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ABSTRACT
A large-scale recommender system usually consists of recall and
ranking modules. The goal of ranking modules (aka rankers) is
to elaborately discriminate users’ preference on item candidates
proposed by recall modules. With the success of deep learning
techniques in various domains, we have witnessed the mainstream
rankers evolve from traditional models to deep neural models. How-
ever, the way that we design and use rankers remains unchanged:
offline training the model, freezing the parameters, and deploying
it for online serving. Actually, the candidate items are determined
by specific user requests, in which underlying distributions (e.g.,
the proportion of items for different categories, the proportion of
popular or new items) are highly different from one another in a
production environment. The classical parameter-frozen inference
manner cannot adapt to dynamic serving circumstances, making
rankers’ performance compromised.

In this paper, we propose a new training and inference para-
digm, termed as Ada-Ranker, to address the challenges of dynamic
online serving. Instead of using parameter-frozen models for uni-
versal serving, Ada-Ranker can adaptively modulate parameters of
a ranker according to the data distribution of the current group of
item candidates. We first extract distribution patterns from the item
candidates. Then, we modulate the ranker by the patterns to make
the ranker adapt to the current data distribution. Finally, we use the
revised ranker to score the candidate list. In this way, we empower
the ranker with the capacity of adapting from a global model to a
local model which better handles the current task. As a first study,
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we examine our Ada-Ranker paradigm in the sequential recommen-
dation scenario. Experiments on three datasets demonstrate that
Ada-Ranker can effectively enhance various base sequential models
and also outperform a comprehensive set of competitive baselines.

CCS CONCEPTS
• Information systems → Learning to rank; Recommender
systems; • Computing methodologies→ Neural networks.

KEYWORDS
Model Adaptation, Sequential Recommendation, Dynamic Ranking
ACM Reference Format:
Xinyan Fan, Jianxun Lian, Wayne Xin Zhao, Zheng Liu, Chaozhuo Li and
Xing Xie. 2022. Ada-Ranker: A Data Distribution Adaptive Ranking Para-
digm for Sequential Recommendation. In Proceedings of the 45th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3477495.3531931

1 INTRODUCTION
Recommender systems play an important role in information fil-
tering for online services such as e-commerce, news, movie, and
gaming. To support efficient recommendations from a massive set
of items, an industrial recommender system usually follows the
recall-then-rank two-stage paradigm. Given a user request, the recall
component proposes a small set of relevant candidates with light-
weight methods, then the ranking component further elaborately
scores the candidates with more advanced models and returns top-
𝑘 results. This paper discusses models in the ranking component
(which we call rankers hereafter).

Since online user behaviors are highly dynamic (driven by evolv-
ing user preference and short-term interest), enhancing rankers
with sequential user modeling becomes a hot research topic and
shows significant business value in industry [25, 50]. In recent litera-
ture, a number of sequential recommendationmodels have been pro-
posed based on neural network architectures, including Gated Re-
current Unit (GRU) [8], Convolutional Neural Network (CNN) [21]
and Transformers [36]. These approaches can effectively handle
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sequential interaction data and train the recommendation models
in an end-to-end manner. Typically, these neural rankers still fol-
low the “regular offline training⇒ static online inference" paradigm,
in which once a model is trained, the parameters are frozen and
deployed into online environment for instant service.

However, the candidate lists to be ranked are determined by spe-
cific user requests, and the underlying distributions can be rather
different in diverse request scenarios. For example, in news rec-
ommendations, for users who are big fans of NBA, their recall
candidates will contain more news articles related to basketball
than other users; on an e-commerce platform, if a user clicks on
theWomen’s Fashion category, then the retrieved candidates will be
highly related to this category. Besides, other factors (e.g., temporal
effects [39] and counterfactual settings [10]) might also increase
the discrepancy among the data distributions of candidate items for
different user requests. Therefore, the parameter-frozen inference
paradigm for rankers can only produce sub-optimal performances
since data distribution discrepancy will cause significant perfor-
mance decrease in the rankers. Indeed, such an issue generally
exists in supervised learning methods [31, 34]. It is desirable to
develop a more capable ranking paradigm that can flexibly adapt
to different circumstances.

As existing solutions, several methods curate a few online circum-
stances (e.g., for different weekdays [39] or different domains [33]),
and then let the model dynamically select a suitable one for re-
sponse. However, these approaches can only cover a limited set of
recommendation scenarios by assuming they are pre-given, and we
need to maintain multiple models in the service system, which is
not parameter-efficient. Besides, it takes a significant cost to switch
among different heavy model variants, which also increases the risk
of system failures. Therefore, it is not realistic to assume that the
circumstances are discrete and enumerable. It is still challenging
to design a capable ranker that dynamically adapts to a specific
circumstance in a flexible and parameter-efficient manner.

In this paper, we propose Ada-Ranker – a new Adaptive para-
digm for making context-aware inference in Rankers. We address
the data distribution shift issue by a model adaptation approach.
Specifically, we regard handling each set of item candidates from re-
call modules to a specific user request as an individual task. During
the inference stage for a task, instead of fixing the parameters of a
ranker, Ada-Ranker adapts the ranker to the current task in three
steps, namely distribution learning, input modulation and parameter
modulation. For distribution learning, we learn the underlying data
patterns of the current task by Neural Processes [13, 14], which will
help the ranker focus on extracting useful users behavior patterns
to better discriminate candidate items in current task. For input
modulation, by taking the extracted data distribution patterns as
adaptation conditions, we learn a feature-wise linear modulation
neural network to adjust the input representations, so that input
representations are re-located to latent positions where rankers can
discriminate the current task better. For parameter modulation, we
adopt a model patching approach by generating parameter patches
based on a parameter pool of base parameter vectors or matrices.
Our adaptation process consists of the above input modulation
and parameter modulation procedures, which jointly adapt model’s
parameters according to specific tasks in a model-agnostic way. To
verify the effectiveness of Ada-Ranker, we design comprehensive

settings for test environments and apply Ada-Ranker to various
types of base sequential recommendation models on three real-
world datasets. Experiment results demonstrate that Ada-Ranker
can effectively adapt to dynamic and diverse test tasks, and signifi-
cantly boost the base models.

Our contributions are summarized as follows. (1) We highlight
the data distribution discrepancy issue and the importance of param-
eter adaptation during the inference process, which is commonly
encountered in industrial recommender systems but overlooked in
literature. (2)We propose Ada-Ranker, a new inference paradigm for
rankers, which can adaptively adjust the model parameters accord-
ing to the data patterns in a given set of item candidates. Ada-Ranker
satisfies the three properties of being lightweight, model-agnostic
and flexible for plug-and-play usage. (3) We conduct extensive ex-
periments on three real-world datasets in the scenario of sequential
recommendations. Results demonstrate that Ada-Ranker can sig-
nificantly boost the performance for various base models, as well
as outperform a set of competitive baselines.

2 PROBLEM FORMULATION
Given a request from a user 𝑢, the recall module uses multiple ap-
proaches (such as popularity-based, item-to-item and approximate
nearest neighbor search) to retrieve a small set (usually a few hun-
dreds or thousands) of item candidates: C = {𝑣𝑖 }𝑚𝑖=1, which might
be relevant to 𝑢. The goal of the ranker is to score each candidate
item 𝑣 in C and return the (top-𝑘) ordered list as recommendations.

