
SOL: Safe On-Node Learning in Cloud Platforms
Yawen Wang

Stanford University
Stanford, CA, USA

yawenw@stanford.edu

Daniel Crankshaw
Microsoft Research
Redmond, WA, USA

dacranks@microsoft.com

Neeraja J. Yadwadkar
University of Texas at Austin

Austin, TX, USA
neeraja@austin.utexas.edu

Daniel Berger
Microsoft Research
Redmond, WA, USA

daberg@microsoft.com

Christos Kozyrakis
Stanford University
Stanford, CA, USA

kozyraki@stanford.edu

Ricardo Bianchini
Microsoft Research
Redmond, WA, USA

ricardob@microsoft.com

ABSTRACT
Cloud platforms run many software agents on each server node.
These agents manage all aspects of node operation, and in some
cases frequently collect data and make decisions. Unfortunately,
their behavior is typically based on pre-defined static heuristics
or offline analysis; they do not leverage on-node machine learn-
ing (ML). In this paper, we first characterize the spectrum of node
agents in Azure, and identify the classes of agents that are most
likely to benefit from on-node ML. We then propose SOL, an ex-
tensible framework for designing ML-based agents that are safe
and robust to the range of failure conditions that occur in produc-
tion. SOL provides a simple API to agent developers and manages
the scheduling and running of the agent-specific functions they
write. We illustrate the use of SOL by implementing three ML-based
agents that manage CPU cores, node power, and memory place-
ment. Our experiments show that (1) ML substantially improves
our agents, and (2) SOL ensures that agents operate safely under
a variety of failure conditions. We conclude that ML-based agents
show significant potential and that SOL can help build them.

CCS CONCEPTS
• Computer systems organization → Other architectures;
Cloud computing; • Software and its engineering → Software
creation and management.

KEYWORDS
Cloud computing, on-node agents, machine learning for systems,
systems for machine learning.
ACM Reference Format:
Yawen Wang, Daniel Crankshaw, Neeraja J. Yadwadkar, Daniel Berger,
Christos Kozyrakis, and Ricardo Bianchini. 2022. SOL: Safe On-Node Learn-
ing in Cloud Platforms. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’22), February 28 – March 4, 2022, Lausanne, Switzerland.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3503222.3507704

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507704

1 INTRODUCTION
Motivation. Cloud platforms such as AWS, Azure, and GCP are
complex. In addition to many control plane services running on
dedicated capacity (e.g., [9, 15, 36]), these platforms run many man-
agement “agents” on each server node alongside customer work-
loads. The agents are responsible for configuring and upgrading
node software and firmware, creating and destroying virtual ma-
chines (VMs), managing resource allocation and assignment (e.g.,
[20, 37]), checking for failure or vulnerability conditions (watch-
dogs), monitoring resource health, collecting telemetry, and many
other tasks.

These tasks cannot be performed effectively from outside a node.
For example, resource assignment must be fast (order of millisec-
onds) to prevent performance loss, power management (e.g., cap-
ping) must change hardware settings, watchdogs need finer-grained
telemetry than what is unavailable off node, and so on. Because
agents compete for resources with customer workloads, platforms
must constrain their resource usage and/or at least partially offload
them to accelerator cards, as in [22, 26].

Many agents collect data and make frequent decisions. Currently,
these decisions are based on static heuristics or results of offline
analysis. But ML has shown potential to improve agent behavior
throughworkload- and hardware-aware decision-making [6, 27, 37].
For example, an agent responsible for conserving dynamic core en-
ergy can benefit from learning the impact of core frequency on the
workloads’ performance at each point in time. Or a watchdog agent
could learn to immediately flag serious issues with the platform,
while being slower for behaviors that are most likely benign.

