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Abstract
Prior research on exposure fairness in the context of recommender
systems has focused mostly on disparities in the exposure of in-
dividual or groups of items to individual users of the system. The
problem of how individual or groups of items may be systemi-
cally under or over exposed to groups of users, or even all users,
has received relatively less attention. However, such systemic dis-
parities in information exposure can result in observable social
harms, such as withholding economic opportunities from histori-
cally marginalized groups (allocative harm) or amplifying gendered
and racialized stereotypes (representational harm). Previously, Diaz
et al. [17] developed the expected exposuremetric—that incorporates
existing user browsing models that have previously been developed
for information retrieval—to study fairness of content exposure to
individual users. We extend their proposed framework to formal-
ize a family of exposure fairness metrics that model the problem
jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stake-
holders to identify and mitigate fairness concerns that go beyond
individual users and items towards more systemic biases in recom-
mendation. Furthermore, we study and discuss the relationships
between the different exposure fairness dimensions proposed in
this paper, as well as demonstrate how stochastic ranking policies
can be optimized towards said fairness goals.
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1 Introduction
Online information access systems, like recommender systems and
search, mediate what information gets exposure and thereby in-
fluence their consumption at scale. There is a growing body of
evidence [17, 27, 51] that information retrieval (IR) algorithms that
narrowly focus on maximizing ranking utility of retrieved items
may disparately expose items of similar relevance from the col-
lection. Such disparities in exposure outcome raise concerns of
algorithmic fairness and bias of moral import [20], and may con-
tribute to both representational and allocative harms [14]. Represen-
tational harms may manifest by reinforcing negative stereotypes—
e.g., disproportionately suggesting arrest record searches for black-
identifying first names in online ad delivery systems [54]—and
perpetuating inequities in representation of women and other his-
torically marginalized peoples in different occupational roles [27].
Similarly, allocative harms may occur when disparate exposure
in retrieved results lead to unfair allocation of economic opportu-
nities [51]—e.g., in IR systems that aim to match employers with
potential candidate employees, and for content-producers on the
web who depend on search traffic for ad-based monetization.

The probability ranking principle [50], which suggests that re-
trieved items should be ordered in decreasing probability of rele-
vance, has been a guiding principle in many IR model development.
In contrast, by viewing IR systems as mediators of exposure, Diaz
et al. [17] propose the principle of equal expected exposure that re-
quires IR systems to provide equal exposure in expectation to items
of comparable relevance for a given information need. Furthermore,
they define the expected exposure metric as a deviation between
actual system exposure and ideal target exposure for individual (or
groups of) items to individual users. While Diaz et al. [17] consider
group attributes only on the producer-side, Burke [7] and Ekstrand
et al. [18] argue that it is important to consider group attributes
on both the consumer-side and producer-side, and that the joint
consideration of group attributes on both sides can reveal new
fairness concerns. However, these previous works do not provide
a formal formulation of joint multisided exposure (JME) fairness,
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which is exactly where our current work fits in. We extend the
expected exposure metric proposed by Diaz et al. [17] to incorpo-
rate group attributes on both the consumer and producer side and
formally define a broader set of fairness concerns that we believe
should receive consideration for developing fair recommendation
algorithms.

These distinct fairness concerns may be best explained through
specific examples. Consider a job portal that recommends potential
employment opportunities to job seekers. In this recommendation
scenario, the employers represent the producer-side and the job
seekers consume the recommendations produced by the system. A
responsible recommendation algorithm in this context must grap-
ple with several fairness concerns. Firstly, any individual user of the
system must have fair exposure to all relevant jobs that they may
qualify for. We refer to this as individual-user to individual-item
fairness, or II-F to be more concise. If we group similar job roles by
salary into, say, high and low paying job groups, then the system
must also ensure that an individual job candidate does not dispro-
portionately get recommended either low or high paying jobs. We
classify such fairness concerns as individual-user to group-of-items
fairness, or IG-F in short. If we now group the job seekers—for exam-
ple, based on race or gender—then the system must also guarantee
that qualified candidates get fair exposure to all relevant individ-
ual job opportunities independent of their demographic attributes.
We refer to this as group-of-users to individual-item fairness, or
GI-F. Extending the framework further, we consider the scenario
where job seekers are grouped by demographic attributes, like race
and gender, and employment opportunities by salary. This raises
a group-of-users to group-of-items fairness (GG-F) consideration
such as ensuring that women or racially marginalized groups are
not disproportionately recommended low-paying jobs. Another
interesting example of the GG-F concern involves grouping both
job seekers and employers by demographic, such as race, where
an unfair recommender system may, for example, disproportion-
ately recommend Black employees to Black-owned businesses and
similarly match White employees with White employers, and cod-
ify algorithmic segregation much like what Benjamin [2] calls the
“New Jim Code”. Finally, the recommender system should also en-
sure that any individual jobs or groups of jobs (e.g., grouped by
race or gender attributes of business owners) are not systemically
under or over exposed to all users, which we refer to as all-users
to individual-item fairness (AI-F) and all-users to group-of-items
fairness (AG-F), respectively. For example, an unfair recommender
system may systemically under-expose jobs at businesses owned by
historically marginalized groups which according to our definition
would fall under AG-F concerns.

While II-F and IG-F has been previously studied byDiaz et al. [17],
to the best of our knowledge, this is the first work to formally define
and study a family of exposure fairness considerations jointly from
the perspective of both the consumers and producers. In summary,
the key contributions of this work are as follows:

(1) We formalize and compare a family of JME-fairness measures
that deal with different types of systemic biases in content
exposure from recommender systems.

(2) We demonstrate how each of the six JME-fairness metrics
can be decomposed into their corresponding disparity and
relevance components, and study their trade-offs.

(3) We demonstrate how stochastic ranking policies can be op-
timized towards specific JME-fairness goals.

2 Related work
2.1 Fairness in recommendation
Fairness in recommendation has received increasing attention in the
IR community recently. Although there is no unified notion of fair-
ness, one of the criteria is to model from the perspective of different
stakeholders [18], which may include among others: (i) consumers
(i.e., users who seek content), (ii) producers (i.e., users who create
or publish content), (iii) information subjects (when retrieved items
correspond to individuals—e.g., recommending candidates for jobs),
and (iv) other side stakeholders who may be impacted even if they
do not directly interact with the retrieval system (e.g., historically
marginalized groups who may suffer from representational harms
by information access platforms).