A Standard Sequential Ranker Architecture. For personalized
recommendations, user 𝑢 is associated with a profiling represen-
tation, denoted by x𝑢 , which is derived based on her historical
activities: x𝑢 = {𝑣1, 𝑣2, ..., 𝑣𝑛}, where 𝑛 is the length of behaviors
and 𝑣𝑖 is in chronological order. The ranker adopts a model 𝑓 to
predict the preference score of user 𝑢 over the target candidate
𝑣 : 𝑦𝑢𝑣 = 𝑓 (x𝑢 , 𝑣), where there are usually three major layers in
𝑓 : an embedding lookup layer 𝑄 (·), a sequential encoding layer
𝑔𝑆𝐸 (·), and a predictive layer 𝑔𝑃𝑅𝐸𝐷 (·). We present a typical ar-
chitecture of ranker models 𝑓 in Figure 1(a). The user behavior
sequence {𝑣1, 𝑣2, ..., 𝑣𝑛} will first go through the embedding-lookup
layer 𝑄 (·) to form the corresponding item embeddings:

𝑄𝑢 = 𝑄 (x𝑢 ) = {q𝑣1 , q𝑣2 , ..., q𝑣𝑛 }. (1)

Next, the sequential user encoder 𝑔𝑆𝐸 (·) will encode the item se-
quence and produce an embedding vector as user representation:

p𝑢 = 𝑔𝑆𝐸 (𝑄𝑢 ). (2)

Then, p𝑢 will be concatenated with a target item vector q𝑣 (if there
are some attribute features such as item category, user profiles,
they can also be appended here) as the input to the predictive layer
𝑔𝑃𝑅𝐸𝐷 (·), which is usually implemented as a simple two-layerMulti
layer Perceptron (MLP) (see Figure 3 (a)):

𝑦𝑢𝑣 = 𝑔
𝑃𝑅𝐸𝐷 (p𝑢 , q𝑣) = 𝑀𝐿𝑃 (p𝑢 , q𝑣). (3)

In summary, a standard ranker model 𝑓 can be instantiated as

𝑦𝑢𝑣 = 𝑓 (x𝑢 , 𝑣) = 𝑔𝑃𝑅𝐸𝐷 (𝑔𝑆𝐸 (𝑄 (x𝑢 )), q𝑣) . (4)
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(a) The Base Ranker Model (b) Ada-Ranker
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Figure 1: An overview of the traditional sequential model (a)
and Ada-Ranker paradigm (b). We use colored elements to
indicate the new components in Ada-Ranker.

Potential Issues. However, as introduced in Section 1, the retrieved
item candidates C may have different data distributions from di-
verse recall requests. Existing methods adopt a global ranker 𝑓 to
serve all requests, and for a given user, it will produce the same
score for item 𝑣 , regardless of which candidate set C it draws from.
We argue that a better paradigm is to leverage C as a ranking con-
text, and let the model adjust itself according to the specific context
to make more fine-grained and accurate prediction scores for the
current ranking task.

3 METHODOLOGY
3.1 An Adaptive Ranking Paradigm
The essence of adaptive ranking paradigm is to incorporate a specially-
designed adaptation mechanism (aka, adaptor), which encodes the
data distribution patterns of C and revises the global model 𝑓 to a
local model 𝑓 ′ accordingly, so that 𝑓 ′ has a better discriminative
capacity of ranking items in C. To implement this new ranking
paradigm, it is important to design the adaptation mechanism with
special considerations for industrial applications:
• (C1) Lightweight. The model should be efficient in both computa-
tion and memory usage.

• (C2) Model-agnostic. The model can be generalized to various
sequential recommendation models, such as GRU-based [15],
CNN-based [45] or GNN-based methods [41].

• (C3) Plug-and-play. The adaptation mechanism can be applied as
a model patch: the global model remains unchanged, so when the
adaptor is disabled, the system performs exactly as how it works
as usual; when the adaptor is enabled, the global model together
with the model patch serve as the adaptation model and produce
more accurate results. This feature ensures the flexibility to turn
on/off the adaptor for different purposes.

To this end, we introduce a new ranking paradigm Ada-Ranker. We
first learn the distribution patterns z from C, which will be used to
modulate the global model 𝑓 and derive a local model 𝑓 ′; then, we
use 𝑓 ′ to score the candidates in C: 𝑦𝑢𝑣 = 𝑓 ′(x𝑢 , 𝑣). Since there are
two key components in the global model 𝑓 , i.e., 𝑔𝑆𝐸 (·) (Eq. 2) and
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Figure 2: An illustration of the input modulation.

𝑔𝑃𝑅𝐸𝐷 (·) (Eq. 3), we propose two adaptation components, called
input modulation and parameter modulation, which can incorporate
the data distribution z tomodulate𝑔𝑆𝐸 (·) and𝑔𝑃𝑅𝐸𝐷 (·) respectively.
An overview of Ada-Ranker is illustrated in Figure 1(b) and in
Algorithm 1. In the next section, we will introduce the details of
each proposed component.

3.2 Data Distribution Learning from the
Ranking Candidates

To implement the ranking paradigm, the first issue is how to effec-
tively learn the data distribution patterns in ranking candidates C,
which extracts specific data characteristics for adjusting the ranker.

Neural Processes Encoder. We assume that item candidates in
C are drawn from a particular instantiation of stochastic process
F , which corresponds to a specific ranking request. In order to
characterize the dynamic and diverse data distributions, we borrow
the idea of Neural Processes (NP) from [13, 14] to approximate a
stochastic process with learnable neural networks. Recently, Neural
Processes has been utilized for alleviating the user cold-start prob-
lem in recommender systems [27]. Different from them, we adopt
Neural Processes to model F which represents the data distribution
associated with a ranking request. The fundamental advantages of
NP lie in (1) providing an effective way to model data distributions
conditioned on representations of observed data; and (2) being
parameterized by Multi-layer Perceptron (MLPs) which is more
efficient than Gaussian Process (see more details in [13, 14, 27]).
Here we introduce the variational approximation implementation
of NP encoder [27].

Specifically, we first generate a latent embedding vector r𝑗 for
each item 𝑗 in C with a two-layer MLP:

r𝑗 = 𝑀𝐿𝑃 (𝑁𝑃 ) (q𝑗 ). (5)

Then, the NP encoder will aggregate these latent vectors to generate
a permutation-invariant representation r via mean pooling:

r = (r1 + r2 + . . . r𝑚)/𝑚. (6)

Reparameterization. The above representation r will be used to
generate the mean vector and the variance vector:

s = 𝑅𝑒𝐿𝑈 (W𝑠r), (7)
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𝝁 = W𝜇s, log𝝈 = W𝜎 s. (8)

Finally, the data distribution is modeled by a random variable z:
z ∼ N(𝜇, 𝜎2), which is implemented with the reparameterization
trick [19], so that via making randomness in the input node of
model, all the computational nodes in the model are differentiable
and gradients can be smoothly backpropagated:

z = 𝝁 + 𝝐 ⊙ 𝝈 , 𝝐 ∼ N(0, I), (9)

where ⊙ means the element-wise product operation.
After extracting the data distribution from the candidates, we

next discuss how to adapt a ranker to the given data distribution in
two aspects, namely input modulation and parameter modulation.

3.3 Input Modulation
To ensure the model-agnostic property, we modulate the latent
representations of input sequence, and this operation can be shared
by different sequential recommendation models.

