020).

[21] ORAN Alliance. 2020. O-RAN Working Group 3: Near-Real-time
RAN Intelligent Controller-E2 Service Model (E2SM). ORAN-WG3.
E2SM-KPM-v01. 00.00 (2020).

[22] ORAN Alliance. 2021. O-RAN Fronthaul Control User and Synchro-
nization Plane Specification v7.0.

[23] ORAN Alliance. 2021. O-RAN Working Group 2: “O-RAN AI/ML
workflow description and requirements 1.03. O-RAN.WG2.AIML-
v01.03 Technical Specification (2021).

[24] O-RAN Alliance. 2021. O-RAN E2 Application Protocol (E2AP) v2.0.
ORAN-WG3.E2AP-KPM-v02.00 (2021).

[25] O-RAN Alliance. 2021. O-RAN Minimum Viable Plan and Accelera-
tion towards Commercialization. White Paper, June (2021).

[26] OpenAir Software Alliance. 2022. Open Air Interface Project. https:
//openairinterface.org/about-us/.

[27] Bharath Balasubramanian, E Scott Daniels, Matti Hiltunen, Rittwik
Jana, Kaustubh Joshi, Rajarajan Sivaraj, Tuyen X Tran, and Chengwei
Wang. 2021. RIC: A RAN intelligent controller platform for AI-
enabled cellular networks. IEEE Internet Computing 25, 2 (2021),
7–17.

[28] Andson Balieiro, Kelvin Dias, and Paulo Guarda. 2021. A Machine
Learning Approach for CQI Feedback Delay in 5G and Beyond 5G Net-
works. In 2021 30th Wireless and Optical Communications Conference
(WOCC). IEEE, 26–30.

[29] Gilberto Berardinelli, Saeed R Khosravirad, Klaus I Pedersen, Frank
Frederiksen, and Preben Mogensen. 2016. Enabling early HARQ
feedback in 5G networks. In 2016 IEEE 83rd Vehicular Technology
Conference (VTC Spring). IEEE, 1–5.

[30] Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso
Melodia. 2021. SCOPE: an open and softwarized prototyping platform
for NextG systems. In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services. 415–426.

[31] Leonardo Bonati, Salvatore D’Oro, Michele Polese, Stefano Basagni,
and Tommaso Melodia. 2021. Intelligence and learning in O-RAN for
data-driven NextG cellular networks. IEEE Communications Magazine
59, 10 (2021), 21–27.

[32] Gabriel Brown and HEAVY READING. 2018. New Transport Network
Architectures for 5G RAN. White Paper. Available online: https://www.
fujitsu. com/us/Images/New-Transport-Network-Architectures-for-5G-
RAN. pdf (accessed on 29 June 2021) (2018).

[33] Nicola Bui and Joerg Widmer. 2018. Data-driven evaluation of antic-
ipatory networking in LTE networks. IEEE Transactions on Mobile
Computing 17, 10 (2018), 2252–2265.

[34] Cambridge Consultants. 2022. Wireless breakthrough for the Ocado
Smart Platform. https://www.cambridgeconsultants.com/case-studies/
wireless-breakthrough-ocado-smart-platform.

[35] CapGemini Engineering. 2022. 5G gNodeB. https://capgemini-
engineering.com/nl/en/services/next-core/wireless-frameworks/.

[36] Francisco J Cazorla, Leonidas Kosmidis, Enrico Mezzetti, Carles Her-
nandez, Jaume Abella, and Tullio Vardanega. 2019. Probabilistic
worst-case timing analysis: Taxonomy and comprehensive survey. ACM
Computing Surveys (CSUR) 52, 1 (2019), 1–35.

[37] Cellwize and Intel. 2022. Cellwize Announces Collabora-
tion to Accelerate Deployment of 5G vRAN Networks With
AI. https://www.sdxcentral.com/articles/press-release/cellwize-
announces-collaboration-to-accelerate-deployment-of-5g-vran-
networks-with-ai/2021/06/.

[38] Cohere Technologies. 2022. With Vodafone and Partners, VMWare
demonstrates how to accelerate innovation in the RAN. https:
//www.cohere-tech.com/press-releases/with-vodafone-and-partners-
vmware-demonstrates-how-to-accelerate-innovation-in-the-ran.

