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Abstract
FastVer [4] is a protocol that uses a variety of memory-
checking techniques to monitor the integrity of key-value
stores with only a modest runtime cost. Arasu et al. formalize
the high-level design of FastVer in the F★ proof assistant and
prove it correct. However, their formalization did not yield a
provably correct implementation—FastVer is implemented in
unverified C++ code.

In this work, we present FastVer2, a low-level, concurrent
implementation of FastVer in Steel, an F★ DSL based on con-
current separation logic that produces C code, and prove
it correct with respect to Arasu et al.’s high-level specifica-
tion. Our proof is the first end-to-end system proven using
Steel, and in doing so we contribute new ghost-state con-
structions for reasoning about monotonic state. Our proof
also uncovered a few bugs in the implementation of FastVer.

We evaluate FastVer2 by comparing it against FastVer. Al-
though our verified monitor is slower in absolute terms than
the unverified code, its performance also scales linearly with
the number of cores, yielding a throughput of more that 10M
op/sec. We identify several opportunities for performance
improvement, and expect to address these in the future.

1 Introduction
Consider a system consisting of a key-value store service
and a set of clients, whose interactions are represented by a
trace of request-response pairs of the form put k v (to update
the value of key k to v) or get k v (to fetch the current value
of k, to which the service’s response is v). The clients may
be skeptical that the service properly stores and retrieves
their data, either due to the service operator being malicious
or due to bugs in the implementation of the service. We
would like to offer clients a guarantee such as sequential
consistency, i.e., that every get on a key k returns the value
of the most recent preceding put k v.

One way to approach this goal is to formally verify the im-
plementation of the service and prove that it always ensures
this property, and then to prove to the client (e.g., using a
cryptographically authenticated trusted execution environ-
ment (TEE)) that the service is running exactly the verified

code. However, a formal proof of a high-performance, con-
current, key-value store is difficult and generally requires
redesigning the service from scratch to enable its proof. Be-
sides, even state of the art formally verified implementations
of key-value stores do not yet handle concurrency [12]. Fur-
thermore, formally verifying the code does not exclude the
possibility of attacks resulting from tampering with the data
storage system directly.

Instead, Arasu et al. [4] propose to attach a cryptographic
monitor to an existing key-value store service (with minimal
changes to the implementation of the service). Their goal is
to ensure that amonitored execution of the service is provably
sequentially consistent, except for some cryptographic gap,
e.g., due to a hash collision. The monitor is able to certify
execution logs as being sequentially consistent within some
chosen latency window, a parameter of the system. This is
a weaker guarantee than our stated goal, but one that is
achievable at a much lower cost than verifying the service
outright, while also protecting against malicious service op-
erators tampering with the state. The challenge is to design a
monitor that can detect violations of sequential consistency
with a low runtime cost.

At one end of the spectrum is a monitor that views the
service as a black box and simply monitors the log of in-
teractions of all the clients, somehow deciding whether or
not the interaction so far is valid. Black box monitoring has
obvious benefits in that it requires no changes to the service;
however, it is hard to make a black box monitor efficient.
Instead, Arasu et al. propose a protocol called FastVer,

which allows the untrusted service to interactively convince
the monitor that the operations it has processed are valid,
and, if convinced, the monitor can attest to the validity of the
interactions so far by, for example, signing valid operations.
FastVer is designed to be efficient, enabling the monitor
and the service to interact via several concurrent verifier
threads. Additionally, FastVer offers a suite of techniques that
enable trading off latency of verification with throughput
of the system, e.g., FastVer can certify a log of operations
asynchronously, guaranteeing that all operations up to some
epoch are correct, with the remainder still to be processed.
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Arasu et al. formalize a high-level design of FastVer in
F★ [22], a proof-oriented programming language, and prove
that a monitored execution of a key-value store using FastVer
is sequentially consistent up to some epoch (in the sense that
there exists an interleaving of all the client operations such
that each get returns the value of the most recent preceding
put on the same key), otherwise constructing a cryptographic
hash collision. Although this provides good confidence in the
correctness of the protocol, the proof is based on a functional
specification that is optimized for clarity and ease of proof
rather than efficient, concurrent execution.

1.1 FastVer2: From Design to Implementation
This paper presents FastVer2, a provably correct, low-level,
concurrent implementation of FastVer. FastVer2’s executable
code consists of about 4,600 lines of concurrent C code ex-
tracted from Steel [10], an F★ DSL based on a concurrent
separation logic called SteelCore [24]. The development con-
sists of about 22,000 lines of proof-oriented code, in addition
to about 3,000 lines of C code for formally verified parsers and
serializers produced by the EverParse parser generator [21],
and about 950 lines of C code for verified cryptographic
primitives from HACL* [28]. We have submitted all of this
code as non-anonymous supplementary materials. Our main
contributions are highlighted below.

New ghost-state abstractions for concurrency proofs.
We design and implement a scheme for multiple verifier
threads to compute concurrently and for them to periodically
share their results for aggregation. To structure our proofs of
this concurrency pattern, we rely on SteelCore’s support for
ghost state based on partial commutative monoids (PCMs),
and introduce a new PCM for refined, monotonic state called
the fractional anchored preorder, or FRAP.

An incremental, asynchronous API. We design a mon-
itor API that is suitable for incremental use by the service.
The service can repeatedly choose a thread on which to
run a verifier, feeding it a trace of operations to be verified.
Separately and asynchronously, the context can query the
monitor, possibly on a separate thread, to determine the
epoch up to which verification has completed.

Hardware protections from a TEE. Overall, FastVer2’s
design philosophy is to verify the verifier. That is, FastVer’s
monitor offers a runtimememory verification protocol, while
FastVer2 ensures that that protocol is implemented correctly.
FastVer2’s C code has no external runtime dependences and
is designed to be executable within a TEE, such as an Intel
SGX enclave. Our top-level API is also designed for safe usage
in an untrusted context. As such, based on trust in the hard-
ware, a skeptical client can be sure that the execution of an
untrusted service is correctly monitored by high-assurance,
formally proven code.

Evaluation. We evaluate FastVer2 by integrating our
monitor with the Faster key-value store [7]. We find that the
throughput of Faster with our verified monitor is 5x less than
the throughput of Faster with the unverified FastVer monitor.
Even then, FastVer2 achieves a throughput exceeding 10M
ops/sec, which is 2-3 orders of magnitude better any existing
formally verified key-value database [12]. As with FastVer,
the throughput of FastVer2 scales roughly linearly with the
number of CPU cores. We identify the reasons for FastVer2’s
performance drop (the main reason being FastVer’s use of
hardware-accelerated cryptography, which FastVer2 lacks),
and ways to bridge the gap.

2 Goals and High-level Design
In this section we introduce some basic concepts of the
FastVer protocol.We convey some of the challenges in achiev-
ing a high-performance, concurrent monitor and provide
some intuitions for the guarantees offered by the protocol.
As we will see, the argument for why FastVer is correct is
subtle, and involves reasoning about the interaction of sev-
eral concurrent sub-protocols. We also summarize our goals
for the verified implementation of the FastVer monitor.

2.1 A Client’s View of the System

Consider a set of clients C, where each client C𝑖 has a unique
identifier 𝑖 , interacting with a key-value store service. Typi-
cally, for scalability, the service is implemented using mul-
tiple instances or threads and multiple clients can interact
with the service concurrently. Nevertheless, clients expect
the service to behave as a single logical key-value store.
From C𝑖 ’s perspective, its interactions with the service

𝑆 so far can be modeled as a log of executed operations
L𝑖 = 𝑜𝑝 , tagged with the client’s identifier 𝑖 and a client-
specific sequence number 𝑛, where the sequence number of
an item op in L𝑖 is greater than the sequence number of all
preceding items. The operations op themselves are either:

• get𝑖,𝑛 𝑘 𝑣 , a request to fetch the current value of a key
𝑘 with the service’s response 𝑣 ; or,

• put𝑖,𝑛 𝑘 𝑣 , a request to update the value of 𝑘 to 𝑣
When the client identifier and sequence numbers are ir-

relevant, we simply write get 𝑘 𝑣 and put 𝑘 𝑣 . Additionally,
we write op𝑖,𝑛 to mean some operation from client 𝑖 with
sequence number 𝑛. Collectively, the state of all the clients
C is represented by all their logs L.
Our overall goal is to guarantee that all the clients logs L

can be interleaved in a sequentially consistent manner.

