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ABSTRACT
Friend recommendation service plays an important role in shap-
ing and facilitating the growth of online social networks. Graph
embedding models, which can learn low-dimensional embeddings
for nodes in the social graph to effectively represent the proximity
between nodes, have been widely adopted for friend recommenda-
tions. Recently, Graph Neural Networks (GNNs) have demonstrated
superiority over shallow graph embedding methods, thanks to their
ability to explicitly encode neighborhood context. This is also ver-
ified in our Xbox friend recommendation scenario, where some
simplified GNNs, such as LightGCN and PPRGo, achieve the best
performance. However, we observe that many GNN variants, includ-
ing LightGCN and PPRGo, use a static and pre-defined normalizer
in neighborhood aggregation, which is decoupled with the repre-
sentation learning process and can cause the scale distortion issue.
As a consequence, the true power of GNNs has not yet been fully
demonstrated in friend recommendations.

In this paper, we propose a simple but effective self-rescaling
network (SSNet) to alleviate the scale distortion issue. At the core
of SSNet is a generalized self-rescaling mechanism, which bridges
the neighborhood aggregator’s normalization with the node em-
bedding learning process in an end-to-end framework. Meanwhile,
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we provide some theoretical analysis to help us understand the ben-
efit of SSNet. We conduct extensive offline experiments on three
large-scale real-world datasets. Results demonstrate that our pro-
posed method can significantly improve the accuracy of various
GNNs. When deployed online for one month’s A/B test, our method
achieves 24% uplift in adding suggested friends actions. At last, we
share some interesting findings and hope the experience can moti-
vate future applications and research in social link predictions.
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1 INTRODUCTION
Online social networks (OSNs) have been integrated with our daily
lives. For example, we share personal lives with friends via Face-
book or TikTok; we communicate with friends anywhere anytime
usingWhatsApp or WeChat; we build our professional networks by
making connections on LinkedIn. To foster a healthy social network
structure and promote community growth, friend recommendation
(aka. social link prediction) becomes a common and critical feature
for OSNs. At Xbox, we aspire to empower everyone to play not
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only the games you want, but also with the people you want. One
of the core services is friend recommendations, which helps users
connect to their friends or favorite players, such that they may
enjoy the fun together.

Traditionally, researchers manually extract some metrics [18, 19,
28], such as Common Neighbors (CN), Adamic/Adar Index (AA) [1],
Local Naive Bayes based Common Neighbors (BCN) [20], and Per-
sonalized PageRank (PPR) [3], to represent the proximity between
two nodes on a social network. Major drawbacks for metrics-based
methods include: 1) handcrafted metrics can only cover a limited,
static set of features for a social network, which are not comprehen-
sive; 2) some metrics such as BCN and PPR require the high-order
network context of a pair of nodes, which are not scalable for real-
time serving; 3) recommended nodes are usually concentrated on
the local neighborhood of the source node, which are highly homo-
geneous and aggravate the Echo Chamber and Filter Bubble problem
[21, 25]. Thus, researchers resort to graph embedding techniques,
such as DeepWalk [22] and Node2vec [10], to encode proximity
information on the graph with low-dimensional embedding vectors.
The relation between two nodes is measured by the interaction
(such as dot product) between the corresponding embedding vec-
tors, without requirements to retrieval graph context.

Recently, the success of Graph Neural Networks (GNNs) makes
the research trend switch from shallow embedding to deep embed-
ding [11, 15, 27]. Compared with shallow embedding methods such
as Node2vec, GNNs have a graph context encoder, which aggre-
gates information from the source node’s neighborhood, so that the
graph structure is explicitly encoded into the low-dimensional em-
bedding vector. In our Xbox friend recommendation scenario, the
superiority of GNNs over shallow graph embedding methods is also
verified, and among various GNNs we have examined, LightGCN
[12] and PPRGo [5] relatively perform the best. They happen to
represent two types of simplified GNNs: LightGCN simplifies model
parameters by removing the feature transformation and nonlinear
activation components, and PPRGo simplifies the network struc-
ture by replacing the recursive neighborhood stacking operation
with a pre-computed Personalized PageRank (PPR) neighborhood.
Simplified GNNs are easier to scale and thus are more suitable for
industrial recommendation systems.

Since the superiority of GNNs over shallow graph embedding
comes from explicit neighborhood aggregation and encoding, how
to aggregate information is undoubtedly critical. However, we ob-
serve one common weakness in the aggregation mechanism of
many GNNs, including both the LightGCN and PPRGo. To aggre-
gate the information of neighbors, (weighted) sum pooling or aver-
age pooling are commonly adopted by GNNs, which are simply set
by heuristics and intuition. For example, LightGCN uses a weighted
sum aggregator e(𝑘+1)𝑢 =

∑
𝑖∈N(𝑢) 𝛼𝑢𝑖 e(𝑘)

𝑖
, in which a neighbor’s

feature is weighted by a normalized term 𝛼𝑢𝑖 = 1/
√︁
|N𝑖 |

√︁
|N𝑢 |.

PPRGo uses a weighted sum aggregator with weights being neigh-
bors’ personalized PageRank score: z𝑖 =

∑
𝑗 ∈N(𝑖) 𝜋 (𝑖) 𝑗 h𝑗 , where

𝜋 (𝑖) is a sparse PPR vector preserving only top-𝑘 largest values. In
both of the models, the weighting coefficients are independent
of the learning of representations and kept fixed. We argue that
this inflexible aggregating mechanism can easily cause undesirable

effects such as the scale distortion issue (see more details in Sec-
tion 2.3), and it is essential to bridge the normalizing coefficients
with the representation learning and let the model automatically
and adaptively determine an appropriate scaling factor according
to each node’s context.

To this end, we propose an effective approach to rescale the
GNN embedding vector to an appropriate status in a self-adaptive
manner. For a latent representation h generated by an original GNN,
we feed it to a self-rescaling network (SSNet) which will produce a
scalar factor 𝛾 , then adjust h with 𝛾 as the final output. We call this
operation representation rescaling. The representation rescaling can
be regarded as a model patch that can be mounted to various GNNs,
such generalization ability avoids tuning specific components case
by case. SSNet can be trained end-to-end with a base GNN model.
We compare some alternative training methods such as pretrain-
then-finetune and adversarial training, results demonstrate that
end-to-end training is the best choice among them, which also
makes SSNet’s usage as convenient as plug-and-play.