Modeling Data Distributions as Adaptation Conditions. To
revise the item representations according to the underlying data
distributions, our idea is to consider the extracted z in Eq. 9 as a
condition to adjust the corresponding input representations. Here,
we adopt the FiLM method [30] that is a general-purpose method
to model the influence of conditioning information on neural net-
works. Conditioned on the distribution patterns z, we perform linear
modulation on the latent representations of item sequence, such
that input embeddings are adjusted to new representations that are
more distinguishable among candidate set C. The details of this
adaptation process for input modulation are shown in Figure 2.

Specifically, We learn to generate two modulation coefficients 𝛾
and 𝛽 through the conditional representation z:

𝛾 = 𝑓𝑠 (z), 𝛽 = 𝑓𝑏 (z), (10)

where 𝑓𝑠 and 𝑓𝑏 are two neural networks with different parame-
ters, formulated as: 𝑓 (z) = w2𝑅𝑒𝐿𝑈 (W1z + b1) + 𝑏2. The latent
representations of item sequence are then adjusted by:

q̃𝑡 = 𝛾q𝑡 + 𝛽. (11)

Here, 𝑓𝑠 and 𝑓𝑏 are shared for all items in behavior sequence.

A Case with GRU-based Recommender. For example, if the
sequential model 𝑔𝑆𝐸 (·) is GRU, then the modulated user vector is:
ũ = 𝐺𝑅𝑈 ({q̃𝑡 }𝑛𝑡=1). Ada-Ranker does not change any parameters
in GRU (due to the model-agnostic property). Instead, it makes
adaptations on the data input, which creates room for the encoded
user vector to be more dedicated to a provided distribution z.

3.4 Parameter Modulation
For the modulation of scoring function 𝑔𝑃𝑅𝐸𝐷 (·), we adopt the
idea of model patch [17, 33] to adjust the parameters, which is a
light-weight approach to implement parameter adaptation.

Adaptation by Model Patch. The basic idea of model patch is to
learn parameter variations for adapting to new input or task con-
text [44]. As shown in Figure 3 (a)-(b), we can incorporate another
two MLPs to generate parameter patches for the 𝑘-th hidden layer
of the predictive layer according to the conditional representation
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Figure 3: An illustration of the parameter modulation.

z which represents the underlying data distributions:

Ŵ𝑘 = 𝑀𝐿𝑃 (𝑤𝑘 ) (z), b̂𝑘 = 𝑀𝐿𝑃 (𝑏𝑘 ) (z), (12)

Then the ranker’s MLP parameters (Eq. 3) are modulated by:

W̃𝑘 = W𝑘 ⊙ Ŵ𝑘 , b̃𝑘 = b𝑘 + b̂𝑘 , (13)

where ⊙ denotes the element-wise multiplication and 𝑘 means the
𝑘-th layer of the ranker’s MLP. Let ℎ denote the input dimension
and 𝑑 denote the output dimension, we have W𝑘 , Ŵ𝑘 , W̃𝑘 ∈ Rℎ×𝑑
and b𝑘 , b̂𝑘 , b̃𝑘 ∈ R𝑑 . We will replace the original MLPs’ parameters
W𝑘 by W̃𝑘 and b𝑘 by b̃𝑘 . In this way, a global scoring function
𝑔𝑃𝑅𝐸𝐷 (·) is adapted into a local scoring function 𝑔𝑃𝑅𝐸𝐷 (·).

Learning with Parameter Pool. A major problem of Eq. (12) is
that the modulation parameters are generated in an unconstrained
way, and it has been shown that it is difficult to directly optimize
MLPs to approximate arbitrary real-valued vectors, especially when
the training sample is not sufficient [22]. Thus, we propose to con-
struct a parameter pool consisting of multiple base parameters (ei-
ther vector or matrix), which is a parameter memory network [32].
Furthermore, the parameters are derived based on a linear com-
bination of multiple base parameters. The proposed adaptation
mechanism for parameter modulation is depicted in Figure 3 (c).
Specifically, we have a parameter pool M with 𝐿 base parameters:
M = {M1,M2, ...,M𝐿}, where eachM𝑖 has the same shape with the
MLP parameterW of the ranker. Then, the parameter patch Ŵ is
composited by a linear combination ofM as follows:

Ŵ =

𝐿∑︁
𝑖=1

𝛼𝑖M𝑖 , (14)

The coefficients 𝛼𝑖 are determined by a set of reading heads Q =

{q1, q2, ..., q𝐿}:

𝑎𝑖 = z · q𝑖 , (15)

𝛼𝑖 =
exp(𝑎𝑖 )∑𝐿
𝑗=1 exp(𝑎 𝑗 )

,∀𝑖 = 1, 2, ..., 𝐿, (16)

where q∗ are learnable vectors which have the same shape with z.
We use individual parameter pools M𝑘 ,Q𝑘 for each layer of the
MLP parameters in 𝑔𝑃𝑅𝐸𝐷 (·) (e.g., W𝑘 in the 𝑘-th layer). The case
of the bias parameters b∗ is the same, which is omitted here.
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3.5 Optimization and Discussion
After the input modulation and parameter modulation, the ranker
transforms from a global model 𝑓 (𝑢, 𝑣) = 𝑔𝑃𝑅𝐸𝐷 (𝑔𝑆𝐸 (𝑄 (x𝑢 )), q𝑣)
to a local model 𝑓 ′(𝑢, 𝑣) = 𝑔𝑃𝑅𝐸𝐷 (𝑔𝑆𝐸 (𝑄 (x𝑢 )), q𝑣). We next discuss
how to optimize the proposed ranking approach.

Parameter Learning. The optimization method remains the same
as the original ranker, by minimizing the binary cross entropy loss:

L =
1
|Γ |

∑︁
(𝑢,𝑣) ∈Γ

−𝑦𝑢,𝑣 log𝑦𝑢𝑣 − (1 − 𝑦𝑢,𝑣) log(1 − 𝑦𝑢𝑣), (17)

where 𝑦𝑢𝑣 = 𝑓 ′(𝑢, 𝑣) and Γ denotes the set of training instances.
There are several feasible strategies to train the Ada-Ranker. For
clarity, let Θ denote the set of parameters of the base model 𝑓 , and
Φ denote the set of parameters in adaptation modules (including the
distribution extractor, input modulation and parameter modulation).
We have the following three alternative training strategies:
(1) ∅ ⇒ Θ + Φ. A straightforward approach is to train the whole

Ada-Ranker model in an end-to-end manner from scratch (∅).
(2) Θ ⇒ Θ + Φ. In the first stage, we train the base model until

convergence, so only Θ get updated in this stage; in the second
stage, we load the pre-trained base model and train the whole
Ada-Ranker, so parameters in both Θ and Φ will be updated.

(3) Θ ⇒ Φ. In the first stage, we train the base model until it con-
verges, so only Θ get updated in this stage; in the second stage,
we load the pre-trained base model 𝑓 and freeze its parameters,
and train the Ada-Ranker by only updating Φ.
To achieve the (C3) property mentioned in Section 3.1, we adopt

the last training strategy. Pre-training the base model’s parameters
can offer a good parameter initialization for the training of Ada-
Ranker, so the first strategy, ∅ ⇒ Θ + Φ, is usually worse than the
other two strategies. The major merit of the third strategy is that,
after Ada-Ranker’s training, the base model’s parameters remain
unchanged, such that an industrial system can flexibly turn on
or turn off the adaptation module to meet diverse requirements
of different scenarios. The overall training process of Ada-Ranker
is summarized in Algorithm 1 (see experimental comparisons of
the training strategies in Section 4.4.2). For inference stage, we
only need to run Line 8 to Line 17 in Algorithm 1 with a trained
Ada-Ranker model.