Even for a single stakeholder, different fairness dimensions are
important to consider that if unchecked may result in different
harmful outcomes. For example, for consumers it is important
to consider fairness in quality of service, such as ensuring that
consumers belonging to different demographic groups experience
comparable retrieval quality. Ekstrand et al. [19] and Neophytou
et al. [37] demonstrate that recommender performance can vary
across demographic groups and Mehrotra et al. [34] report similar
observations in the context of web search, another important re-
trieval scenario. On similar lines, Wu et al. [60] explicitly model the
consumer-sided fairness in quality of service as the difference of
Normalized Discounted Cumulative Gain (NDCG) between group
of users with different demographic attributes which they then try
to minimize during the model optimization process.

Apart from quality of service, fairness concerns may also arise
with respect to what content consumers are exposed to [17, 51].
For example, when retrieved results correspond to economic op-
portunities, unfair distribution of exposure can result in allocative
harm. Take the case of a job recommender system, in addition to
ensuring that different demographic groups of users receive results
of comparable relevance, it is also critical that there are no sys-
temic disparities in exposure to high and low paying jobs across
demographics [7]. Previous works have modeled fairness from the
perspective of fair allocation and utilize some notions in social wel-
fare, such as Envy-freeness [42] and Least Misery [29]. Disparate
exposure can similarly raise concerns of stereotyping of consumers,
say in case of a news recommender system whose results may re-
flect historical gender-based stereotyping [59]. Several previous
works [5, 48, 65] have explored adversarial approaches, based on
domain-confusion [11, 56], to learn representations that conceal
information about protected attributes, such as race or gender.

Other works focus on the fairness on the producer side, which
is represented by the systematic exposure disparities [3, 17, 21, 52]
across content providers. This line of research mainly aims to en-
sure the equity of exposure for individual producers or group of
producers with sensitive attributes. For instance, Zehlike et al. [64]
model producer-sided fairness in a top-𝑘 ranking problem and guar-
antee a minimum proportion of items from the protected group in
every prefix of the top-𝑘 ranking. Biega et al. [3] aim to achieve
amortized fairness of attention by making exposure proportional to



relevance through integer linear programming. Singh and Joachims
[51] later propose a more general framework which can achieve
individual fairness and group fairness on the producer side concur-
rently. In the learning-to-rank [30] setting, Singh and Joachims [52]
propose a policy learning approach for optimizing ranking mod-
els while satisfying fairness of exposure constraints, while Diaz
et al. [17] develop a direct supervised approach using Gumbel sam-
pling. Recently, Oosterhuis [39] proposes computationally efficient
optimization of Plackett-Luce ranking models for fairness.

It is important to ensure fairness for multiple stakeholders in
online platforms for avoiding the super-star economy [1, 35] and
building a healthy marketplace, as well as to ensure that improving
fairness for one set of stakeholders do not negatively impact the
utility of the other sides. Several previous works [8, 35, 53, 60] have
explored multisided fairness definitions within recommendation
tasks. However, among these related works, with the exception
of Burke et al. [8], the remaining focus on the fairness of quality
of service, and not of exposure, on the consumer side. The spe-
cific problem of two-sided exposure fairness has received limited
attention in the community, despite the fact that it has been pre-
viously suggested by Burke [7] and Ekstrand et al. [18]. Our work
thus aims to fill that gap by presenting a formal formulation that
extends previous works on user browsing model based exposure
fairness [17].

As the literature on the fairness of recommendation has recently
grown significantly, we point our readers to [18] for a broader
overview of fairness concerns and mitigation approaches in infor-
mation access systems.

2.2 Ranking with stochastic policy
Most of the early works in learning-to-rank for IR [30] focus on
deterministic ranking policies that produce static ordering of items
given a user (in case of recommendation) or a query (in case of
search). Motivated by Pandey et al. [41], who first proposed to
introduce randomization in ranking, several works have employed
randomization as a means to collect unbiased implicit feedback
from user behavior data [26, 40, 45, 46, 57] and for training unbiased
ranking models on biased user feedback [25]. Stochastic ranking
policies can also be employed to improve the diversity of retrieved
results [47] and—as is more relevant to our current work—to ensure
fairer exposure of information content [17, 52, 62]. Motivated by
these use cases, several recent works [6, 17, 40, 52, 62] have explored
optimization of stochastic ranking policies. In section 6, we will
demonstrate how stochastic ranking policies for recommendation
can be optimized towards JME-fairness.

3 Preliminaries
Before we formally define the different JME-fairness metrics, we
go over some of the fundamental concepts in this section that have
already been developed in existing literature that we build on in
subsequent sections.

3.1 Exposure and user browsing models
Simplified models of how users inspect and interact with retrieved
results provide a useful tool for metric development [10, 63] and for
estimating relevance from historical logs of user behavior data [9].

These user browsing models provide a mechanism to estimate the
probability of exposure of an item 𝑑 in a retrieved ranked list of
items 𝜎 . For example, the user browsing model behind the rank-
biased precision (RBP) metric [36] assumes that the probability of
the exposure event 𝜖 for 𝑑 depends only on its rank 𝜌𝑑,𝜎 in 𝜎 and
decreases exponentially as we go down the ranked list.

𝑝𝑅𝐵𝑃(𝜖 |𝑑, 𝜎) = 𝛾(𝜌𝑑,𝜎−1), (1)

where the 𝛾 is the patience factor and controls how deep in the
ranking the user is likely browse.

In this work, we employ the RBP user browsing model although
other models can also be employed in its place.