We use three real-world social network datasets for experiments.
To verify the effectiveness of SSNet comprehensively, we select the
two most important tasks in the social link prediction scenario, in-
cluding the candidate retrieval and friend ranking task, and conduct
experiments with seven different GNNs. The results demonstrate
that our approach can consistently improve different GNN models,
and the performance gain in the candidate retrieval task is particu-
larly significant. In summary, our main contributions include:
• Problem Locating. We highlight the vector distortion problem in
aggregators of GNNs, which turns out to impact the representa-
tion quality severely and is overlooked in related literature.

• Method Proposing. We propose a light-weighted and effective
method, SSNet, to remedy the problem in a representation rescal-
ing approach. SSNet is model-agnostic and can be trained end-to-
end with base GNNs to improve their performance. The source
code is released at https://github.com/CGCL-codes/ssnet.

• Experience Sharing. We provide some theoretical analysis to help
understand why SSNet helps GNNs. Besides, we share some
interesting findings when applying graph embedding models to
the Xbox friend recommendation scenario.

• Result Verifying. We conduct comprehensive offline experiments
on three real-world social network datasets under two different
types of tasks. Results verify the effectiveness of SSNet in en-
hancing various GNNs. Besides, a 24% gain in online A/B test
also shows that high-quality graph embeddings can significantly
improve the friend recommendation service.

2 METHODOLOGY
2.1 Problem Definition
Friend Recommendation. Given a social network G = (𝑉 , 𝐸),
where 𝑉 denotes the set of 𝑁 users and 𝐸 is the set of edges, 𝐸
is usually formulated as an 𝑁 × 𝑁 adjacency matrix A ∈ R𝑁×𝑁 ,
if there is a social relation from user 𝑖 to user 𝑗 , then A𝑖 𝑗 = 1,
otherwise A𝑖 𝑗 = 0. The friend recommendation task is to predict
the missing links in G. From the graph embedding perspective, a
GNN model learns to map each node 𝑢 ∈ 𝑉 to a low-dimensional
vector e𝑢 . The probability of an edge existing between node 𝑢 and 𝑣
is measured by the dot-product of embedding vectors: 𝑦𝑢𝑣 = e𝑇𝑢 e𝑣 .

https://github.com/CGCL-codes/ssnet
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2.2 GNN Preliminaries
We start by introducing the core parts of two GNN models – Light-
GCN [12] and PPRGo [5] – since they perform relatively best in
friend recommendation tasks, and they also represent two typical
types of GNNs.

2.2.1 LightGCN. LightGCN simplifies the classical GNN by remov-
ing the feature transformation and nonlinear activation components
and achieves better performance. LightGCN is originally introduced
for recommendation tasks (which is a user-to-item link prediction).
We adjust the equations accordingly because, in our case, graph
G is homogeneous, with all nodes on the graph being users. The
graph convolution operation in LightGCN is defined as:

e(𝑘+1)𝑢 =
∑︁
𝑖∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑖 |

e(𝑘)
𝑖

=
1√︁
|N𝑢 |

∑︁
𝑖∈N𝑢

1√︁
|N𝑖 |

e(𝑘)
𝑖

(1)

where e(𝑘)
𝑖

indicates the hidden embedding vector of node 𝑖 at the
𝑘-th convolutional layer. The only trainable model parameters are
the embeddings at the 0-th layer: e(0)

𝑖
. The final representation of a

user is a linear combination of all layers’ embedding vectors:

e𝑢 =

𝐾∑︁
𝑘=0

1
𝐾 + 1

e(𝑘)𝑢 (2)

2.2.2 PPRGo. Instead of stacking multiple convolutional layers
to incorporate multi-hop neighborhood information, which leads
to over smoothing problems as well as poor scalability, PPRGo
conducts PPR for every root node and uses the PPR scores to se-
lect the most important local neighborhood for a given root node.
Specifically, it first adopts the push-flow algorithm [2] to obtain the
approximate PPR scores Π(𝜖) for all nodes, then truncates Π(𝜖) to
contain only the top 𝑘 largest entries for each row, which means
that for user 𝑖 , her new neighborhood is constructed as the users
with top 𝑘 largest scores according to 𝜋 (𝑖). The final representation
z𝑖 is a weighted sum of the neighborhood representations:

z𝑖 =
∑︁
𝑗 ∈N𝑘

𝑖

𝜋 (𝑖) 𝑗e𝑗 (3)

2.3 The Scale Distortion Issue
We observe that the neighborhood aggregating operation is prone
to cause the vector scale distortion issue. In LightGCN, neighbor em-
beddings are normalized according to node degree, i.e. 1/(

√︁
|N𝑢 |

√︁
N𝑖 |),

to avoid the scale of embeddings from exploding during stacked
aggregation. However, this type of weighting coefficient is hard-
coded with heuristics, which lacks the flexibility to adjust to dif-
ferent contexts. For better understanding, here we provide two il-
lustrations. First, the normalizer 1/(

√︁
|N𝑢 |) may not ideally reflect

the necessary squash level for a node with degree |N𝑢 |. Suppose
user 𝑢 and 𝑣 belong to the same social circle. 𝑢 has five friends:
N𝑢 = {𝑝1, 𝑝2, ..., 𝑝5}. 𝑣 is also connected to these five persons,
besides, 𝑣 has five more friends whom 𝑢 has not connected to:
N𝑣 = N𝑢

⋃{𝑝6, 𝑝7, ..., 𝑝10}. Then, an one-layer LightGCN model
will represent user 𝑢 by:

e𝑢 =
1
√
5

∑︁
𝑖∈N𝑢

1√︁
|N𝑖 |

e𝑖
def
=====

1
√
5

F1 (4)

Similarly, for user 𝑣 we have:

e𝑣 =
1

√
10

∑︁
𝑖∈N𝑣

1√︁
|N𝑖 |

e𝑖 =
1

√
10

F1 +
1

√
10

F2 (5)

In terms of the vector magnitude, for 𝑢, we have: | |e𝑢 | |2 = 1
5F21;

while for 𝑣 we have: | |e𝑣 | |2 = 1
10F21 +

1
10F22 +

1
5F1 · F2. Since user 𝑢

and 𝑣 belong to the same social circles and neighborhood features
are highly homogeneous and positively correlative, it is reasonable
to assume that F21 ≈ F22 and F1 · F2 > 0. Thus, | |e𝑣 | |2 > | |e𝑢 | |2, we
have the magnitude distortion issue when scaling with |N𝑢 | in the
sum aggregator.

