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ABSTRACT
Production systems use heuristics because they are faster or
scale better than the corresponding optimal algorithms. Yet,
practitioners are often unaware of how worse off a heuristic’s
solution may be with respect to the optimum in realistic sce-
narios. Leveraging two-stage games and convex optimization,
we present a provable framework that unveils settings where
a given heuristic underperforms.
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1 INTRODUCTION
Several recent solutions to networking problems are heuris-
tic approximations to potentially intractable optimal algo-
rithms [1, 15, 16, 21, 30, 38]. These heuristics are often faster
or scale better, yet there is no clear understanding of how
they behave with different inputs or how far from the opti-
mal their outputs may drift. Many (e.g., [1, 5, 38]) lack an
optimality-gap proof or an understanding of when they may
underperform. Our goal is to provide practitioners with a
means of determining this gap and finding inputs that lead to
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Figure 1: Suboptimal performance of DP. (left) Topology with
unidirectional links. (right) A set of demands and their flow allo-
cations using the DP heuristic and the optimal (OPT) solution.
DP first sends the demands at or below the threshold (50) over
their shortest paths and then routes the remaining optimally.

poor performance in practice, so that they can deploy work-
arounds or otherwise ameliorate the negative impact.

Consider a production WAN traffic controller at Microsoft
whose heuristic [21] has two phases: First, it routes all de-
mands with value at or below a threshold through their short-
est path. It then jointly routes the remaining demands over
multiple paths, leading to substantial speed-up since the lat-
ter has fewer demands. We refer to this heuristic as demand
pinning (DP). In contrast, the optimal scheme (OPT) jointly
considers all demands. Figure 1 shows a case where DP is
sub-optimal: the demand 1→ 3 is at the threshold (= 50), so
DP consumes capacity on its shortest path, which reduces the
available capacity for flows 1→ 2 and 2→ 3. The gap in flow
carried between the heuristic and optimal is 100 units (over
38%). While this example is illustrative, the largest possible
gap for this topology and heuristic is not clear. Similarly, it is
unclear what happens if the topology or heuristic changes.

A few questions are worth answering for heuristics. What
is the worst-case outcome? That is, the input which maxi-
mizes the gap between the optimal and heuristic. Worst-case
examples are not always realistic, thus raising the question:
given some constraints (e.g., demands following the hose
model [3, 29]), are there realistic inputs that trigger poor out-
comes? Conversely, are there conditions which guarantee that
the heuristic will perform well? Answers to these questions
can guide practitioners in choosing between heuristics, de-
vising alternatives for hard-to-solve inputs, or in combining
heuristics with complementary strengths.

Answering these questions is hard. Traditional algorithmic
worst- or average-case analyses [9, 26] are specific to indi-
vidual heuristics and must be applied case-by-case. We are
unaware of any such analyses for DP, POP [30], or [34, 38].
Also, for some heuristics, such analysis may not be possible,
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may only identify loose bounds or may not account for ad-
ditional realistic input constraints. Verification methods also
seek inputs that violate an invariant on a given function [18];
however, broadly speaking, these methods support statically-
specified invariants on safety or correctness. In contrast, we
seek inputs that maximize the gap between the optimal and
heuristic algorithms. To find such inputs, one can employ
local search algorithms [11, 20], which iteratively pick an
input, evaluate its gap, and then switch to a neighboring input
with a larger gap. While local search algorithms apply to any
(potentially black-box) heuristic or optimal algorithm, the
flip side of such generality is that they ignore specific knowl-
edge of the inner workings of the heuristic. Consequently, for
large input spaces, we find that local search algorithms are
often slow, get stuck in local optima, and fail to find desirable
(practical) inputs.

Our main contribution is a method that can provably find
the input leading to the largest gap between a heuristic and
an optimal solution while also supporting a rich class of addi-
tional constraints on the inputs that practitioners can specify
to define realistic scenarios. The method applies whenever
users can pose the heuristic and the optimal method as con-
vex optimizations. The idea is rather simple: we formulate
searching for adversarial inputs with the largest gap as:

argmax
s.t. input I∈ConstrainedSet

OPT(I) − Heuristic(I). (1)

