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Overview

Online Contention Resolution Scheme (OCRS) is a framework that 
encompasses many stochastic optimization problems

This work studies the possibility of OCRS when the underlying 
prior is unknown

A positive result in the simplest setting

Negative results in more general settings



Contention Resolution Scheme

Setup: universe , downward closed feasible sets 

Input: , the marginal dist. of a dist. over ,

sample set  s.t. each element  is in  independently with probability 

For , a -balanced contention resolution scheme (CRS) outputs , 

so that  for each 

Originally formulated by Chekuri, Vondrák & Zenklusen (2014) for 
submodular function maximization
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Online Contention Resolution Scheme

Setup: universe , downward closed feasible sets 

Input: a distribution  over , and a sampled set  such that each 
element  is in  independently with probability , but the elements of 

 arrive one by one to reveal their memberships in 

Feldman, Svensson & Zenklusen (2016): For , a -selectable 
online contention resolution scheme (OCRS) outputs , deciding 
for each  its membership in  as it arrives, so that 

 for each 
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Significance of (O)CRS

The distribution  can be seen as a correlated distribution that 
results from 

solving a continuous relaxation of an optimization problem

or solving an ex ante relaxation of an optimization problem

x

CRS is intimately connected with correlation gap

CRS was invented for rounding

OCRS generates approximately optimal online mechanism 

closely related to prophet inequalities, sequential posted pricing…



Example: The Singleton Setting
Let  be the singleton subsets of , then  is a distribution on .

A 2-selectable OCRS: if element  is active and we have not accepted anything, 
accept  so that it is accepted w.p. 1/2.

This is possible because, with probability , we have not 

accepted anything when  arrives.

So if  is active, we accept it with probability 

When  is a matroid, there is a 2-selectable OCRS. [Singla & Lee 2018]
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Oblivious OCRS
An OCRS is oblivious if it has no knowledge of the distribution 

Besides being mathematically attractive…

Dughmi 2020: matroid secretary is reducible to -selectable matroid OCRS 
with correlated inputs and limited knowledge on 

Dughmi already showed such OCRS is impossible; Dughmi 2022 even 
removed the part “limited knowledge on ”

For prophet inequalities in the singleton setting, with unknown distributions,  a 
single sample from each distribution recovers the optimal competitive ratio 
[Rubinstein, Wang, Weinberg, 2020]
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Our Main Results

What’s the best oblivious OCRS in the singleton setting?

For the singleton setting, we obtain an oblivious OCRS that is 
-selectable for any , and show  is the best possible.

Is there an -selectable oblivious OCRS for matroids?

There are transversal matroids and graphic matroids for which no 
oblivious CRS can be -balanced.  Such CRS is not possible even 
with  many samples.
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Optimal Oblivious OCRS for Singleton

Intuition: how do we emulate the 2-selectable OCRS without knowing ?

When we see the first active element , elements before  may be seen as 
samples from 

Since no element before  is active, we may estimate  to be 0, and 

accept  with probability 1/2

If we did not accept , then by the time we see the second active element , 
we may estimate  to be 1, and accept  with probability 1.
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Optimal Oblivious OCRS for Singleton

Algorithm: with probability 1/2, accept the first active element; otherwise, accept 
the second.

Theorem.  This algorithm is -selectable.

Proof.  For element , let  be the set of elements arriving before .

When  is active, it is accepted with probability

 , which minimizes to  at .
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Oblivious OCRS for Singleton: Lower Bound

Algorithm: with probability 1/2, accept the first active element; 
otherwise, accept the second.

Theorem.  No oblivious OCRS can be -selectable for any .

Proof idea: I. An OCRS is counting based if for any active ,

Pr[  accepted] .

Not hard to show a counting based OCRS can’t be -selectable.
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Oblivious OCRS for Singleton: Lower Bound

Theorem.  No oblivious OCRS can be -selectable for any .

Proof idea:  I. A counting based OCRS can’t be -selectable.

II. For any OCRS, there is a subset  on which it is approximated by a 
counting based OCRS.

• Large enough  guarantees  of any desired size

•This is proved via a Hypergraph Ramsey theorem.

•This proof technique was used by Correa, Dütting, Fischer, Schewior 2019
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Impossibility of Oblivious Matroid CRS

Thm.  For any , there is no -selectable oblivious CRS for 
graphic or transversal matroids.

Proof sketch (for graphic matroid). For a complete bipartite graph 

, the weak distribution is one where each edge has weight .

A strong distribution is hardwired with an event that is rare in the 
weak distribution.
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A strong distribution

The bold edges are active w.p. 1

Conditioning on that a sample 
from the weak distribution has all 
the edges in , the posterior 
distribution is precisely the strong 
distribution with  hardwired.
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Relationship:



A sample from the weak distribution

#edges accepted in :δ(U*)

: left nodes with all incident edges activeU*

≤ rank(δ(U*)) = |U* | + M − 1



A sample from the weak distribution
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A sample from the weak distribution

[#edges accepted in ]:𝔼 δ(U*)

: left nodes with all incident edges activeU*

≤ 𝔼[rank(δ(U*))] =
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Impossibility of Oblivious Matroid CRS

Thm.  For any , there is no -selectable oblivious CRS for graphic or 
transversal matroids.

Proof sketch (for graphic matroid). For a complete bipartite graph , the 

weak distribution is one where each edge has weight .

A strong distribution is hardwired with an event that is rare in the weak 
distribution.

Remark:  samples cannot distinguish weak and strong distributions.
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Conclusions

Our results

An optimal oblivious OCRS for the singleton setting

-selectable oblivious OCRS for matroids is not possible

Open questions

Sample complexity for -selectable matroid OCRS

Sample complexity for -competitive matroid prophet inequalities
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