Next, let us consider the scale distortion issue in two nodes
𝑢 and 𝑣 with the same degree 𝑛. Suppose user 𝑢 is in the center
of a community, then most of her neighbors belong to the same
community; user 𝑣 is at the boundary of two communities, which
means her neighbors are split into different communities. For both
users, their magnitude is calculated like:

| |e𝑢 | |2 = | | 1√
𝑛

∑︁
𝑖∈N𝑢

ẽ𝑖 | |2 (6)

=
1
𝑛
(
∑︁
𝑖∈N𝑢

| |̃e𝑖 | |2 +
∑︁

𝑖, 𝑗 ∈N𝑢 ,𝑖≠𝑗

ẽ𝑖 · ẽ𝑗 ) (7)

where we denote ẽ𝑖 = 1√
|N𝑖 |

e(0)
𝑖

. Suppose the initial embeddings

E(0) are all unit vectors, so they are well aligned in magnitude. Thus,
| |e𝑢 | |2 = 𝐶 + 1

𝑛

∑
𝑖, 𝑗 ∈N𝑢 ,𝑖≠𝑗 ẽ𝑖 · ẽ𝑗 , where 𝐶 is a constant which is

equal for both 𝑢 and 𝑣 . Since user 𝑢 is in the center of a community
while user 𝑣 is at the boundary of a community, the neighborhood
features of user 𝑢 are more positively correlated, so that we have∑
𝑖, 𝑗 ∈N𝑢 ,𝑖≠𝑗 ẽ𝑖 · ẽ𝑗 >

∑
𝑖, 𝑗 ∈N𝑣 ,𝑖≠𝑗 ẽ𝑖 · ẽ𝑗 . Thus, | |e𝑢 | |2 > | |e𝑣 | |2, the

vector scale is distorted between user 𝑢 and 𝑣 .

2.4 The Self-Rescaling Network
We argue that the static scaling coefficients in GNNs, such as
(
√︁
|N𝑢 |

√︁
|N𝑖 |)−1 in LightGCN and 𝜋 (𝑖)𝑡𝑜𝑝−𝑘 in PPRGo, will im-

pact their representation learning ability. It is of great importance
to bridge the scaling factor with neighborhood aggregators, so that
GNNs can determine the degree of embedding scaling in an adaptive
manner according to the context of a specific node’s neighborhood.
To this end, we propose a simple but effective self-adaption method
to stretch an embedding vector z ∈ R𝐷 generated from an original
GNN. All we need is an extra scaling network 𝐺 (·), which takes z
as input and returns a scaling factor:

𝐺 (z) = 𝜎 (w2 𝑇𝑎𝑛ℎ(W1z + b1) + 𝑏2) (8)

where W1 ∈ R𝐻×𝐷 , b1 ∈ R𝐻 , w2 ∈ R𝐻 , 𝑏2 ∈ R are the trainable
parameters of 𝐺 (·), 𝜎 is the Sigmoid function to force the output
value of 𝐺 (z) in (0, 1). Eq. 8 is a 2-layer MLP, we can add more
hidden layers in the MLP if necessary. The original GNN embedding
z will be adjusted by this scaling factor:

z̃ = 𝐺 (z) · z (9)

𝐺 (·) can adaptively control the scaling intensity according to the
embedding vector. Besides, this self-adaptionmethod is GNNmodel-
agnostic. It can be applied to various types of GNNs’ representation
vectors, which demonstrates generalization ability.



KDD ’22, August 14–18, 2022, Washington, DC, USA Xiran Song et al.

GNN

.
L2-norm
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Figure 1: Illustrations of different dynamic scaling methods, (a) is our proposed SSNet, (b-d) are three other alternatives.

To fulfill the goal of self-adaption, technically, there are some
alternative methods other than SSNet, such as the ones illustrated
in Figure 1. Formally, they include:
• L2 Normalization. L2 normalization is commonly adopted to trans-
form embedding vectors into unit vectors so that all of them have
magnitude being exactly 1 unit. From the expression z̃ = z/| |z| |2
we can observe that L2 normalization is a special case of scaling
neural network, with 𝐺 (z) being 1/| |z| |2. However, normalizing
everything to a unit vector is too strict, which may hurt models’
performance.
• Feed-Forward Network. We can also count on a fully connected
Feed-Forward Network (FFN) to transform the original embedding
vector to a new, well aligned vector space. FFN is a key component
in Transformers [26]. It consists of two linear transformations with
a non-linear activation in between:

z̃ = 𝐹𝐹𝑁 (z) = W2𝑇𝑎𝑛ℎ(W1z + b1) + b2 (10)

where W2 ∈ R𝐷×𝐻 and b2 ∈ R𝐷 .
• Additive Network. Instead of generating a scaling factor to mul-
tiply the original embedding vector, we can also try the additive
operation. In this regard, the network will produce a bias vector
and then add to the original embedding vector:

z̃ = �̃� (z) + z , �̃� (z) = W2𝑇𝑎𝑛ℎ(W1z + b1) + b2 (11)

However, in practice we find that those alternative methods are
not performing as well as the scaling network. We summarize their
performance in Section 3.3.1.

2.5 Optimization
To train a GNNmodel with SSNet, there are three feasible strategies:
• End-to-End Training. The number of new parameters brought by
SSNet is𝑂 (𝐻𝐷+𝐻𝐻 ), where𝐷 and𝐻 denote the dimension of node
embedding of GNN and hidden layers in SSNet, respectively. The
parameter of the base embedding table of GNN is 𝑂 (𝑁𝐷). Because
𝐷 (such as 64 in our experiments) is much smaller than 𝑁 ( such as
3 million), additional new parameters in SSNet are negligible. And
all of them are differential, so a GNN model equipped with SSNet
can be directly trained from scratch in an end-to-end manner.

• Pretrain-then-Finetune. Since SSNet is a plug-and-play like com-
ponent whose parameters are not blended with GNN’s parameters,
another intuitive strategy is to first pretrain the original base GNN
model until convergence, then only finetue the SSNet’s parameters,
so that SSNet serves as an embedding adjustment module.
• Adversarial Training. Both of the above strategies jointly train SS-
Net and base GNN model under the same recommendation signals.
Another idea is to provide some auxiliary signals for the SSNet to
guide its training process, so that the final embeddings can possess
some properties that match our prior knowledge. As a first rea-
sonable try, we hypothesize the adjusted embeddings from SSNet
should be unbiased in regard of node degree. Thus, we propose
an adversarial training strategy: there is a discriminator that tries
to detect the node degree information from the node embedding
vector; the GNN and SSNet not only minimize the recommendation
loss, but also minimize the discriminator’s accuracy (which serves
as an auxiliary loss), so that the adjusted embedding vector does
not leak the node degree information.