OPT() and Heuristic() are solutions to convex optimizations
with input specified by I, and ConstrainedSet contains ad-
ditional constraints on inputs. We can interpret the solution
to (1) through the lens of game theory as a Stackelberg equilib-
rium [23], where the outer problem (or leader) picks an input,
and the inner followers maximize OPT() and Heuristic() in-
dividually in response to the leader’s choice. Such games are
not convex, and existing solvers do not support multi-level
optimization. In §3.1, we show how to, using optimization
theory [8], translate the two-level optimization into a single-
shot optimization that off-the-shelf solvers can solve. We
discuss support for heuristics that take random decisions (e.g.,
POP [30]) and heuristics that take conditional actions and
may not appear at first blush to be convex (e.g., DP [21]) so
they fit within this framework. Compared to local search meth-
ods, we find significantly larger gaps (≥ 20%) while reducing
the search time by as much as three orders of magnitude. We
are unaware of any prior work that finds provably strong ad-
versarial examples for heuristics. We believe our techniques
are a promising first step, but much work remains (see §5),
and we invite the community to help.

2 WHY HEURISTICS MATTER
As a running example, we focus on heuristics for flow allo-
cation in WAN traffic engineering (TE). The optimal form

Term Meaning

V, E,D, P Sets of nodes, edges, demands, and paths

𝑐𝑒 , 𝑝 𝑐𝑒 : capacity of edge 𝑒 ∈ E path 𝑝: set of edges

(𝑠𝑘 , 𝑡𝑘 , 𝑑𝑘 ) The 𝑘th element in D has source and target
nodes (𝑠𝑘 , 𝑡𝑘 ∈ V) and a volume (𝑑𝑘 ≥ 0)

f, 𝑓 𝑝
𝑘

f : flow assignment vector with elements 𝑓𝑘
𝑓
𝑝

𝑘
: flow for demand 𝑘 on path 𝑝

Table 1: Multi-commodity flow problems’ notation.

typically involves solving a multi-commodity flow problem.
Given a set of nodes, capacitated edges, demands, and pre-
chosen paths per demand, a flow allocation is feasible if it
satisfies demand and capacity constraints. The goal is to find a
feasible flow optimizing a given objective (e.g., total flow [1],
max-min fairness [15, 16], or utility curves [22]). We define
the feasible flow over a pre-configured set of paths as:

FeasibleFlow(V, E,D, P) ≜
{
f | (2)

𝑓𝑘 =
∑︁
𝑝∈P𝑘

𝑓
𝑝

𝑘
, ∀𝑘 ∈ D (flow for demand 𝑘)

𝑓𝑘 ≤ 𝑑𝑘 , ∀𝑘 ∈ D (flow below volume)∑︁
𝑘,𝑝 |𝑝∈P𝑘 ,𝑒∈𝑝

𝑓
𝑝

𝑘
≤ 𝑐𝑒 , ∀𝑒 ∈ E (flow below capacity)

𝑓
𝑝

𝑘
≥ 0 ∀𝑝 ∈ P, 𝑘 ∈ D (non-negative flow)

}
Among all the feasible flows, the optimal solution seeks to

maximize the total flow across the network:

OptMaxFlow(V, E,D, P) ≜ argmax
f

∑︁
𝑘∈D

𝑓𝑘 (3)

s.t. f ∈ FeasibleFlow(V, E,D, P) .

Variables and constraints of optimization (3) increase with
|D| + |E| where |D| is typically quadratic in |V|. Prior work
shows this does not scale: at large network sizes, the solver
can take tens of minutes to finish, hindering its use in practice
for managing networks with dynamic demands [1].

We describe two heuristics that improve scalability by re-
ducing the size of the TE problem in different ways.

Demand Pinning (DP), which is in production use [21], pre-
allocates flow via shortest paths for all node pairs whose
demand is below a configuration threshold 𝑇𝑑 :

DemandPinning(D, P,𝑇𝑑 ) ≜
{
f | ∀𝑘 ∈ D, (4)

𝑑𝑘 > 𝑇𝑑 or 𝑓 𝑝
𝑘
=

{
𝑑𝑘 if 𝑝 is shortest path in 𝑃𝑘
0 otherwise

}
We can write DP as an optimization with added constraints

that route demands below the threshold on shortest paths.
DemPinMaxFlow(V, E,D, P) ≜ argmax

f

∑︁
𝑘∈D

𝑓𝑘 (5)

s.t. f ∈ FeasibleFlow(V, E,D, P)
f ∈ DemandPinning(D, P)

Partitioned Optimization Problems (POP) [30]. POP di-
vides node pairs (and their demands) uniformly at random
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into a number of partitions and solves the original problem
in parallel, once per partition, with edge capacities also uni-
formly divided across the problems. If |D| is much larger
than |E | and there are 𝑐 partitions, each of the per-partition
problems is roughly 1/𝑐 the size of the original leading to
a substantial speedup – LP solver times are typically super-
linear in problem sizes [6]. We describe POP as:

POPMaxFlow(V, E,D, P) ≜ (6)⋃
part. c

OptMaxFlow(V, E𝑐 ,D𝑐 , P),

where ∪ is the vector union, the per-partition demands D𝑐
are disjoint subsets of the actual demands drawn uniformly at
random and the per-partition edge list E𝑐 matches the original
edges but with proportionally smaller capacity.