Unfortunately, these agents cannot take full advantage of the
“centralized” ML systems currently available in production, such
as Resource Central [9] or TFX [5]. These systems train models
offline (using data from all nodes) and serve predictions (model
inference) on-demand via a REST interface. Thus, they are limited
in their model update and inference frequency by the network
latency and bandwidth available for management communication.
In contrast, on-node agentsmay need to operate on large amounts of
fine-grained node-local data (e.g., core utilization samples collected
every tens of microseconds) and/or have to make high-frequency
decisions (e.g., reassigning cores very few milliseconds) [37].
Challenges.We can overcome the limitations of centralized ML
systems by learning online on the nodes themselves. However, de-
ploying safe and robust learning on nodes that run (potentially
sensitive) customer workloads poses challenges. First, there are

https://doi.org/10.1145/3503222.3507704
https://doi.org/10.1145/3503222.3507704

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Y. Wang, D. Crankshaw, N. J. Yadwadkar, D. Berger, C. Kozyrakis, and R. Bianchini

many conditions that can lead ML-based agents to compromise
quality of service (QoS). ML-based agents must be robust to unfore-
seen problems due to the workload, the learning model, the node
environment, or even all three simultaneously, without needing
human intervention or communication with a centralized service.

Second, learning on individual nodes builds models online for
cloud workloads whose properties are unknown in advance. This
means that the models themselves cannot be fully vetted offline
ahead of time. Thus, customer workloads must be protected from
the decisions of bad models running in production, rather than
relying on a pre-deployment process to filter out most of these
inaccurate models before they ever reach customers. Possible causes
for poor ML behavior include bad input data due to corrupted or
improperly configured hardware or OS counters, or attempting to
learn from workloads that violate modeling assumptions (such as
steady-state or periodic workload behavior).

Third, even accurate models can lead to sub-optimal agent behav-
ior in the presence of scheduling delays. When the host resources
are needed for higher-priority tasks, such as virtual IO, the agent’s
execution may be delayed and lead it to (1) miss important data
samples and/or (2) take actions based on stale data or a stale model.

Finally, customer workloads must be protected when the agent
experiences silent model failures or even hard crashes as a result
of external interference, unforeseen environmental conditions, or
software bugs.
Our work. We first perform a comprehensive characterization of
the node agents that run in Azure, and identify the classes of man-
agement tasks that are most likely to benefit from on-node learning.
We find that three classes, which collectively make up 35% of all
agents, can benefit from on-node learning. Watchdog agents can
use ML to both increase failure detection coverage and detect prob-
lems earlier. Monitoring agents can leverage ML to adapt where
and when they collect telemetry based on node activity, increas-
ing coverage without increasing cost. Resource control agents can
use ML to improve resource utilization while protecting customer
workload performance.

When deploying on-node ML for these classes of agents, it is
crucial to be robust to the heterogeneous and evolving cloud envi-
ronment under all failure conditions. To facilitate the development
and operation of robust on-node learning agents, we introduce SOL,
a Safe On-node Learning framework. Agent developers can use
SOL for developing ML-based agents that are internally safe and ro-
bust to the range of failure conditions that can occur in production.
Different agents are typically developed by different teams in large
cloud platforms. SOL provides a unified interface across teams to
reduce deployment complexity. Moreover, its interface allows cloud
operators (e.g., site reliability engineers or SREs) to safely terminate
and cleanup after misbehaving agents without knowing anything
about their implementation.

We design SOL as a general framework to support a variety
of on-node management agents that employ learning algorithms.
By abstracting out structural similarity across learning agents and
common types of problems the agents face in deployment, SOL
presents a simple API with two key elements. The first is a set
of functions for developers to implement the four common oper-
ations for ML-based control agents: collecting data, updating the
model, getting a prediction from the model, and actuating a change

based on the prediction. The second element is a set of required
watchdog-style safeguards. The safeguards enumerate common fail-
ure conditions that can be hard to detect and debug in production.
Agent developers must use the safeguards to internally monitor
different aspects of the agents, and avoid impact to customer QoS or
node health when a problem is detected. The safeguards ensure that
agents are safe to deploy at scale alongside customer workloads.
The exact definition of safety varies based on the agents’ purpose,
but the desire to protect customer QoS and avoid wasting resources
is common.

SOL schedules and runs the developer-provided functions. It also
detects and informs the agent of any scheduling violations. This
is critical for avoiding the use of stale predictions under highly
dynamic workloads.