Through experiments (see Section 3.3.2) we find that the end-to-
end training strategy achieves pretty good performance. Consider-
ing that it is much simpler and easier than the other two approaches,
it is the suggested and default strategy in this paper.

3 EXPERIMENTS
3.1 Experiment Settings
3.1.1 Datasets. Weuse three real-world social network datasets for
experiments. The Xbox dataset is constructed from Xbox gaming
social network. We extract a subgraph which contains 3 million
users from US, one of the major markets of Xbox. Besides, we use
two largest social networks – Pokec and LiveJournal – from the
SNAP public datasets (https://snap.stanford.edu/data/index.html#
socnets). We leave more descriptions of datasets and basic statistics
to A.2 in the appendix.

3.1.2 Tasks. We evaluate models’ performance on two important
tasks in recommender systems: candidate retrieval and friend
ranking. The major difference between the two tasks lies in the se-
lection of negative instances for evaluation: for candidate retrieval,
we try to recall the positive candidate from the entire graph (which

https://snap.stanford.edu/data/index.html#socnets
https://snap.stanford.edu/data/index.html#socnets
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Table 1: Overall performance of different GNN models on the candidate retrieval task. We highlight the cells when SSNet
improves the base GNN model.

Pokec LiveJournal Xbox
HR@100 HR@300 NDCG@300 HR@100 HR@300 NDCG@300 HR@100 HR@300 NDCG@300

Node2vec 0.0383 0.0755 0.0146 0.0384 0.0636 0.0132 0.0218 0.0360 0.0080
GraphSAGE (pool) 0.0629 0.1256 0.0239 0.1453 0.2248 0.0487 0.0411 0.0650 0.0140

GraphSAGE (pool) + SS 0.0606 0.1233 0.0228 0.1868 0.2743 0.0603 0.0498 0.0768 0.0164
GraphSAGE (LSTM) 0.0769 0.1502 0.0285 0.1840 0.2711 0.0592 0.0643 0.0944 0.0212

GraphSAGE (LSTM) + SS 0.0737 0.1510 0.0278 0.2206 0.3115 0.0696 0.0684 0.1010 0.0222
GIN 0.0789 0.1474 0.0277 0.1938 0.2587 0.0616 0.0394 0.0599 0.0136

GIN + SS 0.0754 0.1459 0.0271 0.1979 0.2666 0.0612 0.0441 0.0645 0.0143
GAT 0.0372 0.1202 0.0178 0.0322 0.1100 0.0161 0.0259 0.0590 0.0096

GAT + SS 0.0893 0.1784 0.0313 0.2119 0.3225 0.0635 0.0879 0.1248 0.0287
SAGN 0.0554 0.1178 0.0209 0.1607 0.2336 0.0525 0.0356 0.0558 0.0126

SAGN + SS 0.0632 0.1319 0.0234 0.1800 0.2573 0.0566 0.0544 0.0784 0.0179
FAGCN 0.0901 0.1719 0.0301 0.1083 0.2163 0.0347 0.0286 0.0701 0.0120

FAGCN + SS 0.1349 0.2300 0.0449 0.2431 0.3249 0.0743 0.0874 0.1231 0.0271
LightGCN 0.0654 0.1468 0.0236 0.0537 0.1608 0.0240 0.0506 0.0821 0.0164

LightGCN + SS 0.1645 0.2605 0.0536 0.2604 0.3432 0.0747 0.0893 0.1247 0.0287
PPRGo 0.1604 0.2460 0.0520 0.2824 0.3666 0.0841 0.1095 0.1382 0.0356

PPRGo + SS 0.1727 0.2602 0.0554 0.2903 0.3761 0.0861 0.1169 0.1460 0.0379

contains a few million nodes). We follow this time-consuming eval-
uation method because [17] points out that conducting negative
sampling will make evaluation metrics inconsistent with their exact
version in candidate retrieval. Hit-Rate (HR@100, HR@300) and
Normalized Discounted Cumulative Gain (NDCG@300) are adopted
as evaluation metrics. For friend ranking, we sample 99 nodes as
negative instances from the 2-hop neighborhood of the source node
in the positive pair. This is to simulate the scenario that the ranker
needs to rank the positive node from a small set of strong negative
candidates. NDCG and Area Under the Curve (AUC) are used for
evaluating the friend ranking task.

3.1.3 Base GNNs. To verify the generalization ability of SSNet, we
experiment with a variety of GNNs as base models, covering simple
neighborhood aggregator including GraphSAGE [11],GIN [30],
LightGCN [12], PPRGo [5], and attentive neighborhood aggre-
gator including GAT [27], SAGN [23], FAGCN [4]. More intro-
ductions of these base GNNs, as well as training settings, can refer
to A.1 and A.4 in the appendix.

3.2 Overall Performance
Table 1 and 2 report the overall performance of the self-rescaling
mechanism on three datasets and two recommendation tasks. In
the tables, the symbol + SS indicates applying the SSNet on the base
model. We have the following observations.
• For almost all the settings (a setting means a combination of
[base GNN, dataset, task]), adding the self-rescaling operation can
improve the base GNN. For some certain settings, the performance
gain is quite significant, e.g., in [LightGCN, Pokec, Retrieval], self-
rescaling increases the HR@100 by 150%. This demonstrates the
effectiveness as well as the necessity of self-rescaling mechanism
for GNNs in social link prediction tasks.
• The overall improvement on the ranking task is much smaller
than on the retrieval task. This is because the retrieval task is a more
open task, in which the model needs to find relevant candidates

Table 2: Overall performance on the friend ranking task.
Cells are highlighted when SSNet improves the base GNN.