[39] Salah Eddine Elayoubi, Sana Ben Jemaa, Zwi Altman, and Ana
Galindo-Serrano. 2019. 5G RAN slicing for verticals: Enablers and
challenges. IEEE Communications Magazine 57, 1 (2019), 28–34.

[40] Capgemini Engineering. 2021. Intelligent 5G L2 MAC Scheduler.
White Paper, Feb (2021).

[41] Small Cell Forum. 2021. 5G FAPI: PHY API Specification.

13

https://github.com/eliben/pyelftools
https://github.com/zoidbergwill/awesome-ebpf
https://github.com/zoidbergwill/awesome-ebpf
https://ebpf.io/
https://github.com/cloudflare/ebpf_exporter
https://docs.cilium.io/en/stable/operations/metrics/#hubble-exported-metrics
https://docs.cilium.io/en/stable/operations/metrics/#hubble-exported-metrics
https://github.com/nanopb/nanopb
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/T
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/T
https://llvm.org/
https://openairinterface.org/about-us/
https://openairinterface.org/about-us/
https://www.cambridgeconsultants.com/case-studies/wireless-breakthrough-ocado-smart-platform
https://www.cambridgeconsultants.com/case-studies/wireless-breakthrough-ocado-smart-platform
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://www.sdxcentral.com/articles/press-release/cellwize-announces-collaboration-to-accelerate-deployment-of-5g-vran-networks-with-ai/2021/06/
https://www.sdxcentral.com/articles/press-release/cellwize-announces-collaboration-to-accelerate-deployment-of-5g-vran-networks-with-ai/2021/06/
https://www.sdxcentral.com/articles/press-release/cellwize-announces-collaboration-to-accelerate-deployment-of-5g-vran-networks-with-ai/2021/06/
https://www.cohere-tech.com/press-releases/with-vodafone-and-partners-vmware-demonstrates-how-to-accelerate-innovation-in-the-ran
https://www.cohere-tech.com/press-releases/with-vodafone-and-partners-vmware-demonstrates-how-to-accelerate-innovation-in-the-ran
https://www.cohere-tech.com/press-releases/with-vodafone-and-partners-vmware-demonstrates-how-to-accelerate-innovation-in-the-ran

[42] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. 2019.
Iris: Deep reinforcement learning driven shared spectrum access archi-
tecture for indoor neutral-host small cells. IEEE Journal on Selected
Areas in Communications 37, 8 (2019), 1820–1837.

[43] Xenofon Foukas, Navid Nikaein, Mohamed M Kassem, Mahesh K
Marina, and Kimon Kontovasilis. 2016. FlexRAN: A flexible and
programmable platform for software-defined radio access networks.
In Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies. 427–441.

[44] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Ma-
hesh K Marina. 2017. Network slicing in 5G: Survey and challenges.
IEEE communications magazine 55, 5 (2017), 94–100.

[45] Xenofon Foukas and Bozidar Radunovic. 2021. Concordia: teaching
the 5G vRAN to share compute. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 580–596.

[46] Gines Garcia-Aviles, Andres Garcia-Saavedra, Marco Gramaglia,
Xavier Costa-Perez, Pablo Serrano, and Albert Banchs. 2021. Nu-
beru: Reliable RAN virtualization in shared platforms. In Proceedings
of the 27th Annual International Conference on Mobile Computing
and Networking. 749–761.

[47] Andres Garcia-Saavedra and Xavier Costa-Perez. 2021. O-RAN: Dis-
rupting the virtualized RAN ecosystem. IEEE Communications Stan-
dards Magazine (2021).

[48] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
2019. Simple and precise static analysis of untrusted linux kernel
extensions. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 1069–1084.

[49] David Ginthör, René Guillaume, Maximilian Schüngel, and Hans D
Schotten. 2021. 5G RAN slicing for deterministic traffic. In 2021 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
1–6.

[50] Google. 2022. Sandbox2. https://developers.google.com/code-
sandboxing/sandbox2.

[51] Google. 2022. Sandboxed API. https://developers.google.com/code-
sandboxing/sandboxed-api.

[52] Tao Guo and Alberto Suárez. 2019. Enabling 5G RAN slicing with
EDF slice scheduling. IEEE Transactions on Vehicular Technology
68, 3 (2019), 2865–2877.

[53] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 185–200.

[54] Sahar Imtiaz, Georgios P Koudouridis, Hadi Ghauch, and James Gross.
2018. Random forests for resource allocation in 5G cloud radio access
networks based on position information. EURASIP Journal on Wireless
Communications and Networking 2018, 1 (2018), 1–16.