We demonstrate the use of SOL by implementing three ML-based
agents. Each agent manages a different resource, uses a different
modeling approach, and has different data and scheduling con-
straints. The first is a CPU overclocking agent, SmartOverclock, that
uses reinforcement learning to overclock workloads only during
the phases when they can benefit. The second is a CPU-harvesting
agent, SmartHarvest (introduced in [37]), that predicts CPU uti-
lization at millisecond granularity to borrow idle cores and safely
return them before they are needed. The third agent, SmartMem-
ory, monitors each VM’s memory usage to detect pages that can be
migrated to remote memory without much performance impact.
Results. We present a detailed experimental evaluation of our
agents, first demonstrating that on-node learning significantly im-
proves their efficacy, and then showing that agents implemented
in SOL operate safely under a variety of failure conditions. As an
example, SmartOverclock improves performance up to 41% while
consuming 2.25x less power over a static overclocking baseline.
The SOL safeguards limit the agent’s power draw increase during
failure conditions to 18%, while without the safeguards the same
failure condition leads to a 268% power increase.
Related work. We are unaware of similar agent characterizations
from commercial clouds. The prior work on using on-node learning
has focused on ad-hoc resource management agents (e.g., [27, 37]),
and did not consider general frameworks for engineering safe ML-
based agents.
Contributions. In summary, our main contributions are:
• A characterization of (1) the existing on-node agents in Azure,
and (2) the challenges involved in incorporating ML into them.
• The design of an on-node framework with an extensible API and
runtime system for deploying ML-based agents that are robust to a
wide variety of realistic issues.
• The implementation and detailed evaluation of three agents
that demonstrate substantial improvements from on-node learning,
while maintaining workload QoS and node health.

2 PRODUCTION ON-NODE MANAGEMENT
Before delving deep into on-node learning and SOL, it is important
to understand the spectrum of node agents in real cloud platforms,
and identify those that can benefit from learning. Thus, in this
section, we first overview the classes of agents in Azure and then
discuss how learning can benefit a subset of the classes.

SOL: Safe On-Node Learning in Cloud Platforms ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 1: Taxonomy of production agents. The rightmost column lists whether the class could benefit from learning.

Class Count Description Examples Benefit?
Configuration 25 Configure node HW, SW, or data Credentials, fire walls, OS updates No
Services 23 Long-running node services VM creation, live migration No
Monitoring/logging 18 Monitoring and logging node’s state CPU and OS counters, network telemetry Yes
Watchdogs 7 Watch for problems to alert/automitigate Disk space, intrusions, HW errors Yes
Resource control 2 Manage resource assignments Power capping, memory management Yes
Access 2 Allow operators access to nodes Filesystem access No

Table 2: Examples of on-node learning resource control agents. Prior work has primarily focused on resource control.

Agent Goal Action Frequency Inputs Model
SmartHarvest [37] Harvest idle cores Core assignment 25 ms CPU usage Cost-sensitive classification
Hipster [27] Reduce power draw Core assignment & frequency 1 s App QoS and load Reinforcement learning
LinnOS [16] Improve IO perf IO request routing/rejection Every IO Latencies, queue sizes Binary classification
ESP [25] Reduce interference App scheduling Every app App run time, perf counters Regularized regression
Overclocking §5 Improve VM perf CPU overclocking 1s Instructions per second Reinforcement learning
Disaggregation §5 Migrate pages Warm/cold page ID 100 ms Page table scans Multi-armed bandits