Pokec LiveJournal Xbox
AUC NDCG AUC NDCG AUC NDCG

Node2vec 0.6645 0.2657 0.6486 0.2748 0.6982 0.3110
SAGE(pool) 0.7408 0.2984 0.7686 0.3387 0.7405 0.3411
SAGE+SS 0.7516 0.3020 0.7905 0.3621 0.7451 0.3521

SAGE(LSTM) 0.7670 0.3141 0.7925 0.3600 0.7699 0.3765
SAGE+SS 0.7715 0.3175 0.8110 0.3808 0.7697 0.3805

GIN 0.7672 0.3250 0.7801 0.3766 0.7132 0.3279
GIN + SS 0.7669 0.3249 0.7795 0.3750 0.7182 0.3350
GAT 0.7875 0.3324 0.7642 0.3143 0.7851 0.3954

GAT + SS 0.7875 0.3371 0.8058 0.3739 0.7859 0.4074
SAGN 0.7542 0.3066 0.7839 0.3615 0.7253 0.3361

SAGN + SS 0.7633 0.3117 0.7962 0.3723 0.7382 0.3536
FAGCN 0.7687 0.3212 0.7942 0.3613 0.7526 0.3323

FAGCN + SS 0.7974 0.3606 0.8242 0.4195 0.7799 0.3914
LightGCN 0.7752 0.3327 0.8110 0.3768 0.7569 0.3588

LightGCN+SS 0.8169 0.3922 0.8501 0.4535 0.7808 0.4003
PPRGo 0.8087 0.3840 0.8340 0.4174 0.7781 0.3966

PPRGo + SS 0.8193 0.3988 0.8395 0.4229 0.7825 0.4056

within the entire item space (which contains millions of items).
Thus, a small interference can lead to a substantial difference in top-
𝑘 results. In contrast, the information uncertainty in the ranking
task has been greatly reduced due to that the candidates to be
ranked are already narrowed down to a small scope.
• The improvement of self-rescaling on PPRGo and GraphSAGE is
less significant than on other GNNs like LightGCN, which is in ex-
pectation. PPRGo and GraphSAGE use a fixed number of neighbors
for each node, and their vector scale distortion issue is less serious.
• Among all the base GNNs, PPRGo performs the best (and adding
self-rescaling can further improve it) in the retrieval task. One pos-
sible reason is that for social link predictions, the local community
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is the key to identify a user and her social relations. In PPRGo,
there is a Personalized PageRank step to effectively detect the most
important neighborhood and the local community.

3.3 Variants Study
3.3.1 Alternative Transformation Methods. We explore whether
there exist some better choices for representationmodulation rather
than using the self-rescaling network. As listed in Figure 1, there
are three other common approaches to modulate the embedding
vector, including L2 normalization, going through a feed-forward
network, and using an additive network. All of them have the
potential to do self-adaption. Table 3 reports the results of the
candidate retrieval task. Since the trend on the friend ranking task
is similar, for conciseness, we move Table A3 to the appendix. SSNet
outperforms the other three approaches consistently on different
datasets, on different tasks, and with different base GNNs, which
verifies that the superiority of the self-rescaling network cannot
be easily replaced by some other trivial approaches. In addition,
the three variants’ performance is not stable. For example, FFN
performs well on the candidate retrieval task, but it performs badly
on the friend ranking task; L2 normalization only performs well on
the Pokec and LiveJournal dataset with the candidate retrieval task
and LightGCN, while for the rest of the cases, it performs badly. In
this regard, the performance of the scaling network is very stable.

Table 3: Comparisons of model variants on the candidate
retrieval task. The metrics are HR@300 and NDCG@300.

Pokec LiveJournal Xbox
HR NDCG HR NDCG HR NDCG

LightGCN
Base 0.1468 0.0236 0.1608 0.0240 0.0821 0.0164

L2-norm 0.1656 0.0337 0.2976 0.0732 0.0591 0.0162
FFN 0.1754 0.0349 0.2528 0.0633 0.0779 0.0179

Additive 0.1541 0.0252 0.1590 0.0231 0.0792 0.0135
SSNet 0.2605 0.0536 0.3432 0.0747 0.1247 0.0287

PPRGo
Base 0.2460 0.0520 0.3666 0.0841 0.1382 0.0356

L2-norm 0.1869 0.0396 0.3072 0.0713 0.0862 0.0247
FFN 0.2053 0.0427 0.3243 0.0738 0.1085 0.0277

Additive 0.2468 0.0522 0.3487 0.0779 0.1232 0.0311
SSNet 0.2602 0.0554 0.3761 0.0861 0.1460 0.0379

3.3.2 Training Strategies Comparison. In Section 2.5 we introduce
three training strategies. Table 4 reports the results on the Xbox
dataset with PPRGo as the base GNN. We do not observe a sig-
nificant difference between the three strategies. The conclusions
are similar on the other two datasets. Since end-to-end training is
the most convenient approach, we adopt it as the default training
method.

3.4 Pattern Analysis
Next, we studywhat types of information SSNet learns. As discussed
in Section 2.3, some factors may cause the scale distortion issue,
such as the node’s degree and neighborhood’s assortativity level.
To verify this motivation, we can test some observable patterns
of the scaling factor with certain coefficients. In Figure 2(a,b) we

Table 4: A comparison of different training strategies. The
dataset is Xbox. The base GNN is PPRGo.

Recall Ranking
HR@100 HR@300 AUC NDCG

End2end 0.1169 0.1460 0.7825 0.4056
Pretrain-finetune 0.1142 0.1416 0.7803 0.4006

Adversarial 0.1145 0.1432 0.7816 0.4052

plot the correlation between the self-rescaling factor (on the y-axis)
and the node’s degree or the embedding vector’s magnitude (on
the x-axis), on the Xbox dataset. We can observe that with the
increase of node degree/vector magnitude, SSNet tends to shrink
the vector, which implies that the original static aggregator over
amplifies graph information for nodes with high degree. Figure 2(c)
shows that the adjusted embeddings become more concentrated in
a mean status in terms of magnitude. As a benefit, degree bias in
recommendations can be alleviated. For example, in Figure 2(d), we
can observe that the original LightGCN model tends to recommend
high-degree nodes (such as a degree approaching 1000) to users,
indicating a severe popularity bias. After using SSNet as a treatment,
the degree bias is significantly alleviated, ordinary nodes (such as
degree between 10 and 100) get more chances for exposure.

3.5 Online Experiments
Unlike other recommendation scenarios, such as e-commerce or
online news recommendations, where items may refresh frequently
and users tend to interact with recommended items promptly, the
friend recommendation scenario owns a much slower feedback
nature, and we need to reserve enough time and traffic for a reliable
online test. Thus, it is hard to conduct online ablation study in a fine-
grained level. Instead, we launch only one group of online A/B test,
with the treatment group containing our best graph embeddings
(PPRGo + SSNet) and the control group without graph embedding
signals, to verify how graph embedding improves friend recom-
mendations. More deployment details can refer to Section 4.2.3.
The online experiment lasts from Dec 1, 2021 to Jan 1, 2022, cover-
ing about 10% of the main traffic in US market. Users can see the
suggested friends on the homepage of Xbox console. Results show
that the add suggested friends actions is uplifted by 24%. In addition,
driven by the higher quality of suggested friends, we observe a few
chain reactions, including 267% uplift in view user profile, 89% uplift
in search players, 109% uplift in likes in activity feed, and the most
important one, 19% uplift in join friends’ game. The results fully
demonstrate the importance of friend recommendation service in
fostering an engaged gaming community.