Complexity Discussion. The number of additional parameters
Φ is 𝑂 (𝐿𝐾 (ℎ𝑑 + 𝑑) + 𝑑𝑑), while the original global model has pa-
rameter size |Θ| = 𝑂 (𝑀𝑑 +𝐾 (ℎ𝑑 + 𝑑) + |𝜃 |), where 𝐿, 𝐾 , ℎ, 𝑑 ,𝑀 , 𝜃
denote the number of parameter pool slots, the number of hidden
layers of the predictive layer, hidden layer size for neural networks,
item embedding size, the number of items and the parameters of
𝑔𝑆𝐸 (·) respectively. For a recommender system, 𝑀 (usually thou-
sands or millions) is much larger than 𝐿 (e.g., 10 in this paper), 𝐾
(e.g., 2 in this paper) and 𝑑 (e.g., 64 in this paper), compared with
other methods that need to train and maintain multiple versions
of Θ for serving different scenarios, our Ada-Ranker is much more
parameter economic. As for the computational cost, Neural Pro-
cesses perform the calculation on candidate items individually (see
Eq.(5)), without the requirement of interactions among items in the
candidate list. Thus, with distribution learning techniques, the com-
putational cost is linear with the number of items in the candidate

Algorithm 1 The training procedure of Ada-Ranker.
Input: Training instances: a set of {behavior sequence x𝑢 = {𝑣1, 𝑣2, ..., 𝑣𝑛 },

labeled items C = {𝑣𝑖 , 𝑦𝑢𝑣𝑖 }𝑚𝑖=1}.
Output: An Ada-Ranker model 𝑓 ′ (x𝑢 , 𝑣) .
1: // The first training stage
2: Train base model 𝑓 (x𝑢 , 𝑣) and obtain pre-trained global parameters Θ.
3: // The second training stage
4: Initialize basemodel parameters in Ada-Ranker 𝑓 ′ (x𝑢 , 𝑣) byΘ, initialize

adaptation parameters Φ randomly.
5: while not convergence do
6: Fetch a training instance {x𝑢 , C}
7: // Distribution Extraction
8: Extract the distribution pattern z by Eq.(5 - 9).
9: // Input Modulation
10: Generate 𝛾, 𝛽 with z by Eq.(10).
11: Use 𝛾, 𝛽 to modulate each q𝑡 by Eq.(11) to get q̃𝑡 .
12: Encode {q̃𝑡 }𝑛𝑡=1 and generate ũ by 𝑔𝑆𝐸 ( ·) .
13: // Parameter Modulation
14: Calculate the coefficients 𝛼 by Q𝑘 and z in Eq.(15)&(16).
15: Generate parameters Ŵ𝑘 , b̂𝑘 in Eq.(14).
16: Modulate 𝑔𝑃𝑅𝐸𝐷 parameters W𝑘 , b𝑘 in Eq.(13).
17: Use the revised 𝑔𝑃𝑅𝐸𝐷 to score the candidates in C.
18: Calculate loss L in Eq.(17).
19: Stop gradients for Θ and update Φ by Adam optimizer.

Table 1: Statistics of datasets after preprocessing.

Dataset # Users # Items # Actions # Avg.len Sparsity #Categories

ML10M 69,878 10,676 10,000,047 143 98.66% 18
Taobao 487,813 787,094 24,938,811 34 99.99% 20
Xbox 1,000,000 6,071 25,315,983 15 99.58% 12

list. Besides, for the input modulation and parameter modulation,
the forward calculation does not depend on a specific candidate
item, so the whole calculation only needs to be conducted once.
Thus, the overall computational cost can be effectively controlled
at a reasonable level.

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Datasets. We use three datasets for experiments, covering
movie, e-commerce and gaming recommendation scenarios.
• ML10M Dataset 1 is a widely used benchmark dataset. It con-
tains 10,000,054 ratings and 95,580 tags applied to 10,681 movies
by 71,567 users from an onlinemovie recommender service. There
are in total 18 categories (genres in origin file) of items (with over-
lapping items): Action, Adventure, Animation, Children, Comedy,
Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical,
Mystery, Romance, Sci-Fi, Thriller,War andWestern.

• Taobao Dataset 2 is an e-commerce dataset released by Taobao.
The user-item interactions logs include the type of interaction
(e.g., purchase or click), timestamps and items’ categories (in
anonymous). The item category distribution is severely uneven,
so we keep the top 19 categories which contain most items, and
regard the remaining items belong to a virtual category others.

1https://grouplens.org/datasets/movielens/10m/
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1

https://grouplens.org/datasets/movielens/10m/
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
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Table 2: Performance comparison of seven base models and Ada-Ranker on three datasets.

Datasets Models MF GRU4Rec SASRec NARM NextItNet SHAN SRGNN
GAUC NDCG GAUC NDCG GAUC NDCG GAUC NDCG GAUC NDCG GAUC NDCG GAUC NDCG

ML10M Base 0.8683 0.6942 0.9187 0.7781 0.9106 0.7616 0.9156 0.7718 0.8620 0.6855 0.8667 0.6973 0.8993 0.7441
Ada-Ranker 0.8807 0.7121 0.9279 0.7932 0.9214 0.7783 0.9261 0.7879 0.8778 0.7069 0.8816 0.7164 0.9161 0.7676

Taobao Base 0.8363 0.6605 0.8734 0.7208 0.8707 0.7211 0.8707 0.7177 0.8482 0.6872 0.8609 0.7094 0.8637 0.7105
Ada-Ranker 0.8512 0.6907 0.8888 0.7490 0.8864 0.7481 0.8881 0.7439 0.8625 0.7079 0.8653 0.7106 0.8791 0.7322

Xbox Base 0.9036 0.7676 0.9388 0.8302 0.9323 0.8172 0.9368 0.8258 0.9343 0.8222 0.9217 0.8022 0.9336 0.8212
Ada-Ranker 0.9123 0.7897 0.9451 0.8438 0.9382 0.8291 0.9412 0.8354 0.9401 0.8336 0.9282 0.8131 0.9426 0.8384

• Xbox Dataset is a private dataset provided by Xbox, an online
gaming platform of Microsoft. It contains one year’s user-game
playing logs spanning from September 2020 to September 2021.
We sample 1 million users from the original dataset. There are
12 major categories of items in Xbox dataset (with overlapping
items), such as GamePass 3, Action Adventure and Card Board.

For all datasets, we remove users with fewer than ten interaction
records, group the interaction records by users and sort them in
chronological order. The basic statistics are reported in Table 1. Fol-
lowing previous works [18, 51], we apply the leave-one-out strategy
for evaluation. For each user interaction sequence, the last item and
the item before it are considered as test and validation data, respec-
tively, and the remaining items is for training. A group of candidate
items contains 1 positive instance and 19 negative samples.