Taxonomy of node agents. Regardless of whether an agent runs
on host CPUs or an offload card, it is typically a user-level process
responsible for a specific, narrowly-defined task. This makes agents
simpler to develop, easier to maintain, less likely to impact node
performance, and less likely to affect each other in case of misbe-
havior. It also makes them easier to categorize. Table 1 categorizes
the agents in Azure into 6 classes. There are 77 agents, but many
of them run rarely. Next, we provide an overview of each class.
1. Configuration agents control aspects of the node’s hardware,
software, and data. They change the node state as directed by the
platform’s control plane and run from every 10 minutes (configure
TCP) to order of months (host OS upgrades).
2. Service agents run various node services that are critical for oper-
ating the cloud environment. These services include VM lifecycle
management, on-node agent creation, and security scanning and
malware detection. They run throughout the lifetime of the node,
at frequencies ranging from seconds to minutes.
3. Monitoring/logging agents monitor and/or log data (off the node).
For logging fine-grained telemetry, they must aggregate/compress
data to reduce the amount to be sent off node. They run at different
frequencies from the order of seconds to tens of minutes.
4. Watchdog agents (or simply watchdogs) check for problems that
either require telemetry that is only available on the node or where
detecting the problem off the node would be too slow to prevent
customer impact. Watchdogs run fairly frequently, on the order of
seconds to minutes.
5. Resource control agents dynamically manage resources, such as
CPUs, memory, and power. Though they are not numerous, they
run frequently, on the order of seconds.
6. Access agents enable datacenter operators to diagnose and mit-
igate incidents. Some agents run continuously, while others only
run when an incident requires operator involvement.
Runtime constraints on agents. Regardless of where they run,
agents compete for precious resources: on host CPUs, they compete
with customer workloads; on accelerator cards, they compete with
other agents and data plane operations. Unconstrained agent exe-
cution may introduce interference and tail latency effects [13]. For
these reasons, each agent runs under strict compute and memory

constraints defined in its configuration (e.g., 1% CPU and 200MB of
memory for a host-CPU-based watchdog agent). Agents also run
at lower priority than customer workloads and the host OS, which
means that agents may get temporarily starved or throttled.
On-node learning opportunity. Today, production agents do not
take advantage of on-node learning and, thus, are not as effective
as they could be. Any agents that benefit from collecting data about
current workload characteristics to guide dynamic adjustment of
their behavior can potentially take advantage of ML. In particular,
we argue that resource control, monitoring/logging, and watchdog
agents can benefit significantly from on-node learning.

Resource control agents can benefit because the most efficient as-
signment of resources (particularly compute, memory, and power)
is highly dependent on the current workload. Learning online di-
rectly on each node can predict the short-term workload dynamics,
and make better assignment decisions without affecting customer
QoS. Better assignments offer opportunities for improved efficiency
and cost savings. It is thus the focus of our case-studies in §5. Prior
work has also considered learning-based resource control agents
(see Table 2).

Monitoring/logging agents can benefit because there is a cost to
collecting samples and logging them off the node. Yet these agents,
particularly those doing frequent sampling, treat every sample as
having the same value. In steady-state, this results in oversampling,
whereas in highly-dynamic periods this can result in undersampling
and the loss of important information. Online learning algorithms
such as multi-armed bandits [32] can be used to smartly decide
what telemetry to sample on the node or when to increase/decrease
sampling while staying within the collection and logging budget.

Finally, watchdogs can benefit because failure conditions can
be complex. Existing watchdogs check for simple conditions that
are highly likely to indicate problems. This often means that they
cannot detect problems until the problems are already affecting
customer QoS. Using on-node learning offers the opportunity to
detect problems and take mitigating actions earlier, as well as to
detect and diagnose more complex problems directly on the node.
Summary, implications, and challenges. Production platforms
run numerous agents of different classes on each server node. These

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Y. Wang, D. Crankshaw, N. J. Yadwadkar, D. Berger, C. Kozyrakis, and R. Bianchini

on-node agents are resource-constrained and may be delayed by
other activities. We argue that resource control, monitoring/log-
ging, and watchdog agents could benefit substantially from on-node
learning. Agents from these classes represent 35% of the total node
agents. They run frequently and perform crucial or costly oper-
ations where ML can lead to significant savings (e.g., improved
resource utilization). The key challenge is producing safe, robust, and
effective ML-based agents under the constraints of real cloud plat-
forms. Today, there are no systems that can help agent designers
address this challenge.

3 ON-NODE LEARNING
On-nodeML enables agents to becomemore agile andmake smarter
decisions, while considering fine-grained workload and resource
utilization dynamics. Table 2 presents a selection of recent applica-
tions of ML to on-node management tasks that outperform static
policies. These agents have different goals, employ different types
of ML models, and learn from different telemetry. Though these
prior works demonstrate the benefits of incorporating ML logic
into on-node agents, they neglect the impact of different failures
conditions on agent performance and correctness, making them
less practical to deploy into production.