[55] Intel. 2020. Unleash the Speed of 4G and 5G Virtualized Radio Access
Networks (vRAN). Product Brief, Intel vRAN Dedicated Accelerator
ACC100 (2020).

[56] Intel. 2020. Virtual RAN (vRAN) with Hardware Acceleration. White
Paper, Jan (2020).

[57] Intel. 2022. FlexRAN Reference Architecture for Wireless Ac-
cess. https://www.intel.com/content/www/us/en/developer/topic-
technology/edge-5g/tools/flexran.html.

[58] Intel. 2022. Smart Edge Open Radio Access Network.
https://smart-edge-open.github.io/ido-specs/doc/reference-
architectures/ran/smartedge-open_ran/.

[59] iovisor. 2022. Userspace eBPF VM. https://github.com/iovisor/ubpf.
[60] David Johnson, Dustin Maas, and Jacobus Van Der Merwe. 2022.

NexRAN: Closed-loop RAN slicing in POWDER-A top-to-bottom

open-source open-RAN use case. In Proceedings of the 15th ACM
Workshop on Wireless Network Testbeds, Experimental evaluation &
CHaracterization. 17–23.

[61] Ravi Kokku, Rajesh Mahindra, Honghai Zhang, and Sampath Ran-
garajan. 2011. NVS: A substrate for virtualizing wireless resources
in cellular networks. IEEE/ACM transactions on networking 20, 5
(2011), 1333–1346.

[62] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti.
2015. Spotfi: Decimeter level localization using wifi. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication. 269–282.

[63] Merima Kulin, Tarik Kazaz, Ingrid Moerman, and Eli De Poorter. 2018.
End-to-end learning from spectrum data: A deep learning approach
for wireless signal identification in spectrum monitoring applications.
IEEE Access 6 (2018), 18484–18501.

[64] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Every-
thing Old is New Again: Binary Security of {WebAssembly}. In 29th
USENIX Security Symposium (USENIX Security 20). 217–234.

[65] liburcu. 2022. Userspace RCU. https://liburcu.org/.
[66] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li.

2018. Channel state information prediction for 5G wireless commu-
nications: A deep learning approach. IEEE Transactions on Network
Science and Engineering 7, 1 (2018), 227–236.

[67] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Inter-
mittent execution without checkpoints. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1–30.

[68] Kiwan Maeng and Brandon Lucia. 2018. Adaptive dynamic check-
pointing for safe efficient intermittent computing. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). 129–144.

[69] Paul E McKenney, Silas Boyd-Wickizer, and Jonathan Walpole. 2013.
RCU usage in the linux kernel: One decade later. Technical report
(2013).

[70] Paul E McKenney and Jonathan Walpole. 2007. What is RCU, funda-
mentally? Linux Weekly News (LWN. net) (2007).

[71] Mehrtash Mehrabi, Mostafa Mohammadkarimi, Masoud Ardakani,
and Yindi Jing. 2019. Decision Directed Channel Estimation Based on
Deep Neural Network 𝑘-Step Predictor for MIMO Communications
in 5G. IEEE Journal on Selected Areas in Communications 37, 11
(2019), 2443–2456.

[72] Mustafa Mohsin, Jordi Mongay Batalla, Evangelos Pallis, George Mas-
torakis, Evangelos K Markakis, and Constandinos X Mavromoustakis.
2021. On Analyzing Beamforming Implementation in O-RAN 5G.
Electronics 10, 17 (2021), 2162.

[73] Navid Nikaein, Chia-Yu Chang, and Konstantinos Alexandris. 2018.
Mosaic5G: Agile and flexible service platforms for 5G research. ACM
SIGCOMM Computer Communication Review 48, 3 (2018), 29–34.

[74] Daisuke Nojima, Yuki Katsumata, Takuya Shimojo, Yoshifumi Mori-
hiro, Takahiro Asai, Akira Yamada, and Shigeru Iwashina. 2018. Re-
source isolation in RAN part while utilizing ordinary scheduling algo-
rithm for network slicing. In 2018 IEEE 87th Vehicular Technology
Conference (VTC Spring). IEEE, 1–5.

[75] O-RAN SC projects . 2022. RAN Intelligent Controller Appli-
cations. https://docs.o-ran-sc.org/en/latest/projects.html#ran-
intelligent-controller-applications-ricapp.