Definition 2.1. Formally, we say that a log of client opera-
tions I is sequentially consistent if and only if

• For every op𝑖,𝑛 ∈ I, if it is preceded by an operation
op𝑖,𝑚 ∈ I, then𝑚 < 𝑛, i.e., the sequence numbers for
each client 𝑖 are monotonically increasing; and,
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• For every get 𝑘 𝑣 in I at position 𝑛, there exists a
preceding operation put 𝑘 𝑣 in I at position𝑚 < 𝑛

and none of the operations in I between𝑚 + 1 and 𝑛
are of the form put 𝑘 _, i.e., each get returns the value
of the most recent put on the same key.

FastVer2 Trust Assumptions (Attacker Model). Clients
should not need to place any trust in the implementation of
the service 𝑆 nor in any modifications made to 𝑆 in support
of its integration with the FastVer2 monitor. However, clients
must be assured that the implementation of the monitor𝑀
correctly enforces the desired safety property, namely, it only
accepts sequentially consistent executions of the service. To
provide this assurance, we formally prove the correctness
of the low-level, concurrent implementation of𝑀 in F★. As
such, clients only need to trust the specification of the main
theorem of our development, the F★ toolchain, which in-
cludes the Z3 SMT solver [9], as well as the C compiler we
use to compile the code emitted by F★.
Further, although the implementation of the monitor is

verified, to ensure that the runtime execution environment of
the monitor is trustworthy, we execute the fully verified code
of the monitor within a trusted execution environment (TEE).
As such, based on trust in the underlying hardware protec-
tion mechanisms, the client can assume that the monitor is
indeed executing only the verified code. This also protects
against bugs in the untrusted service from compromising
the correctness of the monitor, since hardware protections
isolate 𝑆 and𝑀 .
Finally, the main guarantee offered by the system is that

a client’s C𝑖 ’s execution trace, when interleaved with the
execution traces of an arbitrary context of other clients C,
is sequentially consistent. We need to assume that the un-
trusted server 𝑆 itself is not among the client context C,
since otherwise 𝑆 can always inject messages to justify oth-
erwise faulty behavior observed by 𝐶𝑖 . For example, C𝑖 ’s
trace put 𝑘 5, get 𝑘 6 could be justified by an 𝑆 itself injecting
a spurious put 𝑘 6 between C𝑖 ’s two messages. One way
to enforce that 𝑆 ∉ C is by requiring all client messages
to be authenticated using keys issued by some key-issuing
authority that all clients trust, though there are several other
possible schemes to achieve this. Such protections are be-
yond the scope of this paper and we instead focus on proving
the implementation of the monitor correct.

2.2 The Design of the Monitor
FastVer2 inherits the high-level design of the monitor from
FastVer. The monitor 𝑀 is multi-threaded and consists of
several verifier threads𝑉 . The number of verifier threads is an
initialization parameter—verifier threads cannot be created
dynamically after initialization. Each verifier thread 𝑉𝑖 has a
unique identifier 𝑖 and maintains some thread local state. The
verifier threads can interact with each other through some
verifier shared state 𝐴 (for aggregate state). Taken together,

the verifier’s local and aggregate state are an authenticated
abstraction [26] of the entire state of 𝑆 , using a combination
of hardware protection and cryptographic techniques.

Verifier Logs. The service 𝑆 is modified to interact with
the monitor by periodically sending a log of operations
𝐿𝑖 to some verifier thread 𝑉𝑖 , e.g., by calling an operation
verify-log 𝑖 𝐿𝑖 on the monitor. To process 𝐿𝑖 , the verifier
thread 𝑉𝑖 resumes executing in the TEE and processes each
operation in 𝐿𝑖 sequentially. These logs include client-facing
operations op that the service 𝑆 has processed, and it is 𝑉𝑖 ’s
task to certify that op was executed correctly by the ser-
vice; it does so by evaluating op with respect to the current
authenticated abstraction of the service state. However, in
addition to the two client operations get and put, the verifier
offers an API with seven additional operations, which the
service uses to safely manipulate the verifier’s authenticated
state and to prove to the verifier that the client’s operation
was indeed processed correctly. Two of these operations,
NextEpoch and VerifyEpoch, are related to a verifier’s notion
of logical time, which we discuss in detail shortly. We touch
on the remaining operations, which involve various checks
and state updates, and if any of them fail, verification aborts
and the verifier logs are no longer certified.

To maintain its authenticated data structure, FastVer uses
three ingredients:

1. A thread-local verifier cache Each verifier thread
uses a small amount of hardware-protectedmemory to
store a cache of records currently being processed. The
client operations (get and put) are evaluated with re-
spect to this cache, and the rest of the protocol makes
sure that the records needed by the client operations
are loaded and evicted as necessary.

2. A Sparse, Incremental Merkle Tree The primary
mechanism to authenticate the contents of the entire
key-value store is a Merkle tree [16]. The tree initially
authenticates the initial state of the entire key-value
store and the root of the tree is stored in the cache of
a designated verifier thread, e.g., 𝑉0. Two of the seven
operations in the FastVer API (AddM and EvictM) are
related to manipulating the interaction between the
Merkle tree and cache.

3. DeferredMemoryChecking usingMultisetHash-
ing Finally, to more efficiently support concurrent
access of records in multiple threads, FastVer uses a
memory checking technique developed initially by Blum
et al. [5], but with several enhancements based on par-
titioning logs into several epochs and using collision-
resistant multiset hashing. Two further operations
(AddB and EvictB) are related to Blum-style memory
checking, and an additional hybrid operation (EvictBM)
supports interactions between the Merkle and Blum
schemes.

3
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Each of these techniques on its own presents a formaliza-
tion challenge, particularly for an efficient, concurrent imple-
mentation. The combination of the three, together with the
subtle ways in which they interact, is decidedly non-trivial.
However, Arasu et al. model FastVer in F★ and prove its de-
sign correct—we summarize their results next, on which we
build a verified implementation of the monitor.

2.3 Formalizing the Correctness of FastVer
Arasu et al.’s development has the following main elements
(we use the concrete syntax of F★ here, which is modeled
after OCaml, and we explain potentially unfamiliar notation
as we go; Appendix A provides a brief syntax primer):

Single-thread specification. Arasu et al. provide a func-
tional specification of a single verifier thread as a function
verify_model, which processes a log of entries provided by the
service while transforming its thread-local state vs:tsm (for
thread-state model).

val verify_model (vs:tsm) (log:seq log_entry) : tsm

The thread-local state tsm contains a number of fields—we
show its main elements below, including a fixed thread_id; a
bit failed to record if log verification has failed; and a cache
representing the hardware-protected, thread-local verifier
cache. The internal state of each verifier thread also includes
a logical clock, consisting of a a non-negative integer epoch
𝑒 and a non-negative integer tick counter 𝑐 , where the pair
(𝑒, 𝑐) increases monotonically, in lexicographic order. Oper-
ations processed by a thread are grouped into epochs, and
for each epoch the verifier maintains some epoch_hashes.

type thread_state_t = {
thread_id:tid; failed:bool; cache:store;
clock:timestamp; epoch_hashes:epoch_hashes;
last_verified_epoch:option epoch_id; ... }

The log_entry type includes the Get k v and Put k v mes-
sages, as well as the seven additional operations provided by
FastVer. Of the seven, the main one of interest in this paper
is VerifyEpoch, a message that requests the verifier to com-
plete verifying all the messages since the last verified epoch.
Each time a verifier thread processes a VerifyEpoch entry, it
advances its last verified epoch, and needs to synchronize
with other verifier threads to collectively determine whether
or not all operations in that epoch were correct.