3.1 When is on-node ML necessary?
Freshworkload-tunedmodels and predictions. There are many
workload dynamics that are only predictable a short window into
the future. For example, the SmartHarvest and the SmartOverclock
agents rely on extremely short-term signals to predict future CPU
utilization (25ms into the future) and performance improvement
from overclocking (1s into the future), respectively. For these use-
cases, training on telemetry periodically logged to a centralized
store would result in perpetually stale models for the current work-
load. Similarly, requesting predictions from centralized models to
change a resource allocation could result in perpetually predicting
workload behavior that has already happened. Instead, the models
must be trained and served online on the node, and continuously
updated to learn the latest behavior. This enables the agent to better
respond to current workload behavior on the node.
Fine-grained telemetry. For many of these use cases, the oppor-
tunities for improved efficiency come from learning high frequency
workload dynamics. In these cases, the models must learn from
telemetry sampled at a high enough rate to capture these high-
frequency effects. For example, the SmartHarvest agent captures
CPU telemetry every 50 𝜇𝑠 (the agent dedicates an otherwise idle
core for capturing this telemetry; when there are no idle cores, there
is nothing to harvest so the agent does not run), the SmartOver-
clock agent reads CPU counters every 100ms, and the SmartMemory
agent samples page access bits up to every 300ms. This fine-grained
telemetry cannot leave the node, as the size of the per-node data
would likely cause performance issues for customers. For example,
a single 16 GB VMwhose memory is scanned every 300ms produces
100 MB of telemetry a minute.

3.2 On-node ML challenges and requirements
Bad input data. On-node learning agents collect telemetry to up-
date the model and make decisions. At the scale of a cloud platform

operating millions of nodes, telemetry collection can fail in a vari-
ety of ways (e.g., misconfigured drivers, changes in data semantics
between architecture or OS).

ML models are developed with implicit and explicit assumptions
about data semantics, but will often continue to learn and produce
predictions on data that violates these assumptions. The result is
useless models trained on noise whose predictions should not be
trusted. Instead, data assumptions should be specified and explic-
itly checked. In case of transient errors, if the invalid data can be
detected and discarded, the model can still learn and provide useful
predictions. Otherwise, learning on even small amounts of bad data
can corrupt the model.
Poor model accuracy. There are many reasons why a model
may have poor accuracy. For example, it may be learning from
bad data (not all invalid data is detectable a priori). Or it may
be trying to learn the behavior of a workload that violates some
modeling assumption and is therefore unlearnable by this model
(e.g., randomly changing workload dynamics). Inaccurate models
cause agents to take consistently bad actions, which can lead to
impact to customer workloads. Instead, models must be evaluated
continuously to ensure they meet accuracy expectations, and their
predictions should not be used during periods of poor accuracy.
Unpredictable resource availability. Agents are not guaranteed
any computational resources. During periods of high CPU demand
on the host or expensive dataplane operations (e.g., large amounts
of virtual IO), agents will be throttled for arbitrary periods of time.
Compute-intensive agents running close to their CPU limits can
experience slowdowns resulting in stale models and predictions. As
a result, the resource allocation or monitoring decisions made by an
agent may be in effect for too long, or the agent may make decisions
based on stale data. If not detected and handled appropriately, these
delays can lead to unsafe agent behaviors (e.g., negative impact on
QoS) by taking actions after workload dynamics have shifted.
Node performance and reliability. Finally, all agents must ensure
that they are not negatively impacting node performance or health
in the face of opaque VMs. Not all data or learning issues can be
prevented, and other environmental factors outside the scope of
the agent may interfere with its operation (e.g., VM live migration).
Sometimes servers run in stressed or constrained modes, such as
being oversubscribed or power-capped. In such settings, there can
be little room for efficiency improvement from on-node learning
and attempting to do so can harm customer or node health. As a
last line of defense, agents must estimate their impact on client
workloads and node health, and disable themselves if necessary.