3.2 Stochastic ranking and expected exposure
Diaz et al. [17] define a stochastic ranking policy 𝜋 as a probability
distribution over all permutations of items in the collection. In the
recommendation scenario, let D be the collection of all items and
U the set of all users of the retrieval system. Now, given a stochastic
ranking policy 𝜋𝑢 conditioned on user 𝑢 ∈ U, we can compute the
expected value of the probability that an item 𝑑 ∈ D is exposed to
the user as follow:

𝑝(𝜖 |𝑑, 𝜋𝑢) = E𝜎∼𝜋𝑢
[
𝑝(𝜖 |𝑑, 𝜎)

]
. (2)

Assuming the RBP user browsing model, we can further com-
pute 𝑝(𝑑 |𝜎) based on eq. (1). Furthermore, for notational conve-
nience, let E ∈ R |U |×|D | be the expected exposure matrix, such
that E𝑖 𝑗 = 𝑝(𝜖 |D𝑗 , 𝜋U𝑖

). In the rest of this paper, we refer to the
expected exposure E corresponding to a stochastic ranking policy
𝜋 as determined by a retrieval system as system exposure. Similarly,
target exposure is defined as the expected exposure E∗ correspond-
ing to an ideal stochastic ranking policy 𝜋∗, whose behavior may
be dictated by some desirable principle, such as the equal expected
exposure principle [17]. The deviation of E from E∗ gives us a quan-
titative measure of the suboptimality of the retrieval system under
consideration. Finally, we define random exposure as the expected
exposure E∼ corresponding to a stochastic ranking policy 𝜋∼ which
is defined by a uniformly random distribution over all permutations
of items in the collection.

4 Joint multisided exposure (JME) fairness
Having introduced the expected exposure framework in the previ-
ous section, we now formalize six different JME-fairness metrics.
Each of these metrics addresses a distinct aspect of fairness, cover-
ing the disparity in how individual items and groups of items are
exposed to individual users, groups of users, and all users.

4.1 Metric defintions
Individual-user-to-individual-item fairness (II-F). The II-F metric,

previously proposed by Diaz et al. [17], measures the disparity
between the system and target exposure at the level of individual
users and individual items. Using similar notations as before, we
have:
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Figure 1: A toy example of a job recommendation system demonstrating the different fairness concerns. We present six systems
that have comparable II-F metric values but differ in their fairness as measured along the other five JME-fairness dimensions.
The values in the tables represent the probability of exposure of an individual job to an individual candidate.

II-F =
1

|D |
1

|U |
∑︁
𝑑∈D

∑︁
𝑢∈U

(
𝑝(𝜖 |𝑑,𝑢) − 𝑝∗(𝜖 |𝑑,𝑢)

)2 (3)

=
1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

(E𝑖 𝑗 − E∗
𝑖 𝑗 )

2 . (4)

The key motivation of this work lies in the observation that
the deviation between the system and target exposure may not
be distributed uniformly across different user sub-populations and
item groups. As we will demonstrate in section 4.2, the II-F metric
cannot distinguish the scenario where the system-to-target expo-
sure deviations systemically and disproportionately impact specific
user and/or item groups from the scenario where these deviations
are comparable across groups.

Individual-user-to-group-of-items fairness (IG-F). We first intro-
duce group attributes on the item-side and present the IG-F metric
which is concerned with whether groups of items are over or under
exposed to individual users. We achieve this by making couple of
minor modifications to eq. (3): (i) replacing 𝑝(𝜖 |𝑑,𝑢) and 𝑝∗(𝜖 |𝑑,𝑢)
with 𝑝(𝜖 |𝐷,𝑢) and 𝑝∗(𝜖 |𝐷,𝑢), respectively, where 𝐷 ∈ G𝑑 denotes
a group of items and G𝑑 is the set of all item groups, and (ii) aver-
aging the deviations across groups of items instead of individual
items.

IG-F =
1

|G𝑑 |
1

|U |
∑︁

𝐷∈G𝑑

∑︁
𝑢∈U

(
𝑝(𝜖 |𝐷,𝑢) − 𝑝∗(𝜖 |𝐷,𝑢)

)2 (5)

=
1

|G𝑑 |
1

|U |
∑︁

𝐷∈G𝑑

|U|∑︁
𝑖=1

(
|𝐷 |∑︁
𝑗=1

𝑝(𝐷 𝑗 |𝐷)(E𝑖 𝑗 − E∗
𝑖 𝑗 )

)2
. (6)

Here, 𝑝(𝐷 𝑗 |𝐷) can be defined as a uniform probability distribu-
tion over all items in a group, or when appropriate a popularity
weighted distribution over items can also be employed.

In previous work, Diaz et al. [17, §4.3] have also considered group
attributes on the producer-side, and their proposed formulation is
in fact identical to eq. (6). However, they provide limited motivation
for their specific formulation and as a minor contribution eq. (5)
gives us a probabilistic interpretation of this measure.

Group-of-users-to-individual-item fairness (GI-F). Next, we in-
troduce group attributes on the user-side which gives us the GI-F
metric that measures the over or under exposure of individual items
to groups of users. Similar to the way we define the IG-F metric,
the GI-F metric can be defined as follows, where𝑈 ∈ G𝑢 denote a
group of users and G𝑢 the set of all user groups:



GI-F =
1

|D |
1

|G𝑢 |
∑︁
𝑑∈D

∑︁
𝑈 ∈G𝑢

(
𝑝(𝜖 |𝑑,𝑈 ) − 𝑝∗(𝜖 |𝑑,𝑈 )

)2 (7)

=
1

|D |
1

|G𝑢 |

|D|∑︁
𝑗=1

∑︁
𝑈 ∈G𝑢

(
|𝑈 |∑︁
𝑖=1

𝑝(𝑈𝑖 |𝑈 )(E𝑖 𝑗 − E∗
𝑖 𝑗 )

)2
. (8)

Consequently, 𝑝(𝑈𝑖 |𝑈 ) can be defined as a uniform probability
distribution over all users in a group, or could be proportional to
their usage of the recommender system.

Group-of-users-to-group-of-items fairness (GG-F). Having intro-
duced group attributes for users and items separately, we now
change our focus to exposure disparities that emerge when we
look at group attributes for both the users and items jointly. Using
similar notations as before, we can write:

GG-F =
1

|G𝑑 |
1

|G𝑢 |
∑︁

𝐷∈G𝑑

∑︁
𝑈 ∈G𝑢

(
𝑝(𝜖 |𝐷,𝑈 ) − 𝑝∗(𝜖 |𝐷,𝑈 )

)2 (9)

=
1

|G𝑑 |
1

|G𝑢 |
∑︁

𝐷∈G𝑑

∑︁
𝑈 ∈G𝑢

(
|𝐷 |∑︁
𝑗=1

|𝑈 |∑︁
𝑖=1

𝑝(𝐷 𝑗 |𝐷)𝑝(𝑈𝑖 |𝑈 )(E𝑖 𝑗 − E∗
𝑖 𝑗 )

)2
.