Main theorem: Sequentially consistent except for hash
collisions. The main theorem offered by Arasu et al. is a
correctness property for the execution of multiple verifier
threads. We summarize their theorem below:

Given the logs for each of the verifier threads, the state of
all the threads is described by verifier_states

let verifier_states (logs:seq (seq log_entry)) : seq tsm =
Seq.mapi (𝜆 i → verify_model (init i)) logs

The predicate epoch_ok i logs (below) asserts that all en-
tries in the logs up to epoch i have been verified. This involves
running the verifiers on their logs, conceptually in parallel.
If none of the verifiers have failed, and if all of them have
advanced their last_verified_epoch beyond epoch i, then we
compute an aggregation of the hashes they have computed
for that epoch, the add_set_hash and the evict_set_hash, and
if those two hashes are equal, then we can declare that epoch
i has been verified.
let epoch_ok (i:epoch) (logs: seq (seq log_entry)) =
let vs = verifier_states logs in
(∀ v ∈ vs. (¬ v.failed) ∧ epoch_is_complete i v) ∧
let add_set_hash, evict_set_hash =

aggregate (Seq.map (𝜆 v→ v.epoch_hashes.[i]) vs) in
add_set_hash == evict_set_hash

Without further details about the FastVer protocol itself,
these checks may seem arbitrary. However, for our purposes,
it is sufficient to rely on Arasu et al.’s main theorem, which
states that if the logs have been validated up to epoch i, then
if they are not sequentially consistent we can construct a
hash collision, i.e., a pair of values v1 and v2 such that v1≠v2
but hash v1= hash v2.
let seq_consistent (logs:seq (seq log_entry)) = ... // Definition 2.1
val not_sc_implies_hash_collision (i:epoch)
(logs: seq (seq log_entry) {epoch_ok i logs ∧

¬ (seq_consistent_up_to i logs)})
: hash_collision

3 Implementing FastVer Correctly
The top-level API of FastVer2 contains three functions: init
initializes 𝑁 verifier threads; verify_log allows the context
(the untrusted service) to pass in a log of operations to be
verified on a given thread 𝑖 < 𝑁 ; and max_certified_epoch
allows the context to query the monitor (on some thread) to
determine the maximum epoch up to which the logs have
been checked so far.
To state the correctness of this concurrent API, and to

maintain its core invariants, we needed to build some speci-
fication and proof libraries in Steel. We start our description
of FastVer2 by presenting its state and synchronization pat-
terns informally, motivating a new ghost-state construction,
the fractional anchored preorder PCM.

3.1 Shape of the State
Figure 1 depicts, informally, the state of the system. We
have several verifier threads. Each thread’s state is described
by a ghost log of operations that it has processed so far;
as a thread processes an operation, it updates this log to
indicate the progress. These thread-specific ghost logs are
the backbone of our invariant: we use them to state the main
functional correctness property of each thread, namely that
a thread’s current state is related to what is computed by the
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Figure 1. A sketch of FastVer2’s state: Each verifier thread𝑉𝑖
processes and updates its own (ghost) log of operations (each
entry is a thread-specific colored dot). At epoch boundaries,
each thread copies some of its local state to concrete shared
state (the thread-specific colored squares) for aggregation
and epoch certification. Here, 𝑉1 (resp. 𝑉𝑛) has completed
verification up to epoch 2 (resp. 1) and is processing entries
beyond it. Ghost references from the shared state represent
the most recent epoch that each thread has completed.

verify_model specification on the ghost log of operations it
has processed so far.
In addition to the thread-local state, we have some con-

crete state shared among all the threads. Each time a thread
processes a VerifyEpoch operation to complete an epoch, it
copies, or commits, some of its local state (the add and evict
hashes for that epoch) to the shared state. An invariant
(shown in the figure by the black (ghost) pointers) relates the
shared state to the thread-local logs. For example, the figure
shows that the shared state is up to date with the log of 𝑉1
for all epochs up to epoch 2, and epoch 1 for𝑉𝑛 . If all threads
have committed their add and evict hashes for an epoch 𝑒

to the shared state, another thread can combine and check
those hashes and signal whether epoch 𝑒 has been certified.

Some state transitions. When a thread 𝑉𝑖 processes an
operation, it updates its log to record this fact. As such, 𝑉𝑖
requires write permission to its log. However, ghost refer-
ences from the shared state also reference this log. In most
traditional ownership-based program logics, this poses a
challenge: updates to the state require exclusive ownership,
yet here 𝑉𝑖 needs to update its log, even though it does not
exclusively own it. However, in this case 𝑉𝑖 only appends to
its log, i.e., the log grows monotonically. As such, as long as
the invariant on the shared state only references a prefix of
𝑉𝑖 ’s log and is stable with respect to log append operations,
𝑉𝑖 should be able to safely update its ghost state.

SteelCore, like some other modern separation logics, sup-
ports user-defined ghost state based on partial commutative

monoids (PCMs). These ghost state abstractions allow ex-
pressing various kinds of spatial and temporal disciplines on
multiple components (e.g., threads or modules) to express
knowledge about shared resources. One such abstraction is
a PCM for monotonic state that supports such knowledge-
preserving, shared state updates—others have explored such
constructions before [3, 18, 27], including in libraries for
Steel [24] that we use here. A PCM for monotonic state also
enables taking logical snapshots of the system, which is use-
ful to make irrevocable assertions that, say, all operations
processed by the system up to some epoch have been certi-
fied and will remain so regardless of how the system evolves.
This enables the monitor to issue definitive persistent attes-
tations of these facts using, say, digital signatures.

However, just a regular monotonic state PCM is not suffi-
cient here. Consider what happens when a thread𝑉𝑖 reaches
an epoch boundary, completing epoch 𝑒 . At this point, it
needs to update the shared state for epoch 𝑒 and the ghost
references pointing back to its log from the shared state to
reflect that the shared state is synchronized with its log up
to epoch 𝑒 . However, to do this in an invariant-preserving
way, thread 𝑉𝑖 has to “know” that the shared state is already
synchronized with its state all the way up to its previous
epoch 𝑒−1. As such, it is not enough for the invariant to only
maintain that the shared state is consistent with a prefix of
𝑉𝑖 ’s log; we need to prove that the shared state is not “too
far behind” the state of each thread.

One possibility is to record in concrete state the last epoch
that each thread has committed to the shared state, and
when committing a given epoch 𝑒 , we use a runtime check to
confirm that the 𝑒 is indeed the next epoch. However, such
a runtime check is inefficient, and besides, we can prove
that it is not necessary—we just need the right ghost-state
abstraction. Towards this end, we design and implement
a PCM, which we call the fractional anchored preorder, or
FRAP, and use it to model FastVer2’s ghost state. The next
three sections, §3.2, §3.3, and §3.4, describe this construction
and require some familiarity with separation logic—readers
interested more in our main theorem and less in its proof
could skip ahead to §3.5

3.2 The Fractional Anchored Preorder PCM
A PCM in Steel is a typeclass. A pre_pcm a provides opera-
tions to compose elements of a that are composable, and a
unit for the operation one. The type pcm a associates with
pre_pcm properties that ensure that the operation is associa-
tive and commutative, that one is really a unit, and a further
property, refine which distinguishes a subtype of a, which
we’ll see in use, shortly.
type pre_pcm a = { composable: symrel a; one:a;

op: x:a → y:a{composable x y}→ a; }
type pcm a = { p:pre_pcm a; comm:commutative p; assoc: assoc p;

is_unit: is_unit p; refine: a→ prop }

5
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Given a p:pcm a, Steel allows allocating a ghost reference
r:G.ref p, a reference to mutable ghost state holding a value
of type v:a, and to state assertions of the form G.pts_to r v, as
in the case of G.alloc below, where ghost references can be
initialized with refined values from a PCM p [24].
val G.alloc (#a:Type) (#p:pcm a) (v:a { p.refine v }) : STG (G.ref p)
(requires emp)
(ensures 𝜆r →G.pts_to r v)

The signature shown above is a specification in Steel, where
the type STG t p q is a computation type (similar to Hoare
Type Theory [17]) describing a total correctness specifica-
tion of a ghost computation which when called in an initial
state validating the separation logic proposition p, returns a
value of type v:t in a final state validating q v. In Steel, the
type of separation logic propositions is vprop, and so, p:vprop
and q:t→ vprop. To emphasize the role of p and q as pre- and
postconditions, we often decorate them with the F★ key-
words requires and ensures, respectively. The #-sign marks
an implicit argument in F★. We often omit implicit binders,
adopting a convention that unbound names are implicitly
universally bound at the top of the definition. Steel also offers
the computation type ST a p q, a Hoare-style partial correct-
ness specification for a concrete (non-ghost) computation.
The crucial bit with ghost references to PCMs is that

G.pts_to r (v0`op` v1) is equivalent toG.pts_to r v0∗G.pts_to r v1,
as the following two lemmas show.
val share (r:G.ref p) : STG unit
(requires G.pts_ro r (v0 `op` v1))
(ensures 𝜆_→G.pts_to r v0 ∗G.pts_to r v1)

val gather (r:G.ref p) : STG unit
(requires G.pts_ro r v0 ∗G.pts_to r v1)
(ensures 𝜆_→G.pts_to r (v0 `op` v1))

That is, knowledge that r holds a composite value v0`op` v1
can be traded back and forth with separate knowledge about
each component. To enable this, SteelCore requires that ev-
ery update to a reference be frame-preserving, i.e., know-
ing G.pts_to r k, an update should preserve all assertions
G.pts_to r k' that are compatible with k.