[76] Gabriele Paoloni. 2010. How to benchmark code execution times on
Intel IA-32 and IA-64 instruction set architectures. Intel Corporation
123 (2010), 170.

[77] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano Basagni,
and Tommaso Melodia. 2022. Understanding O-RAN: Architecture,
Interfaces, Algorithms, Security, and Research Challenges. arXiv
preprint arXiv:2202.01032 (2022).

14

https://developers.google.com/code-sandboxing/sandbox2
https://developers.google.com/code-sandboxing/sandbox2
https://developers.google.com/code-sandboxing/sandboxed-api
https://developers.google.com/code-sandboxing/sandboxed-api
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://smart-edge-open.github.io/ido-specs/doc/reference-architectures/ran/smartedge-open_ran/
https://smart-edge-open.github.io/ido-specs/doc/reference-architectures/ran/smartedge-open_ran/
https://github.com/iovisor/ubpf
https://liburcu.org/
https://docs.o-ran-sc.org/en/latest/projects.html#ran-intelligent-controller-applications-ricapp
https://docs.o-ran-sc.org/en/latest/projects.html#ran-intelligent-controller-applications-ricapp

[78] Michele Polese, Rittwik Jana, Velin Kounev, Ke Zhang, Supratim
Deb, and Michele Zorzi. 2020. Machine learning at the edge: A data-
driven architecture with applications to 5G cellular networks. IEEE
Transactions on Mobile Computing 20, 12 (2020), 3367–3382.

[79] Protocol Buffers. 2022. Protobuf benchmark proto
file. https://github.com/protocolbuffers/protobuf/blob/
fb77cc9d9f066a8ce4f12e8d5f76188d48101444/benchmarks/
google_size.proto.

[80] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos:
System support for long-running computation on RFID-scale devices.
In Proceedings of the sixteenth international conference on Archi-
tectural support for programming languages and operating systems.
159–170.

[81] Raymond Knopp. 2022. OAI Layer 2 Protocol
Stack. https://www.openairinterface.org/docs/workshop/
1stOAINorthAmericaWorkshop/Training/KNOPP-OAI-L2.pdf.

[82] Rohde & Schwarz. 2022. PREEMPT_RT patch versions.
https://www.rohde-schwarz.com/uk/solutions/aerospace-defense-
security/security/spectrum-monitoring/efficient-interference-
hunting/huntinginterferences_91389.html.

[83] Peter Rost and Athul Prasad. 2014. Opportunistic hybrid
ARQ—Enabler of centralized-RAN over nonideal backhaul. IEEE
Wireless Communications Letters 3, 5 (2014), 481–484.

[84] Krunal Saija, Shekar Nethi, Saptarshi Chaudhuri, and RM Karthik.
2019. A machine learning approach for SNR prediction in 5G systems.
In 2019 IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS). IEEE, 1–6.

[85] Robert Schmidt, Mikel Irazabal, and Navid Nikaein. 2021. FlexRIC:
an SDK for next-generation SD-RANs. In Proceedings of the 17th
International Conference on emerging Networking EXperiments and
Technologies. 411–425.

[86] Souvik Sen, Božidar Radunovic, Romit Roy Choudhury, and Tom
Minka. 2012. You are facing the Mona Lisa: Spot localization us-
ing PHY layer information. In Proceedings of the 10th international
conference on Mobile systems, applications, and services. 183–196.

[87] Weisen Shi, Junling Li, Peng Yang, Qiang Ye, Weihua Zhuang, Xuemin
Shen, and Xu Li. 2021. Two-level soft RAN slicing for customized ser-
vices in 5G-and-beyond wireless communications. IEEE Transactions
on Industrial Informatics 18, 6 (2021), 4169–4179.

[88] Small Cell Forum. 2022. 5G FAPI: PHY API Specification. http:
//scf.io/en/documents/222_5G_FAPI_PHY_API_Specification.php.

[89] Nils Strodthoff, Barış Göktepe, Thomas Schierl, Cornelius Hellge, and
Wojciech Samek. 2019. Enhanced machine learning techniques for
early HARQ feedback prediction in 5G. IEEE Journal on Selected
Areas in Communications 37, 11 (2019), 2573–2587.