4 DISCUSSIONS AND EXPERIENCE
4.1 Theoretical Analysis
We notice that the potential benefits of the self-rescaling network
can be further interpreted from two different perspectives.

4.1.1 From the Spectral View. In this section, we will analyze our
scaling network from the graph spectrum’s perspective. For sim-
plicity, we suppose the base model is LightGCN.



Friend Recommendations with Self-Rescaling Graph Neural Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

0 50 100 150 200
node degree

0.4

0.6

0.8

1.0

sc
al

in
g 

fa
ct

or

(a)

LightGCN
PPRGo

3 4 5 6
magnitude of vector before scaling

0.6

0.8

1.0

sc
al

in
g 

fa
ct

or
(b)

LightGCN
PPRGo

2.0 4.0 6.0 8.0
magnitude of vector

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

(c)

LightGCN
LightGCN + SS
PPRGo
PPRGo + SS

100 101 102 103

node degree of top-k recommendation

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

(d)

LightGCN
LightGCN + SS
PPRGo
PPRGo + SS

Figure 2: Pattern analysis for SSNet on the Xbox dataset. In (a) and (b), the shaded area indicates one standard deviation around
the mean value. In (b), to remove noises which cause severe fluctuation in the figure, we remove vectors whose magnitude
ranked in the bottom/top 2.5%.

The graph Laplacian matrix is defined as: L = I𝑁 −D−1/2AD−1/2

where D = 𝑑𝑖𝑎𝑔(∑𝑗 𝐴1, 𝑗 ,
∑
𝑗 𝐴2, 𝑗 , ...,

∑
𝑗 𝐴𝑁,𝑗 ) is the diagonal de-

gree matrix and I𝑁 is the identity matrix. From the view of graph
signal processing [8], a graph signal x is a length 𝑁 vector with 𝑥𝑖
indicating the feature value for node 𝑖 , and one physical interpreta-
tion for the graph Laplacian matrix is in calculating the smoothness
of the graph signal x:

𝑆 (x) =
∑︁
𝑖, 𝑗

𝐴𝑖, 𝑗 (𝑥𝑖 − 𝑥 𝑗 )2 = x𝑇 Lx (12)

A smaller 𝑆 (x) indicates a smoother signal. In the social link pre-
diction scenario, users tend to connect with like-minded friends, so
most of the social networks should demonstrate strong smoothness.
For an undirected graph, L is a real symmetric matrix, we can have
its spectral decomposition: L = UΛU𝑇 where the columns of U are
𝑁 eigenvectors, which can serve as a set of orthogonal bases for
the graph space. The Graph Fourier Transform (GFT) transforms
an original graph signal x into the orthogonal spectral domain by
x̂ = U𝑇 x. The inverse GFT operation is x = Ux̂. According to the
Fourier Transform theory, performing convolution in the spatial
domain corresponds to performing multiplication in the spectral
domain:

𝑓 ∗ x = U((U𝑇 𝑓 ) ⊙ (U𝑇 x)) = U𝑔𝜃 (Λ)U𝑇 x (13)

where ∗ denotes the convolution operation, 𝑓 denotes the convolu-
tion kernel function, ⊙ denotes the element-wise product of vectors.
When designing model from the spectral view, we do not need to
know what 𝑓 is, so researchers directly study how to parameterize
the kernel𝑔𝜃 . Spectral CNN [6] directly uses𝑁 trainable parameters
to model the kernel:

𝑔𝜃 (Λ) = 𝑑𝑖𝑎𝑔({𝜃𝑖 }𝑁𝑖=1) (14)

The major drawbacks are two-fold: (i) it is not localized in space
and (ii) too many free parameters are involved. ChebNet [7] uses a
polynomial filter to parameterize 𝑔𝜃 :

𝑔𝜃 (Λ) =
𝐾−1∑︁
𝑘=0

𝜃𝑘Λ𝑘 (15)

so only𝐾 parameters are involved. The convolution kernel of Light-
GCN is a special case of ChebNet, with 𝐾 = 1 and 𝜃 = 1

2𝜃0 = −𝜃1:

𝑔𝜃 (Λ) = 𝜃 (I𝑁 − Λ) (16)

By comparing Eq.(14) with Eq.(15) and Eq.(16), it is easy to observe
that the SpectralCNN and the ChebNet/LightGCN go to two differ-
ent extremes: too many parameters (overfit) or too few parameters
(underfit). Our proposed scaling network can be regarded as a com-
promise of the two extreme cases: the scaling network produces a
personalized parameter for 𝜃𝑖 according to node 𝑖’s neighborhood
context, so that 𝜃𝑖 is neither global fixed nor fully free.

4.1.2 From the Graph Isomorphism View. Keyulu et al. [30] pro-
pose an interesting framework for analyzing the expressive power
of GNNs from the view of graph isomorphism. They point out
that ideally, a maximally powerful GNN can distinguish different
graph structures by representing them as different vectors in the
embedding space, which implies solving the graph isomorphism
problem. A key conclusion from their theory is that if the neighbor
aggregator and graph-level readout functions are injective, then the
GNN is as powerful as theWeisfeiler-Lehmann (WL) test. Guided by
this theory, they conclude that a maximally powerful GNN should
aggregate and update node representation iteratively with

e(𝑘)𝑣 = 𝜙 (e(𝑘−1)𝑣 , 𝑓 ({e(𝑘)𝑢 : 𝑢 ∈ N (𝑣)})) (17)

where 𝜙 and 𝑓 are injective functions. They propose a simple in-
stantiation of Eq 17, which is called GIN:

e(𝑘)𝑣 = 𝑀𝐿𝑃 (𝑘)
( (
1 + 𝜖𝑘 ) · e(𝑘−1)𝑣 ,

∑︁
𝑢∈N(𝑣)

e(𝑘)𝑢

) )
(18)