The FRAP PCM. To define the FRAP PCM, we need some
auxiliary notions of preorders and anchors. A preorder v is a
reflexive, transitive binary relation on v. The anchor_rel p is
more interesting, and restricts the preorder as shown below.
It may provide useful intuitions to think of anchor_rel p, a
binary relation on v, as a kind of measure of “distance”. With
that, the first conjunct in the refinement of anchors below
states that if v1 is not too far ahead of v0, then v1 is also
related to v0 by the preorder p. The second conjunct says
that if z is not too far from x, then all y that are between x
and z according to the preorder are also not too far ahead
of x. Note, anchor_rel p is not itself a preorder—it is certainly
not transitive, and we don’t even require that it be reflexive.
let anchor_rel (#v:Type) (p:preorder v) = anchors:(v→ v→ prop) {

(∀ v0 v1. v0 `anchors` v1 =⇒ p v0 v1) ∧
(∀ x z. x `anchors` z =⇒ (∀ y. p x y ∧ p y z =⇒ x `anchors` y))

}

Next, the carrier type knowledge a of the PCM is shown be-
low, where Nothing will be the unit of our PCM, and Owns av
represents some non-trivial knowledge.
type knowledge (a:anchor_rel p) =
| Owns : avalue a→ knowledge a
| Nothing : knowledge a

An av: avalue a (defined below) is a pair (perm, h) of a per-
mission perm and a h:vhist p, a type which encodes the entire
p-preorder compatible history of values that will be stored at
a ghost reference for this PCM. The vhist p construction ex-
isted previously in the Steel libraries and provides a generic
way to turn a preorder p into a PCM—see §4.5 of Swamy
et al. [24]. We don’t say much more about it here, except that
cur v is the most recent value in the history. What is more
interesting is the structure of perm = (op, oa), itself a pair of
an optional fractional permission, where None represents a
0 permission (useful for snapshots, as we will see). Further,
when oa = Some a, we say that the av has an anchor a. The
anchored a av refinement states that if av has an anchor, then
its current value is “not too far ahead” of the anchor.
let permission v = option perm & option v
let anchored (arel:anchor_rel p) (pv:(permission v & vhist p)) =
match pv with | (_, Some a), v→ a `arel` cur v | _→⊤

let avalue a = av:(permission v & vhist p) { anchored a av }

Composability. The composability of v0, v1: avalue a is the
key bit of the whole PCM, since it defines when one entity’s
knowledge is compatible with another’s.
let avalue_composable ((p0, h0) (p1, h1): avalue arel) =
permission_composable p0 p1 ∧ (h0 ≥ h1 ∨ h1 ≥ h0) ∧
(match p0, p1 with
| (None, None), (None, None)→⊤
| (None, None), (Some _, _)→ h1 ≥ h0
| (None, None), (_, Some a) → h0 ≥ h1 =⇒ a `arel` cur h0
| (Some _, _), (Some _, _) → h0 == h1
| (Some _, _), (_, Some a) → h0 ≥ h1 ∧ a `arel` cur h0
| . . . remaining cases are symmetric

Suppose v0= (p0, h0) and v1= (p1, h1). To start with, p0 is com-
posable with p1 if the sum of their fractions is no more than
1 and, importantly, if at most one of them has an anchor.
Further, h0 and h1 must at least be composable in terms of
the regular definition of composability of vhist p, the history-
based PCM for preorders, i.e., one of them must be an exten-
sion of the other, effectively forbidding “forks” in the history.
The rest of the definition is by case analysis on the permis-
sions. If neither p0 or p1 holds any permission then no further
constraints apply. Next, if p0=None,None then we have two
sub-cases: if p1 holds some non-zero fraction, then h1 must
be more recent than h0; otherwise, if p1 holds an anchor a,
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and if h0 is more recent than h1, then its current value is still
anchored by v, i.e., holding an anchor, even with a zero frac-
tion, still prevents the state from evolving too far from the
anchor. Finally, if both p0 and p1 hold some permission, then
we have two sub-cases: if they both hold non-zero fractions,
then h0== h1; otherwise, exactly one of them can hold an
anchor, and the other must hold a non-zero fraction (due to
the composability of p0 and p1). If p0 holds the anchor (call
it a), then the history of h1 must be more recent than h0 but
still be anchored by a. Remaining cases are symmetric, since
composability must be a symmetric relation for a PCM. Note
the interplay between fractions, preorders, and anchors—we
don’t think there is a way to derive the FRAP from smaller,
orthogonal PCMs.

Composition. Once composability is settled, defining the
composition of knowledge a is fairly obvious—Nothing is the
unit, and to compose v0, v1: avalue a, we compose their per-
missions (summing their fractional permissions and retain-
ing whichever anchor is present) and their histories (taking
the most recent history).

Proving that all these definitions produce a PCM is almost
entirely automated by F★ and its Z3-assisted [9] typechecker—
the hard part was settling on the definitions. What is more
interesting are the lemmas that one can now prove about
mutually compatible forms of knowledge.

Some properties of snapshots. A snapshot of av retains
its value while dropping all its permissions. For a value a,
provided perm_ok a (meaning that its fractional permission
does not exceed 1, a basic well-formedness property), the
lemma below proves that 1. one can always take a snapshot
of a value a, since a == a `compose` snapshot a, the share op-
eration on a ghost reference can always be applied; 2. that
snapshots are duplicable; and 3. that any knowledge b com-
posable with snapshot a, provided b holds some non-zero
permission (and hence is not a snapshot itself), must have
a current value related to the snapshot by the preorder, i.e.,
snapshots remain valid in the face of preorder-preserving
updates to the state. The lemma proof is automatic.

let value_of av = cur (snd av)
let snapshot (av: avalue s) : avalue s = (None, None), snd av
let snapshot_props (a:avalue s { perm_ok a }) : Lemma (
a `composable` snapshot a ∧
a `compose` snapshot a == a ∧
snapshot a `composable` snapshot a ∧
snapshot a `compose` snapshot a == snapshot a ∧
(∀ (b:avalue s { has_perm b ∧ b `composable` snapshot a}).

value_of (snapshot a) ≤ value_of b)) = ()

Some properties of anchors. While snapshots enable de-
scribing knowledge about some history of the system, an-
chors allow speaking about recent histories. The function
split_anchor av splits the permissions associated with av into a

fractional part and an anchored part. Lemma split_anchor_props
states that one can always split knowledge of av into these
two parts without losing any information. The most inter-
esting part is elim_anchor: it states that if any (non-snapshot)
knowledge a composable with anchored knowledge b, then
a’s value is “not too far ahead” of b’s anchor. The proofs are
again automatic.
let split_anchor (((p, a), v):avalue s) = ((p, None), v), ((None, a), v)
let split_anchor_props (av:avalue s { perm_ok av })
: Lemma (let kv, ka = split_anchor av in

kv `composable` ka ∧ kv `compose` ka == av) = ()
let elim_anchor (a:avalue s { has_perm a }

(b:avalue s { has_anchor b ∧ composable a b })
: Lemma (let (_, Some anc), _ = b in s anc (value_of a))) = ()

Appendix B describes the usage of a FRAP for a simple
scenario independent of FastVer2, involving two threads
sharing a monotonic counter.

3.3 A FRAP for FastVer2
With our generic FRAP construction in place, we turn to its
instantiation in FastVer2. The specific anchor relation we
use is shown below, where ↓ l is the greatest prefix of l that
ends with a VerifyEpoch entry, or the empty log if there is no
such entry, i.e., it precisely captures the state of a verifier
thread that has been committed to the shared state. Note
that is_last_committed is not reflexive in general: only empty
logs or logs that end with a VerifyEpoch can be anchors, a
useful property, as we will see shortly.
let log_grows : preorder log = 𝜆l0 l1 → l0 ≤ l1
let is_last_committed l0 l1 = l0 ≤ l1 ∧ l0 == ↓l1

F★ can automatically prove that is_last_committed has type
anchor_rel log_growswhichmakes it easy to construct log_frap,
a FRAP instance for this relation. This gives us a FRAP for
a single log—to get a FRAP for all the logs, we use a Steel
library to compose PCM’s pointwise to obtain a tlm (for
thread-log map), a FRAP PCM for a map from tid (thread ids)
to knowledge (avalue is_last_committed), the carrier of log_frap.
let log_frap = frap is_last_committed
let tlm = PCMMap.pointwise tid log_frap
let tlm_carrier = map tid (knowledge (avalue is_last_committed))

Finally, to model FastVer2’s ghost state, we introduce
mlogs = G.ref tlm, the type of a ghost reference that holds
a thread-log map. This allows us to form assertions of the
form G.pts_to r m, where m : tlm_carrier. However, it is more
convenient to work with several derived abstract predicates
shown below.