We seek demands that maximize the gap between (3) and
the two heuristics (5) and (6) using (1); (3) is the inner prob-
lem OPT(), and (5) or (6) are the inner problem Heuristic().

3 FINDING ADVERSARIAL INPUTS
A direct approach to find adversarial inputs is black-box
search algorithms such as simulated annealing [20]. They
iteratively select a new input, execute optimal and heuristic
solvers on that, and then use the gap to guide future itera-
tions. Black-box solutions are, however, slow in practice §4.
We present a novel white-box approach applicable whenever
OPT() and Heuristic() are representable as convex optimiza-
tions. Our method uses the KKT theorem [6] to rewrite the
two-stage game as a single-shot optimization, can be imple-
mented in existing solvers, is generally faster, and finds higher
quality (as well as optimal) gaps than black-box approaches.

Scope of applicability: We show that a broad class of heuris-
tics (randomized and those that take conditional actions –
POP and DP) can be specified as convex optimizations. Find-
ing adversarial gaps as in (1) is more complex than the under-
lying optimal algorithms and heuristics; thus, scalability and
timeliness are valid concerns. However, in practice, we only
invoke gap finding on each new heuristic to better understand
its limitations and so timeliness is a less stringent constraint.
In fact, all the results in this paper finish within an hour.

Although the overall problem in (1) is larger (in terms of
constraints and variables) than the underlying problems, we
show the key computational challenge stems from the non-
linear (convex) constraints introduced by the KKT rewrite.
Thus, we report results on small albeit practical topologies.
Scaling to larger topologies remains an open problem; see §5.

3.1 Single-shot Optimization
We are unaware of any commodity solver directly supporting
two-stage optimization (1). When inner problems are convex,
we can reformulate them as a single-shot optimization using

min𝑤,ℓ
(
𝑤2 + ℓ2

)
2 · (𝑤 + ℓ) ≥ 𝑃
𝑃 ≥ 0

solve for 𝑤, ℓ, 𝜆

2 · (𝑤 + ℓ) ≥ 𝑃
𝑃 ≥ 0
𝜆 ≥ 0
2𝑤 − 2𝜆 = 0
2ℓ − 2𝜆 = 0
𝜆
(
𝑤 + ℓ − 𝑃

2
)
= 0𝑤 = ℓ = 𝑃

4 𝜆 = 𝑃
4

KKT
encode

optimize

solve

Figure 2: Example optimization: minimize the diameter of a
rectangle with width 𝑤 and length ℓ whose perimeter ≥ 𝑃 . We
convert the inner optimization (top left) into a feasibility prob-
lem using the KKT theorem. The equations with 𝜆 variables
correspond to first order derivatives of inequality constraints in
the original problem. The perimeter 𝑃 is a variable to an outer
optimization but is treated as a constant in the inner problem.

KKT and replace them with sets of feasibility constraints.
Take the example in Figure 2. The optimization on the right
finds a feasible point satisfying the new constraints – any such
feasible solution is also optimal for the problem on the left.
This property holds for any convex problem with at least one
strictly feasible point (Slater’s condition [6]). Variables for the
outer problem, which are constants in the inner problems (𝑃
in Figure 2 and I in (1)), play no role in the KKT rewrite.

An astute reader may observe potential issues with this
translation: First, the inequality constraints in the optimization
result in non-convex multiplicative constraints. However, we
can encode multiplicative constraints using features available
in commodity solvers – special ordered sets in Gurobi [14]
and disjunctions in Z3 [27]. Second (see Figure 2), the KKT
conversion increases the problem size (1 constraint and 2
variables on the top left increase to 4 and 3 respectively on the
right) by a constant factor since the number of new variables
and constraints is proportional to the size of the original
problem. We empirically find the number of multiplicative
constraints (not the overall size of the problem) determines
the latency of the solver.

3.2 Codifying Heuristics as Convex Problems
The proposed method requires OPT() and Heuristic() in (1)
to be representable as convex optimizations. From (2) and (3),
it is easy to see that OPT() is a linear (hence, convex) opti-
mization problem. We discuss next how to represent the two
heuristics as convex optimizations.