Since the focus of this paper is to empower rankers with adap-
tation ability for dynamic ranking context, to verify this property,
the key part of dataset preparation lies in the negative sampling
strategy, which reflects that the ranker needs to discriminate posi-
tive instance from different groups of item candidates. For example,
if instances are sampled by item popularity, we can simulate the
situation that the user is visiting the Most Popular tab; if instances
are all sampled from the Shooter category, it indicates that a user
has clicked into the Shooter channel and searches for games in this
scope. Thus, to make the test environment more comprehensive
and the distribution of candidates more diverse, we sample negative
items for each positive instance by the distribution-mixer sampling.

Distribution-mixer sampling: We consider two basic factors
that influence the distribution of candidates, namely (1) item cat-
egories and (2) item popularity. Our negative sampling strategies
are designed as: (Step-1) draw a random number 𝑑 from {1, 2, 3},
indicating that 𝑑 item categories will be involved in the 19 negative
instances. If 𝑑 > 1, then randomly sample 𝑑 − 1 item categories
which are different with the positive item’s category; (Step-2) con-
duct a Bernoulli trial with 𝑝 = 0.5, if the outcome is success, set the
item sampling strategy to popularity-bias, otherwise set the item
sampling strategy to uniform for this round; (Step-3) from each 𝑑
sampled categories, sample items with strategy returned in Step-2,
so that the total number of items is 19. Step-1 to Step-3 is repeated
individually for each positive instance in the train/valid/test set.

4.1.2 Evaluation Metrics. Following the previous works [48, 49],
we adopt twowidely used metrics for evaluation the ranking results:

3GamePass is membership subscription, with which users can play a library of games
on Xbox by paying a certain amount of money each month.

GAUC (Area Under the ROC curve, group by each user), and NDCG
(Normalized Discounted Cumulative Gain).

4.1.3 Implementation Details. All methods are implemented with
Python 3.8 and PyTorch 1.8.1. We use four Linux servers with the
same hardware configuration: CPU is Intel(R) Xeon(R) E5-2690 v4 @
2.60GHz and GPU is Tesla P100. We use the Adam optimizer with
a learning rate of 0.001, where the batch size is set as 4096. The
dropout rate is set to 0.4. The dimension of the embedding is 64,
and the hidden states’ size in the prediction layer is 128 ∗ 64 and
64∗1. The maximum sequence length is 200, 100 and 50 for ML10M,
Taobao and Xbox datasets, respectively. For Ada-Ranker, the slots
of memory network 𝐿 is set to 10. The source code of Ada-Ranker
is released at https://github.com/RUCAIBox/Ada-Ranker.

4.2 Improving Various Base Models
4.2.1 Base Models. Ada-Ranker is a model-agnostic ranking par-
adigm which can enhance various types of sequential recommen-
dation models. To verify this, we test Ada-Ranker’s performance
based on the following representative sequential models:

• MF [20] factorizes each item and user into an embedding vector
based on the user-item interaction logs. It is the only one base
model that is non-sequential.

• GRU4Rec [15] uses GRU to model a user’s behavior sequence. It
is one of the most popular model for sequential recommendations.

• SASRec [18] uses the unidirectional multi-head self-attention
model to deal with a user’s behavior sequence.

• NARM [24] is a session-based recommendation approach with
RNN. It uses an attentionmechanism to determine the relatedness
of the past purchases in the session for the next purchase.

• NextItNet [45] applies dilated CNN for long sequence modeling.
• SHAN [42] is a 2-layer hierarchical attention network to model
user’s dynamic long-term preference and sequential behaviors.

• SRGNN [41] models session sequences as graph structured data
and uses a GNN to capture complex transitions of items.

4.2.2 Results. We train all base sequential models and their corre-
sponding Ada-Rankers on three datasets. The results are reported
in Table 2. We observe that Ada-Ranker outperforms all base se-
quential models substantially and consistently, on all datasets, and
in terms of overall metrics. Specifically, the average improvement
of Ada-Ranker (GRU4Rec) over GRU4Rec on the three datasets is
2.50% in terms of NDCG and the improvement of Ada-Ranker (SAS-
Rec) over SASRec is 2.46%. Since Ada-Ranker and its base model

https://github.com/RUCAIBox/Ada-Ranker
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Table 3: Performance comparison with eight different baselines based on two base models (GRU4Rec and SASRec). The best
performance and the second best performance methods are denoted in bold and underlined, respectively. The 𝑝-value of
significance test is performed in the NDCG metrics of Ada-Ranker with the corresponding best baseline method (underlined).

Methods
GRU4Rec as base model SASRec as base model

ML10M Taobao Xbox ML10M Taobao Xbox
GAUC NDCG GAUC NDCG GAUC NDCG GAUC NDCG GAUC NDCG GAUC NDCG

Base 0.9187 0.7781 0.8734 0.7208 0.9388 0.8302 0.9106 0.7616 0.8707 0.7211 0.9323 0.8172
DNS 0.9005 0.7512 0.8646 0.7200 0.9254 0.8182 0.8942 0.7411 0.8632 0.7183 0.9219 0.8125
GSF𝑐𝑜𝑛𝑐𝑎𝑡 0.9150 0.7744 0.8903 0.7433 0.9335 0.8261 0.9072 0.7623 0.8858 0.7400 0.9308 0.8201
GSF𝑎𝑣𝑔 0.9205 0.7760 0.8860 0.7370 0.9390 0.8325 0.9116 0.7622 0.8798 0.7314 0.9353 0.8270
GSF𝑡𝑟𝑚 0.9232 0.7815 0.8865 0.7366 0.9429 0.8414 0.9161 0.7700 0.8836 0.7351 0.9366 0.8278
PD 0.9254 0.7818 0.8913 0.7387 0.9373 0.8216 0.9196 0.7705 0.8878 0.7323 0.9325 0.8137
DecRS 0.9247 0.7881 0.8785 0.7306 0.9427 0.8367 0.9195 0.7699 0.8776 0.7299 0.9345 0.8227
DLCM 0.9240 0.7851 0.8835 0.7366 0.9426 0.8374 0.9177 0.7713 0.8793 0.7347 0.9376 0.8272
PRM 0.9244 0.7863 0.8829 0.7397 0.9442 0.8396 0.9181 0.7731 0.8788 0.7345 0.9379 0.8288
AdaRanker 0.9279 0.7932 0.8888 0.7490 0.9451 0.8438 0.9214 0.7783 0.8864 0.7481 0.9382 0.8291
𝑝-value 7.02e-07 7.64e-09 0.00424 0.000215 5.39e-12 0.1586

have the same embedding layer, user model architectures and pre-
diction layers, it shows that our proposed Ada-Ranker is effective to
adapt a base mode according to different distributions of candidates
for the current task. Note that we adopt the Θ ⇒ Φ strategy (see
Section 3.5) to train Ada-Ranker, which first trains the base model
and then only fine-tune parameters of adaptation networks. The
impressive performance gain demonstrates the effectiveness of our
adaptation mechanism, even though we just fine-tune the small set
of parameters of adaptation networks. In summary, Ada-Ranker
processes the virtue of the plug-and-play property: enhancing any
given base model with adaptation modules while maintaining the
original base model unchanged.