(10)

Of all six fairness metrics defined in this section, the GG-F metric
is particularly interesting as all the other metrics can be thought
of specific instances of GG-F. For example, if we define the group
attributes for users in GG-F such that each group contains only one
user and every user belongs to only one group then we recover the
IG-F metric. A similar trivial definition of groups on the item-side
gives us the GI-F metric. Consequently, if this trivial definition of
groups is applied to both the users and items, we get the II-F metric.
Another trivial, but conceptually interesting, definition of the user
group may involve a single group to which all users belong. Under
this setting, depending on group definition on the item-side, we
can recover the AI-F and AG-F metrics that we describe next.

All-users-to-individual-item fairness (AI-F). A recommender sys-
tem may systemically under or over expose an item to all users.
To quantify this kind of systemic disparities we define the AI-F
metric which computes the mean deviation between overall system
exposure 𝑝(𝜖 |𝑑) and target exposure 𝑝∗(𝜖 |𝑑) for items:

AI-F =
1

|D |
∑︁
𝑑∈D

(
𝑝(𝜖 |𝑑) − 𝑝∗(𝜖 |𝑑)

)2 (11)

=
|D|∑︁
𝑗=1

(
|U|∑︁
𝑖=1

𝑝(U𝑖)(E𝑖 𝑗 − E∗
𝑖 𝑗 )

)2
. (12)

As earlier, 𝑝(U𝑖) can either be uniform or weighted by usage.

All-users-to-group-of-items fairness (AG-F). Finally, the AG-Fmet-
ric is concerned with systemic under or over exposure of groups of
items to all users and is defined as follows:

AG-F =
1

|G𝑑 |
∑︁

𝐷∈G𝑑

(
𝑝(𝜖 |𝐷) − 𝑝∗(𝜖 |𝐷)

)2 (13)

=
1

|G𝑑 |
∑︁

𝐷∈G𝑑

(
|𝐷 |∑︁
𝑗=1

|U|∑︁
𝑖=1

𝑝(𝐷 𝑗 |𝐷)𝑝(U𝑖)(E𝑖 𝑗 − E∗
𝑖 𝑗 )

)2
. (14)

We have formally defined six JME-fairness metrics—II-F, IG-F, GI-F,
GG-F, AI-F, and AG-F. Readers should note that for all six metrics,
a lower value is more desirable and corresponds to a more fair
recommendation. Next, we discuss the relationship and distinction
between these different fairness notions to help the reader develop a
more intuitive understanding of our proposed framework of metrics
for exposure fairness.

4.2 Relationship between metrics
If we look closely at eqs. (4), (6), (8), (10), (12) and (14), we notice
that all six JME-fairness metrics consider the system-to-target expo-
sure deviations (E𝑖 𝑗 − E∗

𝑖 𝑗
) for individual items to individual users.

However, they differ in how they aggregate these differences across
users and items leading to interesting relationships and distinctions
between these metrics.

Firstly, it is easy to demonstrate that a system that is fair with
respect to II-F will also be fair along the other five JME-fairness
dimensions. This is because II-F can be zero if and only if (E𝑖 𝑗 −
E∗
𝑖 𝑗
) = 0,∀𝑖 ∈ [1, ..., |U|], 𝑗 ∈ [1, ..., |D|], and when that is true

then IG-F, GI-F, GG-F, AI-F, and AG-F will also be zero. However,
the reverse does not hold—i.e., a system that may be considered fair
based on one or more metrics from the set IG-F, GI-F, GG-F, AI-F,
and AG-F may not necessarily be II-fair. Similarly, it also holds that
if a system is either IG-fair or GI-fair then it must also be GG-fair. To
demonstrate this, we have to consider that IG-F is zero if and only if
(
∑ |𝐷 |

𝑗=1 𝑝(𝐷 𝑗 |𝐷)(E𝑖 𝑗 −E∗
𝑖 𝑗
)) = 0,∀𝑖 ∈ [1, ..., |U|]which implies that

(
∑ |𝑈 |
𝑖=1 𝑝(𝑈𝑖 |𝑈 )

∑ |𝐷 |
𝑗=1 𝑝(𝐷 𝑗 |𝐷)(E𝑖 𝑗 − E∗

𝑖 𝑗
)) = 0,∀𝑈𝑖 ∈ 𝑈 ,𝑈 ∈ G𝑢 .

Similarly, we can also prove the relationship between GI-F and GG-
F. As before, a system that is GG-fair, however, may not necessarily
be IG-fair or GI-fair. Furthermore, we can also show that a system
will necessarily be AI-fair if it is GI-fair, and similarly both GG-
fairness and AI-fairness independently imply AG-fairness. We do
not include the full proof for each of these relationships due space
constraints but leave them as an useful exercise for the reader.

Next, we consider the question that if II-fairness implies fairness
along the other five dimensions then why it is necessary to develop
these other fairness notions at all. The answer lies in the fact that
two systems that are comparable according to the II-F metric, may
demonstrate very different levels of unfairness along the other
dimensions. To motivate this more intuitively, let us consider the
toy example of a job recommender system in fig. 1. In this example,
there are four candidates (𝑢𝑎1, 𝑢𝑎2, 𝑢𝑏1, 𝑢𝑏2) and four jobs (𝑑𝑥1,
𝑑𝑥2, 𝑑𝑦1, 𝑑𝑦2), and all four jobs are relevant to each of the four
candidates. The candidates belong to two groups 𝑎 (𝑢𝑎1 and 𝑢𝑎2)
and 𝑏 (𝑢𝑏1 and 𝑢𝑏2)—e.g., based on gender—and similarly the jobs
belong to two groups 𝑥 (𝑑𝑥1 and𝑑𝑥2) and𝑦 (𝑑𝑦1 and𝑑𝑦2), say based
on whether they pay high or low salaries. Furthermore, we assume
that the recommender system displays only one result at a time
and our simple user model assumes that the user always inspects
the displayed result—i.e., the probability of exposure is 1 for the
displayed item and 0 for all other items for a given impression. In
this setting, an ideal recommender would expose each of the four
jobs to each candidate with a probability of 0.25.