Supporting DP. We can encode the or constraint in (4) via a
big-𝑀 approach as follows. Denoting by 𝑝𝑘 the shortest path
for demand 𝑘 , we postulate the following constraints:∑︁

𝑝∈𝑃𝑘 , 𝑝≠𝑝𝑘

𝑓
𝑝

𝑘
≤ max (𝑀 (𝑑𝑘 − 𝑇𝑑 ), 0) , ∀𝑘 ∈ D,

𝑑𝑘 − 𝑓
𝑝𝑘
𝑘
≤ max (𝑀 (𝑑𝑘 − 𝑇𝑑 ), 0) , ∀𝑘 ∈ D,
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where 𝑀 is a large pre-specified constant. Notice that, when-
ever the demand 𝑑𝑘 is below the threshold 𝑇𝑑 , the above
constraints ensure the allocated flow will be zero on all paths
but the shortest and the flow allocated on the shortest path
will match the demand. We convert these max functions into
a convex form using standard techniques [6].

Supporting POP. POP is convex as it is the union of solu-
tions to several disjoint linear optimizations (6). Nonetheless,
an additional complexity in POP is the random partitions
causing POP(I) in (1) to be a random variable. So, we must
look for inputs that maximize the gap for a deterministic de-
scriptor of the random variable. We can do that by finding
adversarial inputs that are worse in expectation by replacing
Heuristic(I) in (1) with its expected value E (Heuristic(I)).
We approximate this expectation with empirical averages on a
few different randomly generated partitions of POP. Alterna-
tively, we can look for the gap between the optimal solution
and a pre-specified tail percentile of the random heuristic
(using multiple random partition instantiations and a sorting
network [17, 33] to bubble up the worst outcomes). We defer
details of a more complex POP to our extended version [28].

3.3 Additional Details
Gap search. To improve the scalability, we exploit two obser-
vations on how commodity solvers operate. First, the solvers
use good guesses (for the multiplicative constraints) and usu-
ally find a reasonable (but not optimal) solution quickly. Next,
branch-and-bound techniques incur a significant amount of
time to find only marginally better inputs or to prove that no
such input exists. Thus, for solvers which show incremental
progress (e.g., Gurobi), we timeout the solver when the incre-
mental progress in a given time window is smaller than 0.5%
(the primal-dual gap — which solvers report — bounds how
far our solution is from optimal when stopped [6]); for solvers
which do not show progress (e.g., Z3), we iteratively ask for
any input with a gap that is at least as large as a specified
value and binary sweep the value with a fixed timeout.

Realistic constraints on inputs. Our proposed method can
search for inputs that maximize the gap within a constrained
subspace specified using ConstrainedSet in (1). Here, we
present two classes of realistic constraints.
- Bounded distance from a goalpost: We constrain the input to
be no more than a certain distance from a goalpost. An exam-
ple is for the demands of POP or DP to be close to historically
observed demands; we can specify the distance in absolute
or relative terms and use multiple goalposts with different
distance ranges. The goalpost may be partially specified; i.e.,
some demands can be unconstrained.
- Intra-input constraints are of the form 𝑔(I) ≥ 𝑓 (I) or
𝑔(I) = 𝑓 (I), where 𝑓 and 𝑔 are functions of the input I. An

Algorithm 1 Hill climbing

Input: d0, 𝜎2, 𝐾
d← d0, 𝑘 ← 0
while 𝑘 < 𝐾 do

daux ← max(d + z, 0) where z ∼ N(0, 𝜎2I)
if gap(daux ) > gap(d) then d← daux, 𝑘 ← −1 end if
𝑘 ← 𝑘 + 1

end while
Output: d

example of such a constraint is that all demands are within a
specified distance from the average demand.

3.4 Black-box Search Techniques
We discuss hill climbing [11] and simulated annealing [20],
which can find adversarial gaps for any heuristic.

Hill climbing is arguably the simplest local search algo-
rithm. We start at a randomly chosen arbitrary demand d0
and generate neighbors by adding a value drawn from a zero-
mean 𝜎2-variance Gaussian distribution to every element of
the current demand independently. If the neighboring demand
increases the gap, we move to that demand. Otherwise, we
draw another neighbor and repeat the evaluation. If we do not
find any neighboring demand that increases the gap after 𝐾
evaluations, we output the current solution as a local maxi-
mum; see Algorithm 1. We then repeat this process 𝑀hc times
starting from different random initial demands and return the
one with the maximum gap. We set 𝜎 = 10% of link capacity,
𝐾 = 100 and 𝑀hc based on the latency budget.