[90] Telefonica. 2021. Telefonica views on the design, architecture, and
technology of 4G/5G Open RAN networks. White Paper, Jan (2021).

[91] TensorFlow. 2022. TensorFlow Lite for Microcontrollers. https:
//www.tensorflow.org/lite/microcontrollers.

[92] Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacífico, Eler-
son RS Santos, Eduardo PM Câmara Júnior, and Luiz FM Vieira. 2020.
Fast packet processing with ebpf and xdp: Concepts, code, challenges,
and applications. ACM Computing Surveys (CSUR) 53, 1 (2020),
1–36.

[93] OpenAirInterface Wiki. 2022. OpenAirKernelMain-
Setup. https://gitlab.eurecom.fr/oai/openairinterface5g/-
/wikis/OpenAirKernelMainSetup.

[94] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdi-
nand, Reinhold Heckmann, Tulika Mitra, et al. 2008. The worst-case
execution-time problem—overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems (TECS) 7, 3

(2008), 1–53.
[95] Julian Wolf, Bernhard Fechner, Sascha Uhrig, and Theo Ungerer. 2012.

Fine-grained timing and control flow error checking for hard real-time
task execution. In 7th IEEE International Symposium on Industrial
Embedded Systems (SIES’12). IEEE, 257–266.

[96] Julian Wolf, Bernhard Fechner, and Theo Ungerer. 2012. Fault coverage
of a timing and control flow checker for hard real-time systems. In
2012 IEEE 18th International On-Line Testing Symposium (IOLTS).
IEEE, 127–129.

[97] Hao Yin, Xiaojun Guo, Pengyu Liu, Xiaojun Hei, and Yayu Gao. 2020.
Predicting Channel Quality Indicators for 5G Downlink Scheduling in
a Deep Learning Approach. arXiv preprint arXiv:2008.01000 (2020).

[98] Qi Zhang, Alexandros Nikou, and Marios Daoutis. 2022. Predicting
Buffer Status Report (BSR) for 6G Scheduling using Machine Learning
Models. In 2022 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 632–637.

[99] Ying Zhang and Krishnendu Chakrabarty. 2003. Energy-aware adap-
tive checkpointing in embedded real-time systems. In 2003 Design,
Automation and Test in Europe Conference and Exhibition. IEEE,
918–923.

[100] Yadan Zheng, Shubo Ren, Xiaoyan Xu, Ying Si, Mingke Dong, and
Jianjun Wu. 2012. A modified ARIMA model for CQI prediction
in LTE-based mobile satellite communications. In 2012 IEEE Inter-
national Conference on Information Science and Technology. IEEE,
822–826.

[101] Avi Ziv and Jehoshua Bruck. 1997. An on-line algorithm for check-
point placement. IEEE Transactions on computers 46, 9 (1997), 976–
985.

A APPENDIX
A.1 Loading Janus codeletsets and codelet

coordination
As already explained in Section 3.1, Janus codeletsets are
JIT-compiled and loaded to Janus devices, through a network
API provided by the Janus controller. Developers can upload
the developed codeletsets to the Janus controller and load
them to Janus devices using a tool provided by the Janus
SDK, as illustrated in Fig. 10. The instructions required to
upload a codeletset to the Janus controller and load them to a
Janus device are encoded in a descriptor file written in YAML
format. The YAML structure and properties of codeletsets are
listed in Listing 6.

1 c o d e l e t 1 :
2 c o d e l e t : c o d e l e t 1 . o
3 hook_name: hook_name1
4 p r i o r i t y : c o d e l e t 1 _ r u n n i n g _ p r i o r i t y
5 runt ime_thresho ld : c ode l e t 1_max_ run t ime
6 code le tN :
7 c o d e l e t : c ode l e tN . o
8 hook_name: hook_nameN
9 p r i o r i t y : c o d e l e t N _ r u n n i n g _ p r i o r i t y

10 runt ime_thresho ld : code l e tN_max_run t ime
11 l inked_maps :
12 codeletN_map :
13 c o d e l e t : c o d e l e t 1
14 map_name: code l e t1_map

Listing 6: Codeletset YAML structure

At the minimum, the YAML file specifies the names of all
the codelets that are part of the codeletset (eBPF bytecode