The six fictitious recommender systems shown in fig. 1, demon-
strate comparable disparity according to the II-F metric but different



Table 1: Decomposing each of the six JME-fairness metrics into their disparity (*-D) and relevance (*-R) components.

Disparity Relevance
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levels of unfairness along the other dimensions. For example figs. 1a,
1c and 1d correspond to systems that are IG-fair because every can-
didate is exposed to at least one high-paying and one low-paying
job, whereas in figs. 1b, 1e and 1f every candidate is exposed to ei-
ther only high-paying or only low-paying jobs raising IG-unfairness
concerns. Similarly, we can observe that figs. 1a and 1b are GI-fair
because each group of candidates are exposed to all four jobs, while
consequently the other four systems demonstrate GI-unfairness.
Among these six examples, only figs. 1e and 1f demonstrate GG-
unfairness. In fig. 1e, men are recommended high-paying jobs while
women are recommended low-paying jobs, and in fig. 1f all candi-
dates are exposed only to high-paying jobs leading to no candidates
being referred to low-paying jobs. Finally, figs. 1d and 1f demon-
strate AI-unfairness because they include individual jobs that are
under or over exposed to all candidates, and specifically in the latter
instance we also observe AG-unfairness as the low-paying jobs are
under-exposed to all candidates as previously noted. It is precisely
these differences that motivate us to develop these six JME-fairness
metrics which we believe measures different systemic unfairness
in recommendation outcomes, and therefore should be considered
in complementary combination for more holistic fairness analysis.

4.3 Disparity and relevance
Diaz et al. [17] make an interesting observation that as an artifact of
using squared error to compute the deviation between the system
and target exposure. The II-F metric can be decomposed into a
disparity component (II-D), a relevance component (II-R), and a
remaining component that is a system-independent constant (II-C).

II-F =
1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

(E𝑖 𝑗 − E∗
𝑖 𝑗 )

2

=
1

|D |
1
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|U|∑︁
𝑖=1

E2
𝑖 𝑗

}
II-D

− 1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

2E𝑖 𝑗E∗
𝑖 𝑗

}
II-R

+
1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

E∗2
𝑖 𝑗

}
II-C

This decomposition is useful as it represents an inherent trade-off
between the disparity and relevance as stochasticity is introduced
into the model. Increasing randomization in the model has the de-
sirable property of reducing disparity (II-D) but also the undesirable
effect of reducing relevance (II-R). In this framing, relevance is max-
imized when a static ranking model is employed and disparity is
minimized when the ranking model is fully stochastic.

A similar decomposition into disparity and relevance compo-
nents would also be useful for the new metrics proposed in this
paper. When considering group attributes, say on the item-side, it
should be self-evident that a fully stochastic ranking model would
recommend items not necessarily with uniform probability over
the groups, but in proportion to the group sizes in the collection.
In section 3.2, we defined random exposure E∼ as the expected
exposure matrix corresponding to such a fully stochastic model. It
makes intuitive sense to define disparity not in terms of the flatness
of the system exposure distribution but as a deviation of the system
exposure from random exposure, especially when the distribution
under consideration is over groups of items rather than individual
items. Therefore, we propose a slight modification to the decom-
position of the original II-F metric, which is then consistent with
how we decompose the other five JME-fairness metrics into their
respective components. To do so, we first rewrite eq. (4) as follows:

II-F =
1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

(E𝑖 𝑗 − E∗
𝑖 𝑗 )

2

=
1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

((E𝑖 𝑗 − E∼
𝑖 𝑗 ) − (E∗

𝑖 𝑗 − E∼
𝑖 𝑗 ))

2 . (15)

For notational brevity, let E𝛿
𝑖 𝑗

= E𝑖 𝑗 − E∼
𝑖 𝑗
and EΔ

𝑖 𝑗
= E∗

𝑖 𝑗
− E∼

𝑖 𝑗
.

Based on eq. (15), we now redefine II-D and II-R as:

II-D =
1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

E𝛿 2
𝑖 𝑗 (16)

II-R =
1

|D |
1

|U |

|D|∑︁
𝑗=1

|U|∑︁
𝑖=1

2E𝛿
𝑖 𝑗EΔ

𝑖 𝑗 . (17)

Consequently, the new definition of II-D would produce the same
system ordering as the original definition by Diaz et al. [17]. Due
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Figure 2: Behavior of JME-fairness metrics for a stochastic ranking policy—generated by randomizing the BPRMF model using
Plackett-Luce—on theMovieLens1M dataset. The first row shows the impact of different stochasticity on the overall fairness
metrics, while the second and third row show the impact on their corresponding disparity and relevance components. The
x-axis shows the values of 𝛽 , where a larger value indicates more randomization.

to space constraints, we do not include the full proof here. Next,
employing a similar strategy we can decompose the other five JME-
fairness metrics into their disparity and relevance components as
shown in table 1. In section 5.2, we will analyse how stochasticy
trades-off between the disparity and relevance components of all
six JME-fairness metrics.

5 Metric analysis
In this section, we analyze the proposed six JME-fairness metrics
with respect to the trade-offs involved between their respective
disparity and relevance components (intra-metric analysis) and the
relationship between the different JME-fairness metrics themselves
(cross-metric analysis). Specifically, we will study the following
research questions:

• RQ1: What is the impact of stochasticity on each of the six
JME-fairness metrics, and their corresponding disparity and
relevance components?

• RQ2: How do the different JME-fairness metrics, and their
respective components, correlate with each other and what
does that tell us about the relationships between these dif-
ferent fairness dimensions?

5.1 Method
As aforementioned, we are interested in studying stochastic ranking
policies with respect to their ability to distribute exposure across
(individual or groups of) items. Towards that goal, we first intro-
duce a method for generating stochastic ranking policies based
on a deterministic ranking model. Given a deterministic ranker,
and corresponding estimated relevance scores for items with re-
spect to user 𝑢, we utilize the Plackett-Luce (PL) model [32, 43] to
sample multiple rankings. The PL model depends on Luce’s axiom
of choice which states that the odds of choosing an item over an-
other do not depend on the set of items from which the choice is

made [31, 32]. Specifically, the PL model constructs a ranking by
iteratively sampling items without replacement from the collection
with probability distribution 𝑝(𝑑 |𝑢) defined as below:

𝑝(𝑑 |𝑢) =
exp(𝒀𝑑,𝑢/𝛽)∑

𝑑′∈D exp(𝒀𝑑′,𝑢/𝛽)
, (18)

where 𝒀𝑑,𝑢 is the relevance score estimated by the deterministic
ranker for item 𝑑 with respect to user𝑢. The parameter 𝛽 is the soft-
max temperature. A larger 𝛽 corresponds to more stochasticity in
the ranking. For example, when 𝛽 = 8, the probability distribution
over all permutations is almost uniform and the stochastic policy
approaches a fully random ranking model. As a corollary, when
𝛽 decreases the stochastic policy converges to the deterministic
ranking policy, which is a ranking of items sorted by their estimated
relevance score 𝒀𝑑,𝑢 in descending order for each user 𝑢.