because MLPs have the universal approximation ability and mean-
while can represent the composition of functions 𝑓 (𝑘) ◦ 𝜙 (𝑘) . An-
other key conclusion is that both the mean and max-pooling ag-
gregators are not injective, and they are less as powerful as the
sum aggregator. However, SGC, LightGCN, and PPRGo use the
(weighted) mean aggregator, which loses a certain expressive power
to avoid the scale of embeddings explosion with stacking graph
convolution operations. From this point of view, our scaling net-
work combines the strengths of GIN and simplified GNNs like
SGC/LightGCN/PPRGo: firstly, according to the empirical conclu-
sions of simplified GNNs, MLPs in GCNs inherit unnecessary com-
plexity and even make models hard to train. In our framework,
MLPs only act on the learning of scaling factors, leaving the back-
bone of aggregation and transformation for node representation
remaining as their original neat architectures. Secondly, according
to the theoretical conclusions of GIN, mean aggregator is not in-
jective, which cannot represent repeating neighbor features. Our
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scaling factor can make up for this shortcoming by modulating
the magnitude of embedding vectors to a proper degree, so that
repeating neighbor features will not diminish and meanwhile the
scale of vectors will not explode.
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Figure 3: Comparisons of different retrieval methods. The
dataset is Xbox.
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4.2 Empirical Findings
4.2.1 Dense Retrieval vs. Rule-Based Retrieval. Embedding based
models, equipped with ANN search toolkit such as Faiss [13], are
widely used as a dense retrieval approach for candidate recall. Al-
though graph embeddings possess many advantages such as au-
tomatically graph context learning, we find that for the candidate
recall stage, dense retrieval is a complement, rather than a replace-
ment, for traditional rule-based retrieval such as CN-based and
PPR-based methods. From Figure 3(a) we can observe that dense re-
trieval along still underperforms CN and PPR, however, as revealed
in Figure 3(b), different retrieval methods catch different groups of
candidates, e.g., the overlapping ratio of PPR and PPRGo(SSNet)’s
top-100 list are merely 8%. In this regard, different retrieval meth-
ods are complemented to each other and they together comprise a
comprehensive and diverse retrieval mechanism.

4.2.2 Break the Filter Bubble. Rule-based retrieval methods can eas-
ily cause the filter bubble or echo chamber problem [21, 25], which
means that users’ social circles become increasingly homogeneous
and narrow, the majority information outside user’s ego-network
remains untouched. This is obviously undesirable and is bad for a
social network’s long-term development. Figure 4 compares the hop
distribution in top-𝑘 recommendations of PPR and PPRGo(SSNet).

We omit the CN because it can only retrieve the 2-hop neighbor-
hood. As in expectation, most of PPR’s recommended nodes are
located in the source node’s small ego-network, such as 1-hop and
2-hop neighborhood. In contrast, graph embedding method’s re-
sults have a broader coverage of the social network, e.g., in top-100
recommendations, 40.8% of recommendations locate in the 3-hop
and 40.5% come from higher-order neighborhood. Actually, among
the newly added social links (𝑢, 𝑣) of the Xbox platform, for 27.2%
cases, 𝑣 is in the 3-hop neighborhood of 𝑢 and for 21.7% cases, 𝑣 is
even in the higher-hop, which demonstrates that we indeed need
the friend finding algorithms to break the filter bubble.

4.2.3 Online Rankers. Our production ranking model is based on
Decision Tree (DT). Features include a few very simple network
metrics which at most require 2-order network context, such as
indegree/outdegree of the source/target nodes and the number of
common neighbors (CN), to make the online inference lightweight.
Graph embedding information will turn into a scalar feature, which
is the dot product score of the corresponding vectors. The advan-
tages of feature-based rankers like DT are two-fold: (1) both simple
features (such as degree and CN) and advance features (such as
embedding similarity) are included. When a user has added a new
friend, his ego-network change can be reflected by the simple fea-
tures, so the ranker can perceive the changes in real-time without
waiting until the graph embeddings got updated; (2) DT is explain-
able, we can print the decision path to see why the model recom-
mends some users as potential friends. Besides, it is very convenient
to conduct feature importance test in DT. In our experiments, em-
bedding scores account for 65% of overall feature importance, and
by adding embedding scores as features we observe a 20.7% gain
in offline NDCG. This demonstrates that graph embedding signal
plays a key role in friend recommendations.

5 RELATEDWORK
5.1 Social Link Prediction
Social link prediction is an important task for online social net-
works. Typical applications include People You May Know on Face-
book/LinkedIn andWho to Follow on Twitter. In the past, researchers
manually extract some metrics [18, 19, 28], such as CN, AA, and
BCN, to represent the proximity between two nodes in the social
network. In recent years, graph embedding techniques, such as
DeepWalk [22], Node2vec [10], and LINE [24], provide a different
view of solving the social link prediction problem. Each node is
represented as an embedding vector, which can potentially encode
comprehensive information for the node on the graph implicitly
and automatically. The proximity between two nodes can be mea-
sured as the interaction between the corresponding embedding
vectors. In this paper, we focus on the graph embedding manner.

5.2 Simplified GNNs
Graph neural networks have achieved great success in representa-
tion learning for graph structure data. Recently, some researches
show that simplifying GNN models could bring the model improve-
ment on both efficiency and effectiveness. To be specific, this line
of works could be mainly categorized into two groups:
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1) Simplifying GNN parameters. SGC [29] proves that remov-
ing intermediate non-linear activation during aggregation could not
only reduce computation complexity but also achieve competitive
performance. Similarly, after removing the feature transformation
and non-linear activation components in GCN, LightGCN [12] suc-
cessfully makes the model easier to optimize and achieves better
performance in link prediction tasks.

2) Simplifying the network structure. SIGN [9] decouples
the GNN model into two parts, including pre-processing and post-
classification, and utilizes the inception mechanism during pre-
processing to enhance the expression power. SAGN [23] further
introduces an attention mechanism to the post-classification com-
ponent, which helps the model to adaptively gather neighborhood
information among different hops. PPRGo [5] simplifies the net-
work architecture by utilizing a propagation scheme derived from
PPR, which could generate a small neighbor set for each node.