15

https://github.com/protocolbuffers/protobuf/blob/fb77cc9d9f066a8ce4f12e8d5f76188d48101444/benchmarks/google_size.proto
https://github.com/protocolbuffers/protobuf/blob/fb77cc9d9f066a8ce4f12e8d5f76188d48101444/benchmarks/google_size.proto
https://github.com/protocolbuffers/protobuf/blob/fb77cc9d9f066a8ce4f12e8d5f76188d48101444/benchmarks/google_size.proto
https://www.openairinterface.org/docs/workshop/1stOAINorthAmericaWorkshop/Training/KNOPP-OAI-L2.pdf
https://www.openairinterface.org/docs/workshop/1stOAINorthAmericaWorkshop/Training/KNOPP-OAI-L2.pdf
https://www.rohde-schwarz.com/uk/solutions/aerospace-defense-security/security/spectrum-monitoring/efficient-interference-hunting/huntinginterferences_91389.html
https://www.rohde-schwarz.com/uk/solutions/aerospace-defense-security/security/spectrum-monitoring/efficient-interference-hunting/huntinginterferences_91389.html
https://www.rohde-schwarz.com/uk/solutions/aerospace-defense-security/security/spectrum-monitoring/efficient-interference-hunting/huntinginterferences_91389.html
http://scf.io/en/documents/222_5G_FAPI_PHY_API_Specification.php
http://scf.io/en/documents/222_5G_FAPI_PHY_API_Specification.php
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirKernelMainSetup
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirKernelMainSetup

object files in ELF format), the name of the hook in the Janus
device(s) they should be linked to and their calling priority
(multiple codelets can be linked to the same hook). The YAML
file provides additional optional configuration parameters for
further configuring codelets, like for example the runtime
threshold of each patched codelet when using the runtime
control mechanism of Section 5.1.

Figure 10: Loading process of Janus codeletsets to Janus
devices

Janus codelets of the same codeletset can share state and
coordinate. This can be particularly useful when performing
monitoring or control operations that require the correlation
of events and data across different layers of the vRAN stack
(e.g. as in the case of interference detection in §4). The shar-
ing of state between codelets of a codeletset is performed
using shared maps. For this mechanism to work, codelets that
want to share state must use the exact same definition for the
shared map in terms of its type, key_size, value_size and
max_entries, while the name of the map can be different.
Developers can then specify the maps to be linked, in the
linked_maps section of the YAML descriptor file they use
for loading the codeletset, as shown in Listing 6. When the
codeletset is loaded, memory for the shared map is only allo-
cated once on the Janus device and all codelets sharing the
map get a pointer to the same memory, which they can then
call through helper functions to store and load state.

A.2 Flexible output Janus schemas
Output schemas can be reused by multiple codelets. There-
fore, the schemas and the codelets are uploaded to the Janus
controller separately, using the Janus SDK. Codelets spec-
ify which output schema(s) they make use of in the defini-
tion of their output ringbuffer map(s). This includes three
fields, as shown in lines 11-13 of Listing 1. The proto_name
field contains a name that indicates a unique protobuf spec-
ification file that has been uploaded to the Janus controller.
The proto_msg_name field indicates the root message of the
proto_name specification that will be used to send data using
this ringbuffer (a proto spec can contain multiple message def-
initions). Finally, the proto_hash field contains a hash value
that is used to ensure that the contents of the protobuf specifi-
cation file used during the development of the codelet are the
same as those of the file uploaded to the Janus controller.

Janus Controller

Janus device

Janus codelet data collector

Protobuf spec

Codelet ELF bytecode

• Codelet ELF bytecode
• Output schema protobuf encoder function
• Output schema stream-id

• Output schema protobuf decoder function
• Output schema stream-id

Figure 11: Loading process of Janus codeletsets with out-
put schemas to Janus devices

Fig 11 illustrates the loading process of codeletsets with
output schemas. The Janus controller parses the codelet object
(ELF) files to identify maps of type JANUS_MAP_TYPE_RINGBUF
in the maps section. It then uses the proto_name value in the
map definition to link the codelet with some .proto specifica-
tion file that has been previously uploaded to the controller.
Once the specification is found, the controller compares the
proto_hash field of the map with a hash digest of the .proto
file. If those match, the controller assigns a unique stream-id
to the codelet’s ringbuf map (a 16-bytes UUID). Next, the con-
troller auto-generates an encoder and a decoder function, that
are responsible for the serialization and desirialization of mes-
sages of type proto_msg_name that are sent by the codelet to
the Janus output data collector. The controller sends the auto-
generated encoder function to the Janus device via the network
API, along with the verified codelet’s bytecode and the output
map’s stream-id. The controller also sends the stream-id along
with the auto-generated decoder function to the output data
collector. The collector maintains a key-value structure, that
maps the stream-id (key) to the decoder function (value).