We generate stochastic ranking policies by applying this post-
processing step, with different values of 𝛽 , over a set of trained
recommendation models that are publicly available 1 for the Movie-
Lens1M dataset. There are 6, 040 users and 3, 706 items in theMovie-
Lens1M dataset. For the group information, we use the gender and
age attributes on the user side, and the genre attributes on the item
side. We rerank the top 100 items and sample 100 rankings for
each user during evaluation. We employ the RBP user browsing
model and set the patience factor𝛾 = 0.8. We select different values
for 𝛽 in the range of 1/8 to 8 for introducing different degree of
stochasticity in our ranking, and compare with the deterministic
ranking policy.

5.2 Results
RQ1: Impact of Stochasticity. To investigate the impact of stochas-

ticity, we first visualize how different values of 𝛽 influences the
different JME-fairness metrics and their corresponding components
in fig. 2. Our analysis is based on a stochastic ranking policy that
1We obtain the set of runs from: https://github.com/dvalcarce/evalMetrics.

https://github.com/dvalcarce/evalMetrics
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Figure 3: Curves for disparity-relevance trade-off across six different fairness dimensions. We introduce different level of
stochaticity on the top of the static rankings from six different recommendation models.

Table 2: The AUC of the disparity-relevance trade-off curves
for different models across the six fairness dimensions. The
highest value in each column is bolded, while the second
highest is underlined.

Model II IG GI GG AI AG
BPRMF 0.6331 0.4774 0.2904 0.2953 0.2712 0.2814
LDA 0.5664 0.4088 0.2837 0.3164 0.2687 0.3115
PureSVD 0.5830 0.4102 0.2921 0.3030 0.2755 0.2942
SLIM 0.6408 0.4654 0.2776 0.2851 0.2605 0.2752
WRMF 0.5996 0.4769 0.3135 0.3186 0.2957 0.3139

uses the BPRMF model as the underlying deterministic ranker, al-
though we have confirmed that we obtain similar results when
considering other ranking models. For consistency, we normalize
each of the metric values between 0 and 1 using min-max normal-
ization. Our first key observation is that as 𝛽 increases, the values
on all metrics tend to decrease. This is expected given that a larger
𝛽 corresponds to a more random ranking policy, where the original
static relevance estimates have a smaller influence, which conse-
quently results in both lower disparity and relevance. As a corollary,
the static ranking policy derived directly from the deterministic
BPRMF model has the highest relevance and disparity for all six
fairness metrics.

For each of the JME-fairness metrics, these results imply the ex-
istence of a disparity-relevance trade-off as the stochastic ranking
policy cannot achieve both low disparity and high relevance simul-
taneously. To visualize this more clearly, we present the disparity-
relevance trade-off curves for all six JME-fairness metrics in fig. 3.
We study five different models in this experiment: BPRMF [49],
LDA [4], PureSVD [24], SLIM [38], and WRMF [55], employing the
same randomization strategy on top for all models. As before, we
normalize the disparity and relevance metric values in the range of
0 to 1. A point closer to the lower left represents a ranking policy
with full stochasticity, while the right-most point for each curve
corresponds to the respective static ranking policy—i.e., without
any randomization.

For a given metric, different models achieve different levels of
disparity-relevance trade-off, and which model achieves the best
trade-off may differ across the different JME-fairness metrics. For
a given metric, this can be best quantified by computing the area
under the disparity-relevance curve for each model, as shown in
table 2. For example, WRMF model achieves the best trade-off for
GI-F, GG-F, AI-F and AG-F, but is worse for II-F compared to SLIM
and BPRMF.

RQ2: Metric Correlation. The intra-metric analysis in the previous
subsection demonstrates how all six JME-fairness metrics trades-off
between their corresponding disparity and relevance components.
Next, we shift our focus to cross-metric analysis to understand
how a recommender system optimized for one of the JME-fairness
metrics may fare on the other measures. To study this, we evalu-
ate 15 different recommendation models—with 7 different levels
of stochasticity in each case—against each of the six JME-fairness
metrics. For each metric, this gives us 15 × 7 values each corre-
sponding to a recommender system instance—i.e., a combination of
model and stochasticity level. Now for every pair of JME-fairness
metrics, we compute the Kendall rank correlation [28] to quantify
the agreement between the twometrics with respect to the ordering
of the recommender system instances, as presented in fig. 4. We
perform the analysis twice using gender and age as demographic
attributes for the user-side, respectively.

We observe that the correlation between the II-F metric and the
other five JME-fairness measures is typically low, and the same
holds when we compare the corresponding disparity and relevance
components across these measures. This provides evidence to our
claim that each of these metrics quantifies different notion of un-
fairness, and that a system instance that may perform well on one
fairness dimension may be suboptimal for another. A more nuanced
interpretation of these correlation matrices requires us to recall
that in section 4.1 we argued that the the other five JME-fairness
metrics can be considered as a specific instance of the GG-F metric
based on the group definitions. For example, on the user dimension,
if our group definition involves a very small number of groups then
the GG-F metric should intuitively display high correlation with the
AG-F metric. On the other hand, if we consider many small groups
of users in context of GG-F, then we would expect the correlation
between GG-F and IG-F to be higher. In fig. 4, the group definition
based on both gender and age correspond to the scenario where
we have a small number of groups which may explain why we see
strong correlation between GG-F and AG-F—and between age and
gender we see that the correlation is higher for gender because
it involves relatively fewer groups compared to age. Effectively,
GG-F captures a notion of unfairness that lies on spectrum between
what IG-F and AG-F measures. The correlation matrix therefore
is consistent with the behavior we would expect by comparing
eqs. (4), (6), (8), (10), (12) and (14).