Simulated annealing is a refinement of hill climbing seek-
ing to avoid getting trapped in local maxima [20]. A key
distinction is that even if a neighboring demand does not im-
prove the gap, we still move to such a demand with some
probability. Specifically, if gap(daux) ≤ gap(d), we have that
d ← daux with probability exp( gap(daux )−gap(d)

𝑡𝑝
), where 𝑡𝑝 is

called the temperature. 𝑡𝑝 is initialized at 𝑡0, and in every 𝐾𝑝
iterations, it is decreased as 𝑡𝑝+1 = 𝛾𝑡𝑝 for 0 < 𝛾 < 1. No-
tice that 𝑡𝑝 → 0, i.e., the probability of moving to a demand
that does not improve the gap decreases with iterations. Thus,
simulated annealing mimics hill climbing more closely as
the number of iterations increases. We repeat the process 𝑀sa
times and return the best solution. We set 𝑡0 = 500, 𝛾 = 0.1,
𝐾𝑝 = 100, and 𝑀sa based on the desired latency.

Hill climbing requires less hyperparameter tuning than sim-
ulated annealing and is well-suited for smooth optimizations.
Simulated annealing is better suited for intricate non-convex
optimizations because its exploration phase, although initially
slow, tends to work better in the long run.

4 EARLY RESULTS
Our goal with an initial evaluation is to: (i) Verify that our
method finds worst-case gaps between practical heuristics



Minding the gap between Heuristics and Optimal HotNets ’22, November 14–15, 2022, Austin, TX, USA

(a) Gap vs. latency for DP.

(b) Gap vs. latency for POP.

Figure 3: Gap between OPT and heuristics vs. execution time
on B4. Our technique finds larger gaps faster.

(a) Gap vs. the threshold value for DP.

(b) Gap vs. average path length.

Figure 4: Gap between OPT and DP in different scenarios.

and their optimal counterparts. We show that our white-box
technique significantly outperforms black-box alternatives,
which cannot find examples with large gaps and have orders
of magnitude higher latency. (ii) Verify that the discovered
inputs and gaps are qualitatively useful and shed light on what
causes the optimality gap for heuristics in realistic conditions.

Methodology. We report the discovered worst-case gaps be-
tween OptMaxFlow and the POP and DP heuristics (see §2)
on three production topologies (SWAN [15], B4 [16], Abi-
lene [35]) and on synthetic topologies. For POP, we vary the
number of partitions (=2 if unspecified). For DP, we vary the
threshold that controls which demands are pinned to their
shortest paths (=5% of link capacity if unspecified). We also
vary the number of paths available for each node pair (=2 if un-
specified) and use Gurobi [14] as the solver for our method.1

1Our SMT-based implementation by Z3 [27] is omitted due to a slow runtime.

(a) Gap vs. instances to approximate the expected value.

(b) Gap vs. #paths and #partitions for POP.

Figure 5: Gap between OPT and POP on B4.

Maximum discovered gap vs. latency. Figure 3 shows both
heuristics have sizable optimality gaps: 20%–45%. To obtain
a metric comparable across topologies, this figure plots the
difference in the carried demand divided by the sum of edge
capacities. Our white-box technique outperforms the black-
box solutions in both finding examples with larger gaps and
the required amount of time to find them. For DP, black-box
techniques have a harder time finding large gaps since the
space of inputs with a notable gap is much smaller than POP.2

All methods ran on one thread on a desktop.3

Qualitative findings. Figure 4a shows that higher thresholds
cause a larger gap in DP because the heuristic will force
more demands onto their shortest paths. The gap increases
faster for some topologies, although all three topologies have
roughly the same number of nodes and edges. To understand
why, Figure 4b shows results on synthetic topologies: circles
with 𝑛 nodes where each node connects to a varying number
of its nearest neighbors. The optimality gap grows with the
average (shortest) path length. Intuitively, this is because
pinning demands on longer paths uses up capacity on more
edges and has a greater reduction in the total flow.