Each time a codelet with a JANUS_MAP_TYPE_RINGBUF out-
put map is loaded to a Janus device, a single-producer/single-
consumer (SPSC) ringbuffer data structure is created and
linked to it, where the codelet is the producer and an output
thread is the consumer. As illustrated in Fig. 12, every time
that the codelet calls the janus_ringbuf_output() helper
function (e.g., line 42 of Listing 1), the output data is pushed
to the ringbuffer. The output thread consumes the data and
calls the corresponding encoder function to serialize them.
Before sending the serialized data to the output collector via
UDP, a header is appended, that includes the 16-bytes stream-
id and a 2-bytes sequence number. Once the output collector
receives the output message, it matches the stream-id to the
appropriate decoder function, which it uses to deserialize the
message. Finally, the deserialized message is converted to
JSON format and can then be fed to other components of the
pipeline (e.g. storage, ML processing etc).

A.3 Writing Janus hooks
To simplify the process of writing Janus hooks, the Janus
SDK provides a set of macros for declaring and running new
hooks. In short, the macro DECLARE_JANUS_HOOK() is called

16

Function name Description
hook_fapi_dl_config_req() Runs all the codelets registered on the hook one by one based on their execution priorities

register_janus_codelet_fapi_dl_config_req() Registers a codelet to the hook with a default execution priority
register_janus_codelet_prio_fapi_dl_config_req() Registers a codelet to the hook with a user-defined execution priority

remove_janus_codelet_fapi_dl_config_req() Removes a registered codelet from the hook
Table 5: Functions generated by DECLARE_JANUS_HOOK() macro for example of Listing 7.

Figure 12: Exporting of data from Janus codelets

and takes as input arguments the name of the new hook, the
context type that will be passed to the codelets called by the
hook, the signature of the hook function (name and type of
arguments), as well as a list of assignments for populating the
context that will be passed to the codelet. An example for the
codelet of Listing 1 is shown in Listing 7.

1 DECLARE_JANUS_HOOK(fapi_dl_config_req ,
2 struct janus_ran_fapi_ctx ctx ,
3 ctx ,
4 HOOK_PROTO(
5 nfapi_dl_config_request_pdu_t *dl_config_req ,
6 int ctx_id ,
7 int frame ,
8 int subframe ,
9 int cell_id ,

10 int fapi_list_size
11),
12 HOOK_ASSIGN(
13 ctx.ctx_id = ctx_id;
14 ctx.cell_id = cell_id;
15 ctx.slot = subframe;
16 ctx.frame = frame;
17 ctx.data = (void *) dl_config_req;
18 ctx.data_end = (void *) (dl_config_req +

fapi_list_size);
19)
20)

Listing 7: Hook declaration for codelet of Listing 1

Based on those inputs, the macro auto-generates boilerplate
code for the functions that form the API of the hook. This
includes functions for loading and unloading codelets to the
hook, as well as a function to run all the codelets that are
linked with the hook. A list of the autogenerated functions for
the example of Listing 7 is shown in Table 5.

Once a hook is declared, developers can simply introduce
the hook in their vCU/vDU code by instantiating it using
a macro called DEFINE_JANUS_HOOK(), passing as an argu-
ment the name of the hook. Finally, the hook can be called at
any point of the code by calling the auto-generated function
hook_#hook_name(), where #hook_name is the name that
was used when declaring the hook. For example, in the case of
Listing 7, a hook called (e.g. hook_fapi_dl_config_req())
is generated.

A.4 Inference using Janus maps
Here, we explain in more details how Janus can use more com-
plex ML models for inference using maps. A simple example
codelet is shown in Listing 8 for the Random Forest model
that was discussed in §4. This codelet performs inference for
a pre-trained model and then simply returns.