6 Optimization for JME-fairness
In the previous section, we demonstrated that a recommender sys-
tem that performs well on one JME-fairness metric may under-
perform on another. This highlights a potential opportunity to



II-F IG-F GI-F GG-F AI-F AG-F

II-
F

IG
-F

GI
-F

GG
-F

AI
-F

AG
-F

1.000 0.487 0.432 0.307 0.444 0.327

0.487 1.000 0.611 0.576 0.568 0.551

0.432 0.611 1.000 0.723 0.949 0.745

0.307 0.576 0.723 1.000 0.683 0.911

0.444 0.568 0.949 0.683 1.000 0.706

0.327 0.551 0.745 0.911 0.706 1.000

II-F IG-F GI-F GG-F AI-F AG-F

II-
F

IG
-F

GI
-F

GG
-F

AI
-F

AG
-F

1.000 0.483 0.504 0.363 0.446 0.323

0.483 1.000 0.696 0.617 0.566 0.544

0.504 0.696 1.000 0.699 0.791 0.659

0.363 0.617 0.699 1.000 0.639 0.786

0.446 0.566 0.791 0.639 1.000 0.702

0.323 0.544 0.659 0.786 0.702 1.000

II-D IG-D GI-DGG-DAI-DAG-D

II-
D

IG
-D

GI
-D

GG
-D

AI
-D

AG
-D

1.000 0.441 0.344 0.321 0.349 0.318

0.441 1.000 -0.030 -0.056 -0.028 -0.058

0.344 -0.030 1.000 0.900 0.991 0.893

0.321 -0.056 0.900 1.000 0.900 0.976

0.349 -0.028 0.991 0.900 1.000 0.889

0.318 -0.058 0.893 0.976 0.889 1.000

II-D IG-D GI-DGG-DAI-DAG-D

II-
D

IG
-D

GI
-D

GG
-D

AI
-D

AG
-D

1.000 0.520 0.334 0.450 0.303 0.279

0.520 1.000 -0.003 0.127 -0.032 -0.060

0.334 -0.003 1.000 0.785 0.912 0.862

0.450 0.127 0.785 1.000 0.772 0.739

0.303 -0.032 0.912 0.772 1.000 0.882

0.279 -0.060 0.862 0.739 0.882 1.000

II-R IG-R GI-RGG-R AI-R AG-R

II-
R

IG
-R

GI
-R

GG
-R

AI
-R

AG
-R

1.000 0.623 0.283 0.318 0.266 0.232

0.623 1.000 -0.077 -0.035 -0.095 -0.123

0.283 -0.077 1.000 0.870 0.980 0.868

0.318 -0.035 0.870 1.000 0.857 0.905

0.266 -0.095 0.980 0.857 1.000 0.869

0.232 -0.123 0.868 0.905 0.869 1.000

(a) user: gender / item: genre
II-R IG-R GI-RGG-R AI-R AG-R

II-
R

IG
-R

GI
-R

GG
-R

AI
-R

AG
-R

1.000 0.620 0.320 0.763 0.273 0.239

0.620 1.000 -0.042 0.490 -0.097 -0.120

0.320 -0.042 1.000 0.384 0.911 0.868

0.763 0.490 0.384 1.000 0.365 0.315

0.273 -0.097 0.911 0.365 1.000 0.865

0.239 -0.120 0.868 0.315 0.865 1.000

(b) user: age / item: genre
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Figure 4: The Kendall rank correlation between differentmet-
rics and their two components across six different fairness
dimensions.

optimize multiple JME-fairness metrics simultaneously. Ideally, we
expect that optimizing for multiple JME-fairness measures allows
us to explicitly trade-off between these various fairness concerns.

6.1 Algorithm
To optimize towards a JME-fairness objective, we adopt the ap-
proach proposed by Diaz et al. [17]. Let 𝒀 ∈ R |U |×|D | be the esti-
mated relevance between users and items as predicted by a model
𝑓𝜃 : U ×D → R, parameterized by Θ. A stochastic ranking policy
can now be defined that sampling items without replacement from
the following probability distribution as given by the Plackett-Luce
model:

𝑝(D𝑗 |U𝑖) =
exp(𝒀𝑖 𝑗 )∑
𝑘 exp(𝒀𝑖𝑘)

. (19)

Sampling from the above distribution is a non-differentiable step
that creates a roadblock for gradient-based optimization. However,

following the same strategy as Diaz et al. [17], we can reparame-
terize the probability distribution by adding independently-drawn
noise 𝜁 sampled from the Gumbel distribution to 𝒀𝑖 𝑗 , and sorting
the items by their “noisy” probability distribution 𝑝(D𝑗 |U𝑖):

𝑝(D𝑗 |U𝑖) =
exp(𝒀𝑖 𝑗 + 𝜁 𝑗 )∑
𝑘 exp(𝒀𝑖𝑘 + 𝜁𝑘)

. (20)

The sorting step itself is also non-differentiable, but we can
compute the smooth rank [44, 61] for each item in the ranking as
follows:

𝜌D𝑗 ,𝜋U𝑖
=

∑︁
𝑘∈[1.. |D |],𝑘 ̸=𝑗

(
1 + exp

(
𝑝(D𝑗 |U𝑖) − 𝑝(D𝑘 |U𝑖)

𝜏

))−1
,

(21)
where the temperature 𝜏 is a hyperparameter that controls the
smoothness of the approximated ranks. We have now computed the
rank position of an item D𝑗 in the ranking with respect to userU𝑖

in a differentiable way. Next, we can compute the system exposure
using a user browsing model like RBP as E𝑖 𝑗 = (1−𝛾) ·𝛾𝜌D𝑗 ,𝜋U𝑖

−1.
To derive the expected exposure, we average the system exposure
over 100 different sampled rankings. Finally, having estimated the
system exposure E we can now compute its deviation from target
exposure E∗ using different JME-fairness metric definitions which
are themselves differentiable.

Readers should note that merely optimizing towards a JME-
fairness metric, such as GG-F, is not sufficient for a recommender
system to learn a relevance function between individual users and
items. Therefore, it is important to combine the II-F objective, which
is appropriate for relevance modeling, with the other desired JME-
fairness objective(s). In this work, we combine the GG-F objective
linearly with the II-F as follows:

L = II-F+ 𝛼 · GG-F, (22)

where𝛼 is a scaling factor that trades-off between the two objectives.
Similarly, other combinations of JME-fairness notions can also be
developed.