6 CONCLUSION
In this paper, we discuss friend recommendations with GNNs. We
observe that in many GNNs’ architectures, the normalizer of neigh-
borhood aggregator is set by heuristic, kept fixed, and is decoupled
from the representation learning, which may hurt the quality of
representation vectors. Thus, we propose the self-rescaling network
(SSNet), which rescales the representation in the last step, to bridge
the neighborhood normalizer and the representation learning in an
end-to-end framework. SSNet is a model-agnostic mechanism, and
it can be applied to various GNNs. We conduct extensive experi-
ments on three large-scale datasets and two different tasks, with
seven base GNN models. Results demonstrate that SSNet signifi-
cantly improves the quality of various GNNs’ representations.
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A APPENDIX
A.1 Introduction of Base GNN Models
To verify the generalization ability of SSNet, we experiment with a
variety of GNNs as base models and test if SSNet can improve their
performance, including:
•GraphSAGE [11] is a scalable GNN by performing neighborhood
sampling during the layer-wise message aggregation. We test two
aggregation types in it: pooling aggregator and LSTM aggregator.
• GIN [30]. Considering that some GNN models such as Graph-
SAGE cannot distinguish certain simple graph structures, Keyulu
et al. proposed the Graph Isomorphism Network (GIN) which is as
powerful as the Weisfeiler-Lehman graph isomorphism test.
• GAT [27] leverages attention layers on graph-structured data,
which allows for assigning different importance scores to different
neighbor nodes.
• SAGN [23] replaces the concatenation operations in SIGN [9]
with graph structure-aware attention operations, so that it can
adaptively gather neighborhood information among different hops.
• FAGCN [4] uses a frequency adaptation graph convolutional net-
work to adaptively combine the low-frequency and high-frequency
signals on the graph.
• LightGCN [12] simplifies GCNs by removing the linear transfor-
mation and non-linear activation function.
• PPRGo [5]. Based on APPNP [16], PPRGo uses an efficient Per-
sonalized PageRank algorithm for information diffusion and only
retains top-𝑘 most important neighbors for each root node.

A.2 Datasets
We use three real-world social network datasets for experiments.
The Xbox dataset is constructed from Xbox gaming social network.
The forming of an edge from 𝑢 to 𝑣 may be caused by multiple
reasons, e.g., 𝑢 and 𝑣 are friends in the real world; or, 𝑢 and 𝑣
share similar gaming interests, they just like to play games to-
gether, without knowing the real identity of each other; or, 𝑣 is
a star player who attracts many fans. The other two datasets –
Pokec and LiveJournal – are from the SNAP public datasets
(https://snap.stanford.edu/data/index.html#socnets). Pokec is the
most popular online social network in Slovakia. LiveJournal is a
free online community where users can keep a blog, journal, or
diary. Basic statistics of the three datasets are listed in Table A1. For
all these three datasets, edges are directed, which means that a user
can link to another user without reciprocation. To construct the
validation set and test set, a small portion of edges are sampled and
removed from each dataset, and the remaining edges are treated
as the training set. To make the discussions general to all types of
social networks, we do not involve side information such as node
attributes feature in experiments. Still, they can be easily added to
the input side of GNNs. Each node on the graph will be associated
with a learnable embedding vector.

Table A1: Basic statistics of the three datasets
Dataset #.nodes #.edges Avg #.degree
Pokec 1,632,803 27,560,308 16.88

LiveJournal 4,847,571 62,094,395 12.81
Xbox 3,000,000 80,194,576 26.73

A.3 Evaluation Metrics
For the candidate retrieval task, we useHit-Rate (HR@100, HR@300)
and NDCG@300 to evaluate models’ performance, because in this
task, the main objective is to propose a small set of candidates to
downstream rankers, and the relative order of the top-𝑘 candidates
is less important. For the friend ranking task, since we have a small
size of candidate samples, we care more about the ranking order of
positive samples against negative samples. So, we use Normalized
Discounted Cumulative Gain (NDCG) and Area Under the Curve
(AUC) as the benchmark metrics, which are commonly adopted in
the literature.

A.4 Training Settings
For all the models, the embedding dimension is fixed to 64. We
optimize the models with Adam [14] through the BPR [12] loss
function. For GraphSAGE, GIN, GAT, and SAGN, their embeddings
are initialized by the output embeddings of Node2vec, since we
find them hard to train from scratch. The best setting of the GNN
layer is summarized in Table A2. We empirically find that all GNNs
need at most 2 layers (which means 2-hop neighborhood) in our
scenario. For GraphSAGE, the neighbor sampling size is set to 20.
For GIN, we use the sum aggregator and a 2-layer MLP for feature
transformation. For GAT, we set the number of attention heads to 4
and take the mean of the outputs of different heads. For SAGN, we
use the symmetrically normalized adjacency matrix, like in Light-
GCN, as the transition matrix, and we use 2-layer MLPs for all the
MLPs in the model. For FAGCN, we omit the weight matrices and
activation functions. The only parameters are embedding vectors
and the weights in the self-gating mechanism. For LightGCN, we
find it better not to stack the embeddings of different layers in our
cases. For PPRGo, we use the top-32 neighbors, and the feature
transformation MLP is omitted. We try the normalization method
in neighborhood aggregation described in the original paper but

Table A2: Best number of stacking layers for GNNs
SAGE GIN GAT SAGN FAGCN LightGCN

Pokec 1 1 1 2 1 2
LiveJournal 2 1 2 2 1 2

Xbox 1 2 1 1 1 1

Table A3: Comparisons of SSNet’s variants. The task is friend
ranking.

Pokec LiveJournal Xbox
AUC NDCG AUC NDCG AUC NDCG

LightGCN
Base 0.7752 0.3327 0.8110 0.3768 0.7569 0.3588

L2-norm 0.7548 0.3325 0.7771 0.3967 0.7212 0.3383
FFN 0.7789 0.3443 0.8116 0.4180 0.7586 0.3634

Additive 0.7741 0.3312 0.8095 0.3760 0.7508 0.3458
SSNet 0.8169 0.3922 0.8501 0.4535 0.7808 0.4003

PPRGo
Base 0.8087 0.3840 0.8340 0.4174 0.7781 0.3966

L2-norm 0.7653 0.3511 0.7787 0.3860 0.7048 0.3394
FFN 0.7953 0.3666 0.8246 0.4039 0.7541 0.3740

Additive 0.8117 0.3876 0.8293 0.4082 0.7645 0.3819
SSNet 0.8193 0.3988 0.8395 0.4229 0.7825 0.4056

https://snap.stanford.edu/data/index.html#socnets
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find that uniform weights perform better, so we adopt the latter.
The number of MLP layers in SSNet and FFN is set to 2, with layer
sizes being [64, 32, 1] for SSNet and [64, 64, 64] for FFN. We omit the
scalar bias in the last layer of the SSNet’s MLP. We use the 𝑇𝑎𝑛ℎ
function as the non-linear activation for both of SSNet and FFN.

A.5 Additional Experimental Results
Table A2 lists the best number of stacking layers for GNNs. Table A3
reports the comparisons among vector transformation variants on
the friend ranking task.
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