Abstract predicates for thread-log maps. The predicate
tids_pts_to r frac m anchor asserts frac knowledge on the state
of all the threads, where sel m tid = Some log states that tid
has processed exactly log, since frac is non-zero. Further, if
anchor is true, thenwe can conclude that log is also exactly the
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committed state of tid. tid_pts_to r tid f l a is just the singleton
variant of tids_pts_to. We use tid_pts_to to express a thread’s
knowledge of its own state, i.e., in terms of Figure 1, tid_pts_to
expresses the knowledge held in the thread-specific ghost
references associated with 𝑉1, . . . ,𝑉𝑛 .
let lmap = map tid (option log)
let rel_dom (l:lmap) (k:tlm_carrier) =

∀tid. Some? (sel l tid)⇐⇒ Owns? (sel k tid)
let tids_pts_to (r:mlogs) (frac:perm) (m:lmap) (anchor:bool) =

∃k. G.pts_to r k ∗ pure (rel_dom m k ∧ perm_ok (Some frac) ∧
(∀ tid. Owns? (sel k tid) =⇒

perm_of k tid == Some frac ∧
(anchor⇐⇒ has_anchor k tid) ∧
(get_cur (sel k tid) == Some?.v (sel m tid)))

let tid_pts_to r tid f l a = tids_pts_to r f (singleton tid l) a

We can also define predicates that hold only anchored or
snapshot knowledge, without holding any fraction of the cur-
rent knowledge of the thread state: global_anchor expresses
anchored knowledge about all the threads (i.e., a recent his-
tory), while global_snapshot expresses knowledge of some
history of the threads. We elide their definitions, which are
similar in structure to tids_pts_to.
val global_anchor (l:mlogs) (m:lmap) : vprop
val global_snapshot (l:mlogs) (m:lmap) : vprop

In terms of Figure 1, global_anchor expresses the knowl-
edge held in the black references that point back to the thread
logs from the shared state.Wewill see a use of global_snapshot
in §3.5.

Valid triples and ghost-state transitions. Given the
lemmas (like snapshot_props and split_anchor_props) we’ve
proven on FRAPs and also lemmas available for PCM maps,
we can derive the following (ghost) operations—these are
lemmas that prove the validity of certain Hoare triples, or
from the perspective of a logic like Iris [15] one may think
of ghost operations as view shifts.
Our first pair of lemmas shows that non-anchored frac-

tional knowledge can be split and recombined, like standard
fractional permissions [6], but applied to our abstract predi-
cate. The converse lemma that sums fractions is also provable,
but we don’t show it here.
val share_tids_pts_to (x:mlogs) (m:lmap) : STG unit
(requires tids_pts_to x f m false)
(ensures 𝜆_→ tids_pts_to x (half_perm f) m false ∗

tids_pts_to x (half_perm f) m false)

Next, take_tid shows that one can extract knowledge about
a single thread from collective knowledge about multiple
threads—a fact that follows from structure of PCMmaps. The
converse lemma is also provable, though we do not show it.
val take_tid (x:mlogs) (m:lmap) (t:tid {Some? (sel m t)}) : STG unit
(requires tids_pts_to x f m false)
(ensures 𝜆_→ tid_pts_to x t f (Some?.v (sel m t)) false ∗

tids_pts_to x f (upd m t None) false)

Next, following from split_anchor_props and elim_anchor,
take_anchor shows that one can combine knowledge of the
current state of a thread t’s log l with an anchor, taking
ownership of the anchor from the global_anchor and conclude
the anchor a = Some?.v (sel m t) is the committed prefix of l.
val take_anchor x m (t:_{Some? (sel m t)}) f l : STG unit
(requires global_anchor x m ∗ tid_pts_to x t f l false)
(ensures 𝜆_ → global_anchor x (upd m t None) ∗

tid_pts_to x t f l true ∗ pure (↓l=Some?.v (sel m t)})

Conversely, a thread can cede ownership of an anchor
back to the global_anchor, provided its current state l is fully
committed.
val put_anchor x m t f (l:_{↓l==l}) : STG unit
(requires tid_pts_to x t f l true ∗ global_anchor x m)
(ensures 𝜆_→ tid_pts_to x t f l false ∗

global_anchor x (upd m t (Some l)))

Next, update_log shows that if a thread owns full non-
anchored permission to a log, it can extend the log so long
as it does not include any more VerifyEpoch entries—this
corresponds to the state transitions that an individual thread
makes as it processes log entries and updates it thread-local
state, without needing to synchronize with the shared state.
val update_log x t l0 (l1:log {l0 ≤ l1 ∧ ↓l0==↓l1}) : STG unit
(requires tid_pts_to x t full l0 false)
(ensures 𝜆_→ tid_pts_to x t full l1 false)

On the other hand, if a thread needs to update its log
with a VerifyEpoch entry, it must hold anchored knowledge
of its state and advance both its state and the anchor simul-
taneously. In other words, when processing a VerifyEpoch,
a verifier thread 𝑉𝑖 must first take knowledge of its anchor
from the shared state using take_anchor, then transition us-
ing update_anchored_log, and finally return knowledge of the
updated anchor to the shared state using put_anchor.
val update_anchored_log x t l0 (l1:_{l0 ≤ l1 ∧ ↓l1==l1}) : STG unit
(requires tid_pts_to x t full l0 true)
(ensures 𝜆_→ tid_pts_to x t full l1 true)

3.4 FastVer2 Main Data Structures and Invariants
All the state of the FastVer2monitor is held in a top_level_state
structure, shown below.
type top_level_state = { aeh:aggregate_epoch_hashes;
all_threads:larray (thread_state_and_lock aeh.mlogs) n_threads }

The first field, aeh: aggregate_epoch_hashes, references mu-
table shared state containing the hashes computed for an
epoch by each thread—the shared state at the center of Fig-
ure 1. The second field, all_threads is an array storing the
thread-local state thread_state_and_lock aeh.mlogs for each
thread—its type is indexed by the shared state and the con-
tents of the two related by an invariant, as we’ll soon see.
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The top-level invariant, core_inv t, merely asserts some
permission over the t.all_threads array and states that the
thread with id i:tid is at position i in the array (ind_ok); the
most interesting parts of the invariant are held in locks stored
in other fields of the top-level state:

let core_inv t = ∃p v. A.pts_to t.all_threads p v ∗ pure (ind_ok v)

The thread-local state is represented by the structure
shown below, pairing the actual thread state tswith a lock, an
instance of a cancellable lock, a wrapper around Steel’s veri-
fied implementation of a CAS-based spin lock, enabling the
lock to be released while canceling the invariant that it pro-
tects (useful in case a verifier thread enters an unrecoverable
error), while acquiring the lock only conditionally provides
the invariant. Before calling any operation on a thread, this
lock must be acquired, protecting against re-entrancy, and
released before returning. Interestingly, the prior unverified
implementation of FastVer neglected to protect against re-
entrancy in this manner, leading to a potential source of
attacks from a malicious service.

type thread_state_and_lock mlogs = {
i: tid; ts: thread_state_t{thread_id ts == i};
lock: Lock.cancellable_lock (∃ tsm. thread_inv ts mlogs tsm) }

The invariant held by the lock, thread_inv, states that the
concrete state of the thread reachable from ts is a refine-
ment of ts:thread_state_model, the functional specification of
a verifier thread’s state from §2.2; the verifier thread has not
failed yet; and, it holds half permission to a non-anchored
knowledge of the shared state map mlogs to assert that it
has processed all the entries as required by the functional
specification tsm.processed_entries. As we will see, the other
half permission is passed to the context and used to specify
the top-level incremental API.

let thread_inv ts mlogs tsm =
state_refinement ts tsm ∗ pure (¬ tsm.failed) ∗
tid_pts_to mlogs tsm.thread_id half tsm.processed_entries false

The aeh:aggregate_epoch_hashes field stores the shared epoch
hashes and related metadata from each thread, all protected
by a cancellable lock that protects the main invariant on the
aggregate state.

type aggregate_epoch_hashes = {
hashes : epoch_tid_hashes; bitmaps : epoch_tid_bitmaps;
max : R.ref (option epoch_id); mlogs: mlogs;
lock: Lock.cancellable_lock (agg_inv hashes bitmaps max mlogs) }

The invariant agg_inv states that the hashes and bitmaps
are maps (implemented using new libraries for hash tables
that we programmed in Steel) that point to logical witnesses
hv and bv (the latter used to record which threads have com-
pleted a given epoch); that max points to some max_v; and,
importantly, that all these values are related to the func-
tional correctness specification by hashes_bitmaps_max_ok of

running all the verifiers on the logs mlogs_v, the logs cor-
responding to the last synchronized state of all the veri-
fiers, expressed using the FRAP-based abstract predicate,
global_anchor.
let agg_inv hashes bitmaps max mlogs = ∃hv bv max_v mlogs_v.
EpochMap.pts_to hashes hv ∗
EpochMap.pts_to full bitmaps bv ∗
pts_to max full max_v ∗
global_anchor mlogs (map_of_seq mlogs_v) ∗
pure (hashes_bitmaps_max_ok hv bv max_v mlogs_v)

To update the aggregate state at the end of an epoch, a
verifier thread must acquire aeh.lock, take ownership of its
anchor, then update both the concrete and ghost state (the
latter using update_anchored_log, as described in §3.3), put
the updated anchor back, and release the lock. While this
lock introduces some contention, we have not found this
to be a performance bottleneck, since epoch boundaries are
relatively sparse. Should this become an issue, with some
more accounting, we believe verifier threads may propagate
hashes into the aggregate state in lock-free manner.

3.5 Incremental API
We offer a precise, incremental API to the FastVer2 monitor
intended for use by a verified context that also runs within
the TEE. Such a verified context may provide services on top
of the monitor, e.g., to issue signatures of attesting to the
validity of client operations.

3.5.1 Initializing the monitor. Initializing the monitor
involves calling init (), which initializes n_threads (a compile-
time constant) verifier threads.
let ilogs t = tids_pts_to t.aeh.mlogs half (const (Some empty)) false
val init (_:unit) : ST (ref top_level_state)
(requires emp)
(ensures 𝜆r →∃ t. pts_to r full t ∗ core_inv t ∗ ilogs t)

Since its precondition is just emp, init () can be called at
any time, including multiple times. It returns a fresh handle
to an instance of the monitor, r:ref top_level_state, a concrete
reference to top_level_state, an abstract type, such that:

1. The caller has full permission to r, which points to
some value ts, a logical witness to the value stored in
the heap at r.

2. It (separately) provides an abstract predicate core_inv ts,
encapsulating the main invariant of the monitor. The
core_inv ts is duplicable, meaning that from core_inv ts
it is possible to derive core_inv ts ∗ core_inv ts.

3. And, finally, ilogs gives the caller half, non-anchored
permission to the logs of all threads, each initialized
to the empty sequence.

3.5.2 Verifying a log of operations. The signature of
verify_log is shown below. It is is invoked to request a given
thread i to verify some input log of entries.
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let log_of_tid t tid e = tid_pts_to t.aeh.mlogs i half e
val verify_log (r:R.ref top_level_state) (i:tid)

(input:larray U8.t len { len ≠0ul })
: ST (option verify_result)
(requires pts_to r p t ∗ core_inv t ∗A.pts_to input lp lb ∗

log_of_tid t i ents)
(ensures 𝜆res →
pts_to r p t ∗ core_inv t ∗A.pts_to input lp lb ∗
(match res with
| Some (Verify_success read wrote)→∃ents'.
log_of_tid t i (ents @ ents') ∗
pure (let s = verify_model (init_model tid) ents in

let s' = verify_model s ents' in
read == len ∧
parse_log_up_to lb (U32.v read) == Some ents')

| _→∃e'. log_of_tid t tid e'))

Precondition. To call verify_log, the context prepares a
log of binary-formatted entries in an input array of bytes,
whose length is len. They then call verify_log r i input, passing
in the top-level state handle r and requesting that the input
be processed on thread i. The precondition requires passing
in some permission p to the top-level state r and core_inv t,
i.e., read permission is enough, enabling the context to si-
multaneously call verify_log r j on some other thread, since
core_inv t is also duplicable. Finally, the precondition includes
tid_pts_to stating that thread i must have processed exactly
ents so far, which the context can obtain by using take_tid on
the ilogs predicate.

Postcondition. verify_log always returns back to the caller
permission to r, the core_inv, and the unchanged input array.
If it returns successfully with Some (Verify_success read wrote),
then we provide a full functional correctness specification of
how the log was processed; otherwise, we leave failed runs
underspecified. In the success case, we prove that the log
processed by thread i is extended to ents @ ents'. The pure
predicate relates these to the FastVer functional specification
of a single thread, i.e., verify_model, which was outlined in
§2.2. In addition, we prove that we read the entire input
array, and that parsing that input array produces Some ents',
relating the binary format of the logs to the specification
using EverParse [21].

3.5.3 Main theorem: Max certified epoch. The third
and final operation in our top-level API ismax_certified_epoch,
which allows the context to request the monitor to aggre-
gate the results from all verifier threads and report up to
which epoch verification has been completed. As a precondi-
tion, the context only needs to provide some permission to
r: ref top_level_state and the same permission is returned to
the caller in the postcondition. The rest of the postcondition
reflects the main partial correctness result of FastVer2, in
case max_certified_epoch r returns Read_max_some max.

val max_certified_epoch (r:ref top_level_state)
: ST max_certified_epoch_result
(requires pts_to r p t)
(ensures 𝜆res → pts_to r p t ∗
match res with
| Read_max_some max →
∃logs. global_snapshot t (map_of_seq logs) ∗
pure (seq_consistent_except_if_hash_collision logs max)
| _ → emp)

The predicate global_snapshot t (map_of_seq logs) says that
all the threads have at least collectively processed the entries
in logs, and since it is a FRAP snapshot, we can prove that
logs is a valid history of the entire system. The rest of the
postcondition relates this history to the correctness theorem
of FastVer. That is, there exists an interleaving of all the
get and put operations in the log, up to epoch max that is
sequentially consistent, except if there is a hash collision—
this is our main theorem.

3.6 A Verified Wrapper for TEEs
We want our API to protect from some misuse by an un-
trusted context: we should not return or receive pointers
to our internal state; we should defend against the context
passing bogus pointers for the input log; and we need to
remove as many of the preconditions to our operations as
possible, since an unverified context may not respect them.
To defend against such misuse, we write and verify a small
wrapper for our API that runs within the TEE and presents
the same operations purged of these attack surfaces.

Top-level state. The API shall not pass a ref top_level_state
back and forth across the boundaries of the TEE. Indeed, if
it does, then this could allow an untrusted caller to pass
in a bogus pointer, leading to crashes or, worse, memory
corruption and wrong results.
To defend against this, we store the top-level state as a

global variable. Allocating such a state will create a permis-
sion to access it later, but by default, if we carelessly perform
that allocation as an F★ top-level variable, we lose that per-
mission and we have no way to recover it. To avoid that
situation, we store the permission in an invariant [25, §4.3
sqq.]:

This is enough, since once the top-level state is allocated, it
is read-only. While the invariant can be temporarily opened
only to perform at most one atomic observable operation,
our setting is actually weaker: we open the invariant only
to duplicate the permission on the top-level state, which
is possible by halving the permission on the reference and
duplicating core_inv. This is proof-only, ghost code, so it is
not even observable. Thus, our invariant is transparent to the
user and has no observable impact on concurrent accesses.

External input pointer. The service calls verify_log with
a pointer to its input log. This exposes two problems. First,

10



1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

FastVer2: A Provably Correct Monitor for Concurrent, Key-Value Stores Preprint, September, 2022

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

nothing prevents the service from passing garbage; however,
the TEE has a primitive to check the validity of the pointer
provided by the service. So, our verified code needs to make
sure to call this primitive before accessing the pointer. Sec-
ond, nothing guarantees that the service will not write to
the input buffer while we are accessing it; thus we cannot
assume that two successive reads to a given byte in the input
buffer will always return the same result. So we need to make
sure to read each input byte at most once. While EverParse
allows generating input data validators formally guaranteed
against double fetches [23], these validators do not cover the
subset of EverParse that we are using for our log types. So,
we need to allocate a temporary buffer and copy the contents
of the input buffer there, and let the verifier operate from
there. To solve both issues, we introduce an abstract type for
externally-provided input pointers and a unique operation
to copy its contents. That function will call the TEE pointer
checker before copying and the abstract type forces us to
use this operation before reading from such a pointer.

Thread permission. With the internal state properly hid-
den as a global variable, and the input buffer properly copied
to a temporary buffer, the last precondition left for verify_log
is that the service have access permission on the thread on
which they want to call the verifier. However, this precon-
dition (log_of_tid) is needed only to state some property of
ghost state of the verifier to relate the thread logs before and
after the call.

Thus, we amend the incremental API described in 3.5 with
a ghost boolean switch, true if we want to enable such incre-
mental proof on verify_log. This boolean switch is ghost, so
only specifications and proofs can branch on it, not the actual
code. If set to true, then the caller needs to have one half of
the fractional permission on the thread log, and the internal
thread lock keeps the other half, as described in 3.4; but it
set to false, no such caller permission is needed, and the in-
ternal thread lock keeps the full permission. Thus, this ghost
switch propagates up to the definition of the top_level_state
and thread_state_and_lock types.
Then, verified applications can still use the incremental

API with this ghost switch set to true, whereas for the hard-
ened API for untrusted clients, we set this ghost switch to
false. Anyway, the value of this ghost switch only impacts
the correctness statement of verify_log, so the final theorem
on max_certified_epoch still holds in both cases.

3.7 Some Statistics
We briefly cover some statistics about our development, aim-
ing to characterize the effort involved in various aspects of
the proof (Table 1). Our total development consists of about
22,000 lines of F★ code, including comments (which we use
maintain as the code evolves). Not included are libraries that
specify and prove the correctness of FastVer, together with
various utilities developed in that context, as well as new

Description F★ LOC C LOC
Ghost state constructions 1,719 -
Core implementation 8,426 4,622
Lowest-level functional spec 1,863 -
Simulation proof 8,242 -
Parsers 2,092 3,053
HACL Blake2 - 950

Table 1. Breaking down the FastVer2 development in six
categories, with lines of F★ and extracted C code

data structures and libraries developed for Steel, including
various kinds of hash tables and arrays. The functional spec-
ification of our core implementation is about 1,863 lines and
the main semantic proof, in about 8,200 lines, relates this
functional specification to the specification of the FastVer
design and produces our main correctness theorem. Overall,
the proof to executable code ratio is comparable to other de-
velopments, e.g., Hawblitzel et al. [13] report a proof-to-code
ratio of about 5:1. We are hopeful that with improvements to
our tools and libraries, the proof of the core implementation
could be much more compact.
Our executable code also includes about 3,000 lines of C

code for parsers auto-generated by EverParse from a data
format description and 950 lines of pre-existing C code dis-
tributed by HACL*. Both these pieces of code were verified
using Low* [20], another F★ DSL that produces C code. A
caveat: Low* specifications are not formally relatable to Steel
specifications, so we wrote small admitted wrappers for our
Steel code to call into these Low* verified components. We
are in the process of migrating our use of EverParse libraries
to a Steel-based parser generator instead, which should allow
us to remove some of these admitted wrappers.

4 Monitoring Faster with FastVer2
We have integrated Faster with FastVer2 monitoring. Our
integration closely resembles what Arasu et al. [4] did for
FastVer, except for the formally verified monitor, so we elide
a detailed description. For example, like FastVer, our inte-
gration does not require any code changes to Faster, but
relies on customization hooks provided by Faster to perform
asynchronous monitoring; likewise, FastVer2 has a 1:1 corre-
spondence between verifier and Faster threads and the same
OS thread multiplexes performing computations of both.

Our goal here is to quantify the overheads of FastVer2mon-
itoring compared to the unverified monitoring of FastVer.
Our experimental setup is identical to what was used for
FastVer; it uses the same YCSB [? ] key-value benchmark and
a machine with identical specification. Our evaluation skips
authentication using counters discussed in Section 2.1, to
better focus on core the key-value functionality monitoring.
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Figure 2. Throughput of FastVer2 vs. that of FastVer for a
database of 16M records for the YCSB A benchmark. Also
shown (as FastVer2+) is the throughput of FastVer2 with
the overhead of Blake2 hashing during set-hash incremental
computations removed.

Figure 2 presents a performance comparison between
FastVer2 and FastVer, showing the overall maximum through-
put (not constraining the latency) for the YCSB A benchmark
(with an equal distribution of get and put operations) for
a database of size 16M records with 8-byte keys and val-
ues. FastVer2 sees a performance drop of around a factor
of 5 compared to FastVer. Despite this drop, FastVer2 still
achieves a throughput exceeding 10M ops/sec, which is 2-
3 orders of magnitude better any current formally verified
key-value database [12]. Beyond the drop in throughput, the
other performance characteristics of FastVer2 remain un-
changed compared to FastVer. In particular, the throughput
scales roughly linearly with the number of CPU cores.

We performed various micro-experiments to identify the
main reasons for the lower throughput. The main contrib-
utor is the different implementations of the multi-set hash
function: FastVer uses an AES-based construction leverag-
ing the Intel aesni hardware instructions [8]; FastVer2 relies
on a slower Blake2-based construction. On our setup, the
AES-based implementation achieves around 200M incremen-
tal hash computations, while the Blake2-based one achieves
around 4M computations, a 50x slowdown. When we replace
the Blake2 based multi-set hash function with an efficient
(but insecure) “dummy” hash function, the performance of
FastVer2 increases by about 50%, reducing the throughput
gap with FastVer to around 3x as shown in Figure 2.

Several other small inefficiencies cause the remaining per-
formance gap. FastVer2 uses a byte-level xor’ing of 32 byte
values during incremental hash computation, while FastVer
uses word-level xor’ing (around 7% overhead). FastVer2 also

currently involves (avoidable) memory allocation and deal-
location on the hot-path (around 5% overhead). Some of the
performance overheads arise from fixing legitimate bugs that
our formalization found, e.g., FastVer2 uses a lock, incurring
an overhead, to prevent re-entrancy for a verified thread,
while FastVer, incorrectly, does not prevent it.

None of the above mentioned reasons for slowdown are
fundamental. We plan to switch to an AES-based hash con-
struction by using components from EverCrypt’s [19] AES-
GCM implementation in assembly, which also uses aesni.
The other inefficiencies (temporary allocations, optimized
xor’ing, etc.) can also be eliminated with some code and
proofs rearrangements. Nevertheless, we are encouraged that
without any specific attention to optimization, FastVer2’s
performance scales linearly with the number of cores and is
within an order of magnitude of FastVer.

5 Related Work
We cover three strands of related work: verified implemen-
tations of authenticated data structures; program logics for
reasoning about monotonicity; and hardening verified code
to run in an unsafe context.

Authenticated data structures. While there have been
many schemes and libraries proposed for designing and im-
plementing authenticated data structures, only a few have
actually built formally verified implementations, e.g., Ever-
Crypt [19] offers a formally verified incremental Merkle tree.
However, as far as we are aware, FastVer2 is the first fully
verified implementation of a concurrency-capable authen-
ticated data structure, supporting both sparse, incremental
Merkle trees and delayed memory verification.

Program logics for monotonicity. Ahman et al. [3] de-
sign a Hoare logic for reasoning about programs whose state
is required to evolve monotonically according to some pre-
order. However, their approach is not based on separation
logic and does not support concurrency. Building on Ah-
man et al.’s approach, Swamy et al. [24] develop SteelCore,
a PCM-based separation logic which supports reasoning
about monotonic state. In particular, Swamy et al. show how
to derive a PCM from any preorder, and prove that frame-
preserving updates for that PCM are also preorder respecting.
Their construction is based on ghost state that stores his-
tories, the type vhist p that we use as a building block of
the FRAP. Timany and Birkedal [27] also study reasoning
about monotonicity in separation logic and present another
construction to turn any preorder into a PCM. Rather than
relying on histories, their construction is based on construct-
ing a generic semi-lattice from a preorder. Earlier, and going
back to Jensen and Birkedal’s [14] fictional separation logic,
many others have developed PCM-based constructions for
specific instances of monotonic state. As far as we are aware,
no one else has proposed anchored preorders, which allows
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naturally modeling scenarios where state evolves monoton-
ically, but one thread’s knowledge of the state cannot run
too far ahead of another’s.

Hardening APIs for use in an untrusted context. Our
safe API wraps our incremental API with runtime checks to
ensure that adversarial code calling it cannot break its safety.
We achieve this by relying on specific hardware protections
provided by TEE APIs to check untrusted pointers. Agten
et al. [2] study the problem of executing verified code in
an untrusted context in depth and develop a generic class
of runtime checks that can be used to protect such verified
APIs, while also relying on some notion of module-private
memory at runtime (which we realize using the TEE). We
were concerned with protecting the FastVer2 API specifically,
rather than developing a generic system for protecting a class
of APIs, nevertheless, the similarity in approaches is striking.
Also related are typing disciplines for security protocols
that offer robust safety or Un-typed APIs for safe use in an
attacker’s context [1, 11].
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A Background on F★

F★ is a programming language and proof assistant based on
a dependent type theory (like Coq, Agda, or Lean). F★ also
offers an effect system, extensible with user-defined effects,
and makes use of SMT solving to automate some proofs.
F★’s toolchain includes support for several other embed-

ded DSLs, notably Steel [10, 24], for reasoning about con-
current, imperative programs in a concurrent separation
logic. Steel programs can be extracted from F★ to C, and a
metatheorem establishes that extracted C programs simulate
the F★ program. However, the tool implementing this extrac-
tion pipeline (named KaRaMeL), although modeled after this
metatheory, is not formally verified and is part of our trusted
computing base, which also includes the F★ typechecker and
the Z3 SMT solver.

Syntax: Binders, lambda, arrows, computation types.
F★ syntax is roughly modeled on OCaml (val, let, match etc.)
with differences to account for the additional typing features.
Binding occurrences b of variables take the form x:t, declar-
ing a variable x at type t; or #x:t indicating that the binding

is for an implicit argument. The syntax 𝜆(b1) ... (b𝑛) → t in-
troduces a lambda abstraction, whereas b1 → ...→ b𝑛 → c is
the shape of a curried function type. Refinement types are
written b{t}, e.g., x:int{x≥ 0} is the type of non-negative inte-
gers (i.e., nat). As usual, a bound variable is in scope to the
right of its binding; we omit the type in a binding when it
can be inferred; and for non-dependent function types, we
omit the variable name. The c to the right of an arrow is
a computation type. An example of a computation type is
Tot bool, the type of total computations returning a boolean.
The Steel DSL also has its own family of computation types,
similar to Hoare Type Theory [17], e.g., ST t p q is the type
of a concurrent computation returning a v:t, with (separa-
tion logic) precondition p and postcondition q v. By default,
function arrows have Tot co-domains, so, rather than deco-
rating the right-hand side of every arrow with a Tot, the type
of, say, the pure append function on vectors can be written
#a:Type→ #m:nat→ #n:nat → vec a m → vec a n→ vec a (m + n),
with the two explicit arguments and the return type depend-
ing on the three implicit arguments markedwith ‘#’. We often
omit implicit binders and treat all unbound names as implic-
itly bound at the top, e.g., vec a m → vec a n → vec a (m + n)

B A FRAP for Counters
Backing up for the moment from the specifics for FastVer2,
consider the following simpler scenario. Say we have two
threads sharing a mutable increment-only counter 𝑖 . Thread
𝑃 (the producer) atomically increments the counter, while
thread 𝐶 (the consumer) reads it. If 𝑃 owns the assertion
𝑖 ↦→ 𝑛, it should be able to update the state to 𝑖 ↦→𝑚, only if
𝑚 ≥ 𝑛. Meanwhile, if𝐶 owns the read-only assertion 𝑖 ↦→𝑟 𝑛,
it should be able to conclude that reading 𝑖 returns a value
𝑚 ≥ 𝑛—this should be a fairly familiar scenario, explored
by several papers related to separation logic and monotonic
state, e.g., by Pilkiewicz and Pottier [18].
The twist here is to find a way to ensure that 𝐶’s knowl-

edge of the value of 𝑖 is never too far behind 𝑃 ’s knowledge
of its current value. For example, when distributing permis-
sions to the counter to 𝑃 and 𝐶 , we may decide that 𝑃 must
synchronize with C every time it increments the counter to
the next even number. In particular, we say that the assertion
𝑖
□↦→ 𝑛 anchors the counter at 𝑛, for some even number 𝑛,

ensuring that 𝑃 cannot advance the counter beyond 𝑛 + 1;
and when 𝐶 reads the counter obtaining𝑚 it can conclude
that𝑚 ≤ 𝑛 + 1.

To model this scenario in Steel using a FRAP, one simply
defines the preorder and anchors relation as shown below:
let p : preorder nat = 𝜆x y → x ≤ y
let at_most_one_away : anchor_rel p =

𝜆x y → x%2=0 ∧ x ≤ y ∧ y ≤ x + 1

Then, frap at_most_one_away is an instance of a FRAP.
Now, to work with ghost references that store values of

frap at_most_one_away, one can define some derived notions,
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where r
𝑓
↦→ v represents fractional non-anchored knowledge

of the contents of r; r □↦→ v anchors r to v; r □𝑓↦→ v anchors r to v
while also holding fraction f; and finally, r •↦→ v is a snapshot
of the contents of r.
let vhist p v = h:vhist p { cur h == v }

r
𝑓
↦→ v = ∃(h:vhist p v). G.pts_to r (Owns ((Some f, None), h))

r
□↦→ v = ∃(h:vhist p v {v%2=0}). G.pts_to r (Owns ((None, Some v), h))

r
□𝑓
↦→ v = ∃(h:vhist p v{v%2=0}). G.pts_to r (Owns ((Some f, Some v), h))

r
•↦→ v = ∃(h:vhist p v). G.pts_to r (Owns ((None, None), v))

The lemmas we’ve proven about the FRAP PCM show that
the following Hoare triples are provable in Steel, starting
with split_anchor which allows splitting our knowledge of
the anchor into separate permissions to hand to 𝑃 and 𝐶 .
val split_anchor (r:G.ref (frap at_most_one_away)) : STG unit

(requires r
□𝑓
↦→ v) (ensures 𝜆_→ r

𝑓
↦→ v ∗ r □↦→ v)

Next, snap allows taking snapshots and proving that snap-
shots are always valid histories.
val snap (r:G.ref (frap at_most_one_away)) : STG unit

(requires r
𝑓
↦→ v) (ensures 𝜆_→ r

𝑓
↦→ v ∗ r •↦→ v)

val snap_hist (r:G.ref (frap at_most_one_away)) : STG (_:unit { v' ≤
v })

(requires r
𝑓
↦→ v ∗ r •↦→ v') (ensures 𝜆_→ r

𝑓
↦→ v ∗ r •↦→ v')

Since only even values can be anchors, 𝑃 can increment the
counter to an odd value can be done without synchronizing
with 𝐶—this corresponds in FastVer2 to a thread advancing
its state without traversing an epoch boundary and without
synchronizing with the shared state.
val increment_odd (r:G.ref (frap at_most_one_away)) : STG unit

(requires r
𝑓
↦→ v ∗ pure (v%2=0))

(ensures r
𝑓
↦→ (v + 1))

But, to increment the counter to the next even value re-
quires gathering both knowledge of the current value of r as
well as knowledge of its anchor, incrementing r and advanc-
ing the anchor to the next even value, which corresponds
in FastVer2 to a verifier thread completing an epoch and
synchronizing with the shared state.
val increment_even (r:G.ref (frap at_most_one_away)) : STG unit

(requires r
𝑓
↦→ (v + 1) ∗ r □↦→ v)

(ensures r
𝑓
↦→ (v + 2) ∗ r □↦→ (v + 2))

C Hardening the API

noeq type state_t = {
state_ref: ref top_level_state;
ghost_state: Ghost.erased top_level_state;
_inv: inv (∃ p . pts_to state_ref p ghost_state ∗ core_inv ghost_state));

}

let state = begin
let state_ref = init () in
assert_ (∃ state . pts_to state_ref 1.0state ∗ core_inv state);
let ghost_state = elim_∃ () in
let _inv = new_invariant
(∃ p. pts_to state_ref p ghost_state ∗ core_inv ghost_state)) in

return
({ state_ref = state_ref; ghost_state = ghost_state; _inv = _inv; })

end <: STT state_t emp (𝜆 _ → emp)

In practice, the initializer needs to be called upon start.
Instead, we could also allow the user to initialize the top-level
state later as they wished. To this end, we would allocate a
ref (ref top_level_state) initially set to NULL. The invariant as
designed makes the ref read-only, and even if we constrained
the permission held in the invariant to be equal to 1 if the
state is uninitialized, this would not be enough, since we
need to check that the reference is null before updating it
with a fresh top-level state, both of which cannot be done
together atomically. So, we need to create a lock to protect
that reference. A lock alone could be enough for safety, but
it would actually prevent all concurrency. Thus, we need to
keep the invariant, and say that the lock and the invariant
each hold some (potentially different) permission on the
reference, and that the sum of the two permissions equals
1 as long as the reference points to NULL. Then, when the
user explicitly initializes the top-level state, we acquire the
lock, allocate a top-level state, then we open the invariant,
and we atomically set the ref to the fresh top-level state, and
finally we can close the invariant and release the lock. Then,
once the top-level state is initialized, the reference becomes
read-only and the invariant is enough as before, the lock
need no longer be acquired.
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