1 struct janus_load_map_def SEC("maps") model_map = {
2 .type = JANUS_MAP_TYPE_ML_MODEL ,
3 .max_entries = 16,
4 .ml_model = "random_forest",
5 };
6
7 struct features {
8 int f1;
9 int f2;

10 int f3;
11 int o1;
12 };
13
14 SEC("janus_ran_fapi")
15 uint64_t bpf_prog(void *state) {
16
17 struct features feats;
18 int res;
19
20 feats.f1 = 1;
21 feats.f2 = 1;
22 feats.f3 = 1;
23
24 /* We store inference result in output */
25 res = janus_model_predict (&model_map , &feats);
26
27 if (res) return 1;
28
29 return 0;
30 }

Listing 8: ML model usage example

Loading an ML model - As it can be seen in line 2 of List-
ing 8, we define a map of type JANUS_MAP_TYPE_ML_MODEL.
The model must be loaded by the controller to janus in a seri-
alized format from an input file called random_forest (line
4). The serialized model is represented as a char array and
captures all the important information required by janus to
recreate the trained model in memory. For example, for the ran-
dom forest model, the serialization contains information about
the type of model (random forest), the number of estimators
(trees), the condition to check on each node of each estima-
tor, as well as the inference values of the leaf nodes of the
trees. Janus only supports a pre-determined set of model types
(currently random forest and SVM), each with its own set of
serialization parameters. During the loading of the codelet,
the verifier will check if the loaded serialized model is valid.
This includes checks for the type of model as well as the va-
lidity of the model parameters (i.e., whether the model can be

17

reconstructed in memory). If any of the checks fails, then the
codelet is not loaded in the Janus device.
In-codelet inference - The loaded model expects a set of input
features and outputs of known number and size. The required
memory for the input features and the outputs is specified
in the definition of the ML model map. For the example of
Listing 8, we have 3 input features and one output (lines 7-12)
for a total memory size of 16 Bytes (line 3). The exact memory
layout of the input features and the outputs depends on the
trained model and is thus codelet specific. Using the input
features, we can perform inference as shown in line 25, by
calling the helper function janus_model_predict().

A.5 Real-time operation
Here, we provide more details about optimizations that we
made for Janus in order to ensure real-time performance:
Output maps - For each output stream, a lock-free single-
producer/single-consumer ring buffer is created to push data
out from the codelet to the output thread without making any
system calls (see Fig. 2). This ensures that the codelet will
never be pre-empted and might only drop excess packets in
the worst case.
Memory allocation - Janus uses pre-allocated memory for
its operation (JIT code of loaded codelets, maps, data output

etc.). It relies on DPDK mempools and Mbufs operating in
lock-free mode (using the rte_stack mempool handler). This
ensures that multiple threads using the same mempool will not
affect the performance of the rest if pre-empted, minimizing
the jitter when acceessing memory in the fast-path.
Concurrency of Janus maps - By design, Janus maps do not
use locks, in order to guarantee the real-time performance of
the time critical vRAN functions, and are thus not thread-safe.
This could cause concurrency issues (e.g. for hooks called in
the code of worker threads with multiple instances). However,
based on our experience using Janus with commercial-grade
vRAN functions, we believe that in most cases codelets can be
written in a lockless way, as long as some kind of context id is
passed as part of the hook context, to identify which instance
is calling the hook (e.g. which CPU core, which worker thread
etc.). We are planning on relaxing this constraint in the future
through thread-safe maps, where appropriate.
Loading/unloading codelets - We used a userspace imple-
mentation of the Read-Copy-Update mechanism (RCU) [65]
for (un)loading codelets into Janus hooks. RCU allows mul-
tiple uncoordinated readers to access a shared data structure
at the expense of a longer write/update time [69, 70]. This
fits well with the Janus design, where the readers are the fast
vRAN threads that execute codelets, and the writer is the (non
real-time) thread that updates the hook codelet list.

18

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 vRAN Architecture
	2.2 vRAN programmability limitations
	2.3 vRAN programmability requirements

	3 Janus Overview
	3.1 Inline code execution framework
	3.2 New vRAN RIC capabilities

	4 Novel Janus use cases
	5 System Design Challenges
	5.1 Runtime control
	5.2 Flexible and verifiable output schemas

	6 Implementation & integration
	7 Performance evaluation
	7.1 Experimental setup
	7.2 End-to-end system evaluation
	7.3 Microbenchmarks

	8 Discussion and Related Work
	9 Conclusions
	References
	A Appendix
	A.1 Loading Janus codeletsets and codelet coordination
	A.2 Flexible output Janus schemas
	A.3 Writing Janus hooks
	A.4 Inference using Janus maps
	A.5 Real-time operation