Using a single random POP partition in (1) finds inputs
with a large gap for that partition but a much smaller gap
when tested on 10 other random partitions (Figure 5a). As
discussed in §3.2, we resolve this by using multiple random
partitions and seeking inputs with a large average gap; 5 ran-
dom instances suffice to find consistently bad inputs. A larger
number of partitions leads to higher optimality gaps in POP
(Figure 5b), perhaps because edge capacity is divided between
more partitions. When more paths are available between node
2A small portion of the space of valid demand values are pinned (e.g., 5%).
3All methods are parallelizable but to slightly varying degree. Latency would
also improve using SIMD or hardware support.
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Figure 6: Optimization size (#linear and #SOS constraints, and
#variables) and latency on B4 for the POP and DP heuristics.

pairs, the gap reduces somewhat because the additional paths
allow the heuristic to use more of the fragmented capacity.

The discovered optimality gaps are significantly larger than
reported in [21, 30]. DP is challenged when nodes further
apart have demands below the threshold (serving small de-
mands on longer paths uses capacity along more edges which
could have been used to carry multiple flows on shorter paths).
The random partitioning of capacity and demands in POP
causes its optimality gap since unused capacity in a partition
can be used to carry demands of another partition.

Problem sizes (Figure 6). The metaoptimization in (1) (POP
+ OPT and DP + OPT) has more constraints and variables
than the individual heuristic/optimal formulations. The solver
latency (on a single thread), however, is disproportionately
larger for the metaoptimization due to the multiplicative con-
straints (SOS in Gurobi) introduced by the KKT rewrite.

5 OPEN ISSUES AND FUTURE WORK
Practical considerations. Besides identifying the worst-case
adversarial input, we allow users to examine gaps under differ-
ent practical constraints on inputs (see §3.3). Users can also
search for diverse kinds of bad inputs by iteratively removing
the previously-found inputs from the search space of subse-
quent iterations. Given these example inputs, operators may
decide to use different heuristics for different input spaces or
pre-compute safe solutions for particular corner cases.

Scaling to larger problem sizes. As KKT introduces a large
number of multiplicative constraints, we are exploring alter-
native rewrites based on primal/dual relationships [12]. For a
subspace of heuristics, we find the worst gaps happen only at
extremum points; thus, constraining or quantizing the space
of inputs can speedup the search without sacrificing quality.
Preliminary results show we can scale to larger topologies.

Searching for sufficient conditions. A use case of our tech-
niques is identifying realistic constraints on the input space
with small worst-case optimality gap, then safely use the
heuristic on inputs in that space. We are exploring AutoML-
style techniques [36, 37] to discover such constraints.

Generalization. Heuristics for capacity planning [2] and fail-
ure resilient routing [24, 38] have uncertain optimality gaps.

Extending our approach to such heuristics that approximate
mixed integer programs (non-convex) is an open problem. We
support heuristics that are specifiable in a convex form and
offer some standard encoding techniques [6].

Identifying infeasibility. Our method (1) finds an adversarial
input among the feasible set. However, certain heuristics have
infeasible inputs; e.g., with DP it is possible to have a set of
demands with value below the threshold and a common link
on their shortest path such that the total demands exceeds the
link’s capacity. Finding infeasible inputs remains open.

6 RELATED WORK
To the best of our knowledge, no prior work finds adversar-
ial inputs for heuristics that approximate optimal problems,
specifically networking heuristics. Our techniques (e.g., big-
M and KKT rewrites, and generally translating the problem
to one that is amenable to off-the-shelf solvers) are not per-se
novel [4, 7, 12] but no other work has combined them in this
way. We further show extensions to randomized and condi-
tional heuristics. Without our changes, we could not apply
existing solvers directly or find large gaps in a short duration.

Our qualitative results – the optimality gap and hard ex-
amples for POP and DP – are novel. Microsoft actively uses
DP [21]; POP [30] provides high-level guidance (e.g., need
for granularity) on when it does well but neither works show
hard inputs nor discuss how to find them.

For learnt techniques, in congestion control, video bitrate
selection etc., some recent works identify malicious inputs
[13, 25]. However, they are specific to the individual cases
and none consider an explicitly stated optimal algorithm nor
identify provably large gaps. Some PL techniques identify
code paths that require too much computation or memory and
probabilistically model edge cases [19, 31]. We mathemati-
cally specify the heuristics in this paper: they are amenable
to direct analyses without learning the model from analyzing
code. [10, 32] are also broadly related to our work.

7 FINAL THOUGHTS
We show how to find adversarial inputs for heuristics written
as convex programs while accounting for additional practical
constraints. A key enabler is the use of optimization tech-
niques that convert seemingly intractable problems to ones
implementable in commercial, production-grade solvers such
as Gurobi and Z3. Using our techniques, a practitioner can
identify when their heuristic is guaranteed to perform well.
They can also find the worst-case behavior for realistic inputs.
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