4.3 Comparison with Baselines
4.3.1 Baselines. To the best of our knowledge, there are no studies
on dynamic model adaptation for rankers in literature. However, we
can extend some existing methods to make them able to handle dy-
namic candidate sets, so that they can serve as baselines. Generally,
we collect baselines from four perspectives and adopt GRU4Rec
and SASRec as base models to test how different types of methods
perform.
(1) From the view of dynamic negative sampling:

• DNS [46] dynamically chooses negative samples from the
ranked list produced by the current prediction model and iteratively
update it. Considering that DNS dynamically constructs candidate
list in the training stage, it is useful to adapt the base model to
various types of data distribution.
(2) From the view of group-wise ranking:

• GSF [2] uses a groupwise scoring function, in which the rel-
evance score of an item is determined jointly by all items in the
candidate list. We implement three types of scoring functions based
on the idea of GSF. (1) GSF𝑐𝑜𝑛𝑐𝑎𝑡 : concatenates all candidates’ em-
beddings and produces scores for all candidates, which is the origi-
nal implementation of GSF [2]. (2) GSF𝑎𝑣𝑔 : averages all candidates’
embeddings into one embedding vector (which can be regarded as a
context vector), and appends it to the input of scoring function. (3)

GSF𝑡𝑟𝑚 : instead of simply using averaging, it uses a 2-layer Trans-
former to encoding the candidate list and get all items’ contextual-
ized representation, then append the corresponding contextualized
representation to the input of scoring function.
(3) From the view of causal analysis:

• PD [47] removes the confounding popularity bias in model
training and adjusts the recommendation score with desired popu-
larity bias via causal intervention. The major consideration is to de-
couple the user-item matching with item popularity: 𝑓𝜃 (𝑢, 𝑖,𝑚𝑡

𝑖
) =

𝑓𝜃 (𝑢, 𝑖) · 𝑔(𝑚𝑡
𝑖
), where𝑚𝑡

𝑖
is the item 𝑖’s present popularity calcu-

lated by a statistical method. We can draw an analogy that the
popularity bias in PD corresponds to the data distribution bias in
our scenario. Thus, in our experiment, we replace 𝑚𝑡

𝑖
with our

distribution vector and use a𝑀𝐿𝑃 (·) to calculate the refining score.
• DecRS [38] explicitly models the causal relations of user rep-

resentations during training, and leverages backdoor adjustment
to eliminate the impact of the confounder which causes the bias
amplification. In our experiment, we replace the group-level user
representation in original model with a category-level representa-
tion of the candidate list.
(4) From the view of re-ranking:

• DLCM [1] employs a RNN to sequentially encode the top
results using their feature vectors and learn a local context model
to re-rank the top results. We apply DLCM to re-rank the ranking
list of base models.

• PRM [29] employs a Transformer structure to model the global
relationships between any pair of items in the whole list. We apply
PRM-BASE to re-rank base model’s results.

4.3.2 Results. The overall results are shown in Table 3, where we
can make the following observations:

• In general, Ada-Ranker performs best on three datasets and with
two base models (with an exception for GAUC metric in Taobao
dataset), which demonstrates the effectiveness of our method.

• DNS hurts the performances of base models, which indicates
that our assumption – DNS can encode and generalize to various
types of data distribution – does not hold.
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Table 4: Results of ablation Study.

Methods ML10M Taobao Xbox
GAUC NDCG GAUC NDCG GAUC NDCG

Base (GRU4Rec) 0.9187 0.7781 0.8734 0.7208 0.9388 0.8302
(1) avg 0.9238 0.7853 0.8792 0.7349 0.9423 0.8384

(2)
w/o FiLM 0.9261 0.7899 0.8861 0.7463 0.9444 0.8416
add_bias 0.9273 0.7921 0.8876 0.7472 0.9437 0.8422
diff 𝛾, 𝛽 0.9260 0.7889 0.8881 0.7481 0.9429 0.8392

(3)

w/o mem_net 0.9243 0.7863 0.8855 0.7459 0.9407 0.8357
w/o global_para 0.9209 0.7819 0.8879 0.7448 0.9437 0.8411

free_para 0.9269 0.7907 0.8851 0.7445 0.9442 0.8408
add_bias (1 layer) 0.9257 0.7887 0.8843 0.7409 0.9438 0.8409
add_bias (2 layers) 0.9263 0.7894 0.8849 0.7415 0.9433 0.8396

#slots 𝐿=5 0.9260 0.7896 0.8881 0.7483 0.9444 0.8417
#slots 𝐿=15 0.9268 0.7909 0.8880 0.7480 0.9447 0.8423

Ada-Ranker 0.9279 0.7932 0.8888 0.7490 0.9451 0.8438

Table 5: Comparisons of different training strategies.

Methods Training
Strategies

GRU4Rec
ML10M Taobao Xbox

GAUC NDCG GAUC NDCG GAUC NDCG

Base Train Θ 0.9187 0.7781 0.8734 0.7208 0.9388 0.8302

Ada-Ranker
∅ ⇒ Θ + Φ 0.9279 0.7905 0.8805 0.7314 0.9434 0.8399
Θ ⇒ Θ + Φ 0.9288 0.7943 0.8906 0.7462 0.9488 0.8511
Θ ⇒ Φ 0.9279 0.7932 0.8888 0.7490 0.9451 0.8438

• Methods based on GSF explicitly model distribution of candi-
dates through concatenation/average/Transformer, and the re-
sults show that these ways can boost GRU4Rec and SASRec. As
for GSF𝑐𝑜𝑛𝑐𝑎𝑡 , although it achieves surprising performances on
Taobao dataset, it is unstable on other two datasets. GSF𝑡𝑟𝑚 al-
most outperforms GSF𝑎𝑣𝑔 on all datasets, and this owes to the
high-quality context-aware representations calculated by the
multi-head self-attention.

• PD and DecRS are causal recommendation models which revise
the scores of candidates by considering data distribution bias.
Both methods can improve the performance of GRU4Rec and
SASRec. Note that PD performs best on Taobao dataset in terms
of GAUC metric, but it is much worse than Ada-Ranker with
NDCG on three datasets. To some extent, this result shows that
PD is not robust to adapt model to a given list of candidates only
by decoupling the user preference and data distribution bias.

• DLCM and PRM are two re-ranking methods, which decouple
the process of training base model and the post-processing of the
ranking lists. However, the decoupled design cann’t deeply fuse
the base model with the candidate distribution information, so
Ada-Ranker can outperform both DLCM and PRM.

4.4 Ablation Study
4.4.1 Effect of the Components. Key components in Ada-Ranker
include (1) distribution extractor, (2) input modulation, and (3)
parameter modulation. To verify each component’s impact, we
disable one component or replace it with some variant each time
while keeping the other settings unchanged, then test how the
performance will be affected. The result is reported in Table 4.

• For (1), we replace the neural process (Section 3.2) by averag-
ing all candidates’ embeddings (denoted as avg). The decline of
performance indicates it is hard to fully capture the distribution
information of the candidate list by simply averaging. Moreover,
we provide visual analysis in Section 4.5.

• For (2), we try different variants: remove the input modulation
(w/o FiLM); or replace FiLM with element-wise addition param-
eter (add_bias), which means that replacing Eq.(11) and Eq.(10)
with q̃𝑡 = q𝑡 + b̃ and b̃ = 𝑓 ′

𝑏
(z); or let FiLM generate different

𝛾, 𝛽 variables for each item in the item sequence (diff 𝛾, 𝛽), by
taking item representation as additive input in Eq.(10). Remov-
ing FiLM block leads to a performance drop, which verifies the
necessity of input modulation. diff 𝛾, 𝛽 does not performs well,
which shows that learning different affine transformations on
each item in the sequence is difficult. add_bias’s performance
on Xbox dataset is poor. In comparison, FiLM’s performance is
robust and consistently good.