4 SOL INTERFACE AND DESIGN
We design SOL to implement on-node ML agents that are safe to
deploy alongside customer workloads by ensuring that they detect
andmitigate all of the failure conditions from §3.2. SOL’s API guides
agent developers through the agent-specific logic needed to manage
these conditions, while remaining highly extensible to different use
cases. To implement a new agent in SOL, all developers have to do
is (1) write functions to instantiate the API’s function signatures,
and (2) instantiate parameters for how often the functions need to
run. The SOL runtime takes as input the functions and parameters,
and manages scheduling and execution.

SOL: Safe On-Node Learning in Cloud Platforms ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

interface Model <D,P>
{

D CollectData ();
void UpdateModel ();
Prediction <P> ModelPredict ();

bool ValidateData(D data);
void CommitData(Time time , D data);
Prediction <P> DefaultPredict ();
bool AssessModel ();

}

Listing 1: Model interface. It is parameterized by the type D of
the data collected and the type P of the prediction. Developers
provide functions to instantiate these signatures.

Next, we describe the interface SOL exposes to agent developers,
then discuss its runtime design and operation.

4.1 SOL interface
SOL is a lightweight C++ framework that exposes an API to agent
developers which reflects the shared structure and failure modes of
learning agents. The API is split into two groups of functions: Model
and Actuator, each with their own sets of safeguards. The Model
is responsible for providing fresh and accurate predictions on a
best-effort basis. The Actuator makes control decisions at regular
intervals (anywhere from milliseconds to minutes, depending on
the agent), using predictions from the Model when available. The
Model and Actuator run independently in separately scheduled
loops so the Actuator can continue to operate safely and take
regular actions when the Model is throttled or underperforming.

We adopt this split design to decouple the ML logic (Model) from
the node management logic (Actuator), whether that is resource
control, monitoring decisions, or watchdog failure detection. En-
forcing strong abstraction boundaries simplifies agent design and
ensures that the agent is designed from the ground up to operate
safely even without predictions.
Model interface. The top part of the Model interface (Listing 1)
specifies the three operations that all models take: (1) collect data to
learn and predict on, (2) update the model with newly acquired data,
and (3) use the model to make predictions. These three operations
are called to form a single learning epoch. Often models need to
collect several datapoints before learning and making predictions,
so a single learning epoch can contain multiple data collection
operations, but an epoch contains at most one model update and
predict operation. The output of a successful learning epoch is a
Prediction object that contains the predicted value and an explicit
expiration time for the prediction. Data collection frequency, maxi-
mum duration, and the minimum and maximum number of data
points that can be collected in a learning epoch are all configurable
by the developer.

The rest of the Model interface is devoted to detecting problems
and taking mitigating action when they occur. Every individual
datapoint must be validated, and only if it successfully passes val-
idation will it be committed to be used in the model. The data
validation interface in SOL takes as input the most recently read
data. It can be used to perform range checks or simple distributional

interface Actuator <P>
{

void TakeAction(Option <Prediction <P>> pred);
bool AssessPerformance ();
void Mitigate ();
static void CleanUp ();

}

Listing 2: Actuator interface. This interface is parameterized
by the type P of the prediction. Developers provide functions
to instantiate these signatures.

checks with developer-defined data structures in the class imple-
mentation. There are limits to the extent individual telemetry data
can be validated, but data validation helps ensure data points do not
violate any testable properties of the inputs. In addition, developers
must specify an AssessModel function that periodically checks
whether the model accuracy or other relevant performance metrics
are acceptable for the prediction task of the agent. While the model
assessment is failing, SOL will intercept predictions before they
can be passed to the Actuator. This means that the Actuator can
assume that any predictions it receives are from a validated model.

For some agents, there are useful fallback heuristics that can
be used to make safe workload-aware decisions even without an
accurate model. These safe heuristic decisions can be implemented
in the DefaultPrediction function. SOL will send them to the
Actuator instead when the model cannot produce an accurate pre-
diction due to either data collection or model quality issues. Default
predictions should allow the node to behave in a way that has mini-
mal impact on the agent-specific safety metric (e.g., customer QoS),
at the possible cost of running at lower efficiency. However, even
default predictions have an expiration time as they are still reliant
on fresh telemetry and can become stale.

Default predictions can also be explicitