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Real-time Machine-Augmented Intelligence

Command & control in battle space

Augment Intelligence for Efficient Decision-Making
Healthcare & medicine

Multisource information solicitation
Highly dynamic and massive data streams

Driving at traffic junction



Challenges in Decision-Making
Ø Low learning efficiency

Training a decision-maker takes tons of samples and computations

3“Scale drives deep learning progress” by Andrew Ng



Challenges in Decision-Making
Ø Low model efficiency

Models are getting wider and deeper
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Learning to Scale
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Model Efficiency via Network Model Design and Interpretation
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Tensorial Neural Network

Tensor factorized form 
inspired neural network

Model compression via 
tensor representation

Linear operation → multilinear 

Personalized ML, Federated learning in edge devices

Generalization Improvement through the lens of Compression

Li, Sun, Su, Suzuki, H., Understanding Generalization in Deep Learning via Tensor Methods. AISTATS 2020.

Model Efficiency Data Efficiency Paradigm Efficiency

Su, Li, Liu, Ranadive, Coley, Tuan, H., “Compact Neural Architecture Designs by Tensor Representations”, Frontiers 2022. 
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Interpret & Improve Multi-Head Self-Attention in Transformers
A Rigorous Visual Interpretation of Self-attention 

Single-head Tensor Diagram Multi-head Tensor Diagram

New Architecture 

Liu, Su, H., Tuformer: Data-driven Design of Transformers for Improved Generalization or Efficiency, ICLR 2022. 

Provably Guaranteed Higher Expressive Power Under Same Size

Model Efficiency via Network Model Design and Interpretation
Model Efficiency Data Efficiency Paradigm Efficiency

Tunable-Head Self-Attention (THSA)



Long-Term Video prediction (10 -> 30 frames): 
predict the future based on spatiotemporal correlations.

Highest performance with fewest parameters.

Su, Byeon, Kossaifi, H., Kautz, Anandkumar, Convolutional Tensor-Train LSTM for Spatio-Temporal Learning, NeurIPS 2020.

Su, Wang and H., ARMA Nets: Expanding Receptive Field for Dense Prediction, NeurIPS 2020.

Model Efficiency via Network Model Design and Interpretation
Image Classification:
On CIFAR 10 Resnet-32 (460K parameters)

Compression Rate Performance

Original 93.20%

10% 91.28%

5% 89.86%

2% 85.70%

High performance small models

Model Efficiency Data Efficiency Paradigm Efficiency
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Scalable Graph Neural Networks

VQ-GNN, a universal framework to scale up any GNNs via Vector Quantization w/o
compromising the performance

Ding, Kong, Li, Zhu, Dickerson, H., Goldstein, VQ-GNN: A Universal Frame- work to Scale up Graph Neural Networks using Vector Quantization, NeurIPS 2021. 

Sketch-GNN: a sublinear complexity training framework via Polynomial Tensor-Sketch
theory for sketching non-linear activations and graph convolution matrices in GNNs

Ding, Rabbani, An, Wang, H., Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity, NeurIPS 2022.

Model Efficiency via Network Model Design and Interpretation
Model Efficiency Data Efficiency Paradigm Efficiency
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Theoretical Understanding of Model Invariance & Data Augmentations

Study the generalization benefit of model invariance by introducing the
sample cover induced by data transformations/augmentations

Zhu, An, H., Understanding the Generalization Benefit of Model Invariance from a Data Perspective, NeurIPS 2021. 

Small Number of Effective Samples Covers
Model Efficiency Data Efficiency Paradigm Efficiency
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Challenges in Decision-Making
Ø Inefficient learning paradigm

Models are learned in a “center controller” sequentially

cat

dog

𝑡 → 𝑡 + 1 → 𝑡 + 2 → 𝑡 + 3



Learning to Scale
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Model Efficiency Data Efficiency Paradigm Efficiency

Centralized Federated Learning

Image credit: Nvidia

A centralized-server approach to federated learning.
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Model Efficiency Data Efficiency Paradigm Efficiency

Challenges in Centralized Federated Learning
Limited Scalability

q Centralized host becomes a single point of 
failure

q Data-privacy breaches
q High communication latency

Decentralized Federated Learning:
q Remove single point of failure
q Improve data privacy
q Lower communication latency?

central host → peer-to-peer communication
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Model Efficiency Data Efficiency Paradigm Efficiency

Challenges in Decentralized Federated Learning

q Constructing efficient communication protocols amongst clients

q Ensuring the convergence of a global model under asynchronous updates

q Dealing with changing or sparse network topologies

q Being robust to deal with non-IID data between heterogeneous clients.
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Model Efficiency Data Efficiency Paradigm Efficiency

Shared WaIt-Free Transmission (SWIFT) Federated Learning

q Asynchronous and wait-free, SOTA communication-time complexity 
q Does not require a bound on the speed of the slowest client in the network
q Golden-standard iteration convergence rate 𝑂(1/ 𝑇) of parallel SGD

SWIFT schematic with clients communicate every 2 local updates

Bornstein, Rabbani, Wang, Bedi, H., SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication
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Model Efficiency Data Efficiency Paradigm Efficiency

Evaluations on Real Data
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Model Efficiency Data Efficiency Paradigm Efficiency

Evaluations on Real Data

SOTA adaptability to heterogeneous data across clients
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Efficient Machine Learning in Parallel



Our Solutions to Trustworthy Decision-Making via Machine Learning
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