• For (3), we consider these variants: removing parameter mod-
ulation (w/o mem_net); removing global parameters of predic-
tive layer (w/o global_para), which means replacing Eq.(13) with
W̃𝑘 = Ŵ𝑘 , b̃𝑘 = b̂𝑘 ; generating adaptation parameters by Eq.(12)
(free_para); adding distribution bias vector after a linear projec-
tion to the first layer of prediction layer (add_bias (1 layer)) or to
both layers (add_bias (2 layers)); changing the number of slots
in memory network (#slots 𝐿 = 5, and #slots 𝐿 = 15). No matter
removing memory network or replacing it with other configura-
tions, the performances drop much compared with Ada-Ranker.

4.4.2 Effect of Different Training Strategies. We compare different
training strategies (see Section 3.5) on global parameters Θ and
adaptation parameters Φ in Ada-Ranker. Table 5 shows that
all methods can boost base models significantly. Specially, jointly
training Θ and Φ from scratch performs worse than the other two
methods in most cases, which shows that the two-stage training
procedure is of great importance. Besides, fine-tuning both Θ and Φ
outperforms fine-tuning Φ only (except a result in NDCG metric on
Taobao dataset). This is in expectation. Θ has far more parameters
than Φ. Making Θ fixed is the finetuning stage is a strict constraint,
which limits the expressive ability to some extent. However, as
discussion in Section 3.5, only fine-tuning Φ makes Ada-Ranker
more flexible for real-world applications.

4.5 Qualitative Study
In this section, we explore whether our Ada-Ranker can distinguish
different distributions of candidates. We choose 11 single categories
(such as Animation, Children) and 2 mixed categories (including
Mystery&Thriller and Thriller&Crime) of ML10M dataset. For each
category, we generate 100 groups of candidate lists in which the
items are all from the current category. For mixed category, we
sample items from two categories with the proportion of 50% and
50%, respectively. Then, we apply the trained Ada-Ranker to infer
on all candidate lists. Figure 4 shows t-SNE plots of the distribution
vector z in Eq. (9) and the coefficients 𝜶 of memory network in
Eq. (16). We compare two types of Ada-Ranker: generating z by
neural process (denoted as NP) and by averaging all candidates
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Figure 4: t-SNE plots for distribution representation z (a and
c) and coefficients 𝜶 of memory network (b and d), based on
two different types of distribution extractor: NP and AVG.
The dataset is ML10M.

embeddings (denoted as AVG). Each color represents a category.
We have the following observations:
• In Figure 4(a) and Figure 4(c), distributions z generated by both
NP or AVG can be clearly separated. However, we observe that z
generated from NP has more flexibility. For example, in terms of
mixed distribution like Thriller&Crime, the AVG method simply
places z-Thriller&Crime in the middle of z-Thriller and z-Crime,
while the NP method can locate z-Thriller&Crime to a better
place to avoid overlapping with irrelevant categories. Similar
conclusions can be drawn for z-Mystery&Thriller.

• For parameter modulation, the AVG method fails to distinguish
𝜶 in memory network effectively (see Figure 4 (d)). It shows that
our neural process encoder can model diverse distributions of dif-
ferent candidate lists well and improve the process of subsequent
parameter modulation.

4.6 Adaptation to New Distributions
In Section 4.1.1 we introduce the distribution-mixer sampling as our
default experiment setting, which ensures that both training set and
test set contain diverse data distributions across different ranking
requests. However, the prior distribution (i.e., Step 1 and Step 2 in
the distribution-mixer sampling, which determine the distribution
of item categories and item popularity) for both training set and
test set are the same, which is a strong assumption and causes some
gap between research and practice. In this section, we would like
to answer this question: is Ada-Ranker generalized sufficiently to
various scenarios, even when the test set’s prior distribution differs
from the training set’s (which means that we are handling new
emerging requests)?
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Figure 5: NDCG scores of Ada-Ranker with two base models
{GRU4Rec, SASRec} on three datasets {ML10M, Taobao, Xbox}
under different distribution settings. Same𝐷𝑖𝑠 means test set
is under the same distribution as training set. New𝐷𝑖𝑠 means
test set is generated from a new data distribution.

4.6.1 Settings. We revisit the classical recall-and-rank setting. The
candidates that a ranker model need to handle are proposed by some
recall models. However, for an industrial recommender system,
there are several reasons to cause the inference distribution not
identical to the training distribution, such as (1) the intermediate
candidate set from recall models are not displayed to users, so we
are not able to reconstruct the recall distribution from impression
logs; (2) the recall models themselves are evolving from time to
time. Therefore, we design another kind of setting, where the major
difference lies in negative instances selection, with the same positive
instances in Section 4.1.1.

We choose three widely-used recall methods (Popular, MF and
Item2Item) to generate negative instances. Specifically, when con-
structing the training set, for each positive instance we generate
19 negative samples from the three recall models with a budget
allocation of 20%, 50% and 30%, respectively. Then, we generate
two different test sets in order to compare the performances of base
models and Ada-Ranker under the same data distribution or a new
data distribution: (1) Same𝐷𝑖𝑠 : sampling negatives with the same
distribution as the training set, i.e., 20%, 50% and 30% from the three
recall methods. (2) New𝐷𝑖𝑠 : sampling negatives with new distri-
bution, i.e., sample negative items from Popular, MF, Item2Item
with the proportion of 40%, 10% and 50%, respectively. The second
setting increases the difficulty of inference which is closer to the
actual scenario. For more details please refer to the Appendix A.1.2.

4.6.2 Results. From Figure 5 and Figure A1, we can observe that no
matter the data distribution between training set and test set is the
same or different, Ada-Ranker can improve the performance of two
base models (GRU4Rec and SASRec) effectively and consistently, on
three datasets and two metrics (results on GAUC metric is reported
in Figure A1). Besides, when the distribution of test set is new, the
performances of base models drop a lot compared with the setting
under the same data distribution (e.g., GRU4Rec performs 0.78 on
ML10M dataset over NDCG metric under Same𝐷𝑖𝑠 , while it only
performs 0.73 on the new test set). Such a performance decrease
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is mainly caused by the inconsistent data distribution. Therefore,
the relative improvement of the Ada-Ranker over the base model is
more significant in the New𝐷𝑖𝑠 setting than in the Same𝐷𝑖𝑠 setting.
For example, in the Xbox dataset, with SASRec as the base model,
Ada-Ranker’s NDCG gain in Same𝐷𝑖𝑠 is 3.3%, while in New𝐷𝑖𝑠 , it
is as high as 15.5%. This observation indicates that Ada-Ranker
is capable of modeling the distribution of candidate samples and
adjust parameters of the network accordingly, which alleviates the
issue of inconsistent data distribution.

5 RELATEDWORKS

Neural Recommender Systems. A web-scale recommender sys-
tem usually comprises of recall modules and ranking modules to
response users’ requests in (near) real-time [9, 26]. Recall modules
propose a small set (such as thousands) of potentially relevant items
as candidates with lightweight models. Ranking modules will score
the given item candidates by adopting more advanced models to
ensure the final recommendations are accurate.