6.2 Experiment
Datasets. Since our proposed JME-fairness metrics require mean-

ingful attribute information on both the user-side and item-side,
we select theMovieLens100K andMovieLens1M [23] as our datasets.
Both of these datasets contain user-to-movie relevance information
collected from the MovieLens website. These two datasets provide
100 thousand and 1 million user-movie interactions, respectively,
with the user metadata (gender, age, occupation group) and movie
genres. For each user, we randomly select 20% of the rated items as
ground truth for testing, The remaining 70% and 10% data consti-
tutes the training and validation set. 2

Implementation Details. We choose Matrix Factorization (MF) as
our base model to conduct our experiments. MF is widely used in
recommendation, due to its simplicity and efficiency. We optimize
the model using the Adam optimizer with the Xavier initializa-
tion [22]. The model parameters Θ contain the user embeddings
and item embeddings, where the embedding size is fixed to 64.

2The code and datasets are available at https://github.com/haolun-wu/JMEFairness.

https://github.com/haolun-wu/JMEFairness
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Figure 5: The trade-off between II-F and GG-F when directly
optimizing the recommender model towards a combination
of both objectives.

In order to obtain the user-item relevance matrix 𝒀 , we use the
inner-product to compute the similarity between each pair of users
and items. The batch size for training is set to be 32. The learn-
ing rate and the regularization hyper-parameter are selected from
{1𝑒−2, 1𝑒−3, 1𝑒−4}. The scaling factor 𝛼 is selected from {0, 1, 5,
10, 20 ,50}. The temperature 𝜏 in eq. (21) and the patience param-
eter 𝛾 for the RBP user browsing model are set to be 0.1 and 0.8,
respectively.

6.3 Results
Figure 5 shows the trade-off between II-F and GG-F that we achieve
by varying 𝛼 . On both datasets, we initially see a sharp fall in GG-F,
which is desirable, with only a small increase in II-F, which de-
pending on the application may be a fair trade-off against the GG-F
improvements. For example, if we compare training the model with
𝛼 = 0 (i.e., training on II-F only) and 𝛼 = 1, we see a statistically
significant improvement (drop) in GG-F according to the student’s
t-test (𝑝 < 0.01), while the corresponding degradation (increase)
in II-F is not statistically significant under the same test, on both
datasets. Furthermore, the degradation in NDCG between 𝛼 = 0
and 𝛼 = 1 is also small on both datasets, as shown in table 3, and
the difference is not statistically significant under the student’s
t-test (𝑝 < 0.01). These empirical results portray the opportunity
to optimize recommender systems along multiple exposure fairness
dimensions, while maintaining high recommendation quality.

7 Discussion and Conclusion
In IR, many measures of retrieval quality focus primarily on the
position of relevant items in static ranked lists. By explicitly mea-
suring deviations in system and target exposure, expected exposure
metrics, in contrast, provide a useful framework to consider other
dimensions of ranking evaluations, such as diversity and fairness,
in addition to relevance. While, this framework have previously
been employed in the context of individual users to individual and
groups of items exposure fairness, we argue in this work that joint
consideration of group attributes on both user-side and item-side
allows us to study other forms of systematic unfairness of social
and moral import in recommendation. In this setting, the choice of
group attributes on both sides is an important consideration and
must be informed by historical and social contexts as well as critical
scholarship in the area of socioeconomic justice. For example, in the

Table 3: NDCG@50 for the recommender system correspond-
ing to different values of 𝛼 .

Dataset 𝛼 = 0 𝛼 = 1 𝛼 = 5 𝛼 = 10 𝛼 = 20 𝛼 = 50

ML100K 0.3703 0.3692 0.3684 0.3680 0.3674 0.3662
ML1M 0.2741 0.2736 0.2725 0.2712 0.2693 0.2684

context of job recommendation, such considerations may include
an understanding of historical and ongoing pay and other forms of
workplace discrimination based on gender and race [16, 58]. While,
the analysis presented in this paper has considered group attributes
for users (and correspondingly for items) along single dimensions,
it is noteworthy that our formalization does not make any such
assumptions. In fact, in the job recommendation scenario, it is mean-
ingful to consider, say, both gender and race attributes of applicants
jointly with grouping of jobs by salary and demographic attributes
of corresponding business-owners in the GG-F metric formulation.
Incorporating multiple group dimensions also raises additional con-
siderations, such as of intersectional fairness [13, 15]. We have not
yet analysed the appropriateness and sufficiency of our proposed
framework for quantifying unfairness that may result from mem-
bership in multiple historically marginalized demographics but we
believe this is an exciting area for future studies.

A historical perspective on fairness and justice is also critical
to ensuring appropriate operationalization of our proposed frame-
work. For example, readers should note that computing target ex-
posure assumes the availability of true relevance labels. However,
all real-world recommendation datasets likely suffer from histori-
cal biases [33] and therefore computing target exposure based on
these observed relevance labels is also likely to be unfair to different
demographics. In some cases, this gap between true and observed
relevance may be mitigated by modifying how target exposure
is computed—e.g., for GG-F it may be reasonable to employ E∼

instead of E∗ as the ideal target exposure distribution over item
groups. The application of our proposed framework of metrics ne-
cessitates such careful deliberation to prevent the undesirable case
of bias-in-bias-out.

Our work also has implications for the design and deployment of
stochastic ranking models. Considering multiple fairness metrics,
such as those proposed in this work, requires trading-off different
forms of unfairness—e.g., II-F vs. GG-F. This may have implications
for model optimization as well as the calibration of stochasticity
in the model. While both our current work and previous literature
on expected exposure metrics have considered stochastic mod-
els that randomize the output rankings by sampling noise from
model-independent distributions, future development of stochas-
tic ranking models may also want to consider approaches where
the randomization is informed by the model’s own epistemic and
aleatoric uncertainty [12]. On a concluding note, while our work
has developed the framework of JME-fairness in the context of
recommendation task, we believe our formulations can easily be
extended to other IR tasks, such as search by replacing users with
queries, without loss of generality.
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