One important recommendation scenario is the sequential rec-
ommendation, where DNNs have been successfully applied, such
as GRU4Rec [15], NextItNet [45], and SASRec [18]. However, all
these approaches follow the same traditional train-freeze-test para-
digm, where a global optimal model is learned from the training
dataset and then is frozen for testing. The testing environment in
recommender systems is highly dynamic with diverse users’ re-
quests, thus, it needs an approach that can perceive the current
task’s peculiarity and conduct suitable parameter adaptation.

Domain Generalization. Domain generalization has attracted
increasing interests in many application fields (e.g., NLP and CV). It
aims at learning a model from several different but related domains,
then generalize to unseen testing domain [37]. Related techniques
can be roughly divided into four categories.

Multi-task Learning: Industrial recommender systems usually
serve diverse application situations. For example, the banner and
Guess What You Like channels on Taobao app homepage [33]. Multi-
task learning (MTL) optimizes a model by jointly training several re-
lated tasks simultaneously. Typical models include parameter shar-
ing of hidden layers [6], Multi-gate Mixture-of-Experts (MMoE)-
based methods [28, 35], and Star Topology Adaptive Recommender
(STAR) [33]. Note that all these MLT methods can only work when
the tasks/domains are fixed and well-defined, they can hardly gen-
eralize to new domains or ad-hoc tasks with dynamic distributions.

Model Patch: Finetuning a pre-trained model with target task-
specific data is the easiest way to transfer knowledge from source
domains to a target domain. In this line of research, this work [17]
proposes a parameter-efficient tuning paradigm called model patch,
which adapts a large-scale pre-trained model to a specific down-
stream task by finetuning only a small number of new parameters.
PeterRec [44] aims to adapt a user representationmodel for multiple
downstream tasks. All these models require that the tasks/domains
are fixed and known beforehand, they cannot directly apply to our
scenario, but the idea motivates the design of our Ada-Ranker.

Meta-learning: Meta-learning is a learning-to-learn paradigm,
aiming to learn experience from a distribution of related tasks so
as to improve its future learning performance [16]. In particular,

MAML [12] based methods is frequently applied recently in cold-
start recommendations for fast adaptation to new users [11, 23, 40,
43]. However, it requires a support set with supervised labels in the
adaptation stage, which is not feasible in our setting, where all the
items in candidate set C are unlabeled.

Feature Modulation: Another popular approach to adaptively
altering a neural network’s behavior with dynamic conditions is
FiLM [30], which carries out a feature-wise linear modulation on a
neural network’s intermediate features conditioned on an arbitrary
given query, so that the neural network computation over an input
can be influenced by a dynamic condition. TaNP [27] introduces
an improved version of FiLM, named Gating-FiLM, to enhance the
ability of filtering the information which has the opposite effects
during adaptation. AdaSpeech [7] adapts few adaptation data to
personalized voices, which modulates hidden state vectors in net-
work by categorizing the acoustic conditions in different levels and
conditional layer normalization. In this paper, FiLM serves as one
of the fundamental components in Ada-Ranker.

List-wise Ranking and Re-Ranking. List-wise learning-to-rank
methods, which assign scores to items in a list by maximizing the
utility of the entire list, are also related to our work. Most of them
train models with list-wise loss functions, however, in the inference
stage, they still use a point-wise scoring function (aka univariate
scoring function) which is unaware of the context of candidate
list [3–5]. GSFs [2] proposes multivariate scoring functions, in
which the score of an item is determined jointly by multiple items in
the candidate list. However, GSFs is hard to converge to a satisfying
result because that by jointly modeling all items in the list, a large
amount of new parameters are involved. Another line of related
research is re-ranking [1, 29, 52], which refines a ranker’s suggested
top-𝑘 items with another model by taking the top top-𝑘 items
as ranking context. Typically, they are post-processing methods
which are decoupled with ranker models. Since they take the whole
candidate items as inputs, we can expect that they naturally have
the ability to capture data distributions in candidate set. So we use
them as baselines in Section 4.3.

6 CONCLUSION
In this paper, we propose a novel ranking paradigm, Ada-Ranker,
which can perceive the data distribution of a specific candidate
list and learn to adjust the ranker model before making predic-
tions. In contrast to traditional rankers’ train-freeze-test paradigm,
Ada-Ranker uses a new train-adapt-test paradigm. Ada-Ranker is
lightweight, model-agnostic, and flexible for plug-and-play usage.
We have conducted extensive experiments on three real-world
datasets. Results show that Ada-Ranker can effectively enhance
various types of base sequential recommender models, as well as
outperform a comprehensive set of competitive baselines.
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Figure A1: GAUC scores of Ada-Ranker with two basemodels
{GRU4Rec, SASRec} on three datasets {ML10M, Taobao, Xbox}
under different distribution settings. Same𝐷𝑖𝑠 means test set
is under the same distribution as training set. New𝐷𝑖𝑠 means
test set is generated from a new data distribution.

A APPENDIX
A.1 Settings of sampling negative instances

from recall models
In section 4.6, we briefly introduce our method of constructing test
sets with different distributions. In this section, we will introduce
more details to help readers understand how we sample negative
instances from recall models.

A.1.1 Three Recall Models. We choose Pop, MF, Item2Item as basic
recall models to generate negative instances.
• Pop. We recall 1000 candidates from all items according to their
popularity.

• MF. We first train a simple collaborative filtering model (e.g., MF)
and obtain the user embedding table and the item embedding
table. For each user, we will product its embedding with all items’

representations, and recall candidates ranked between 1000 and
2000.

• Item2Item. We take the historical behaviors of users as training
data, and train item embeddings with the word2vec algorithm 4.
For each item, we will product its embedding with all items’
representations, and recall candidates ranked between 500 and
1500.

A.1.2 Sampling According to Different Distributions. We assume
the distribution of sampling is d = [𝑑1, 𝑑2, 𝑑3], where

∑3
𝑖=1 𝑑𝑖 = 1.0.

Each element in d represents the probability of sampling from the
three recall models (Pop, MF and Item2Item, respectively).

For each positive instance (𝑢, 𝑣), we firstly use the function
numpy.random.multinomial to obtain an instantiated number of
items to be sampled by each recall model: x = [𝑥1, 𝑥2, 𝑥3], with∑3
𝑖=1 𝑥𝑖 = 19. Then, we carry out the following three steps to

generate the whole 19 negatives.
• Randomly sample 𝑥1 items from the candidates in the range
[0, 1000] sorted by the item’s popularity score.

• Randomly sample 𝑥2 items from the candidates in range
[1000, 2000] sorted by the MF score (item 𝑖’s score is the dot
product of embedding vectors of user 𝑢 and item 𝑖).

• Randomly select one of the items that user has recently
interacted with, say 𝑡 . Randomly sample 𝑥3 items from the
candidates in the range [500, 1500] sorted by the Item2Item
score (item 𝑖’s score is the dot product of embedding vectors
of item 𝑡 and item 𝑖 , and here the embedding vector is not
from MF, but from a word2vec algorithm).

For training set, we set d as [0.2, 0.5, 0.3]. For test set, we de-
signed two settings: Same𝐷𝑖𝑠 (d = [0.2, 0.5, 0.3]) and New𝐷𝑖𝑠 (d =

[0.4, 0.1, 0.5]). In section 4.6, we train the base models and Ada-
Ranker on the training set, and infer on two different test sets.

A.2 Additional experimental results for
Section 4.6

See Figure A1.
4https://radimrehurek.com/gensim/models/word2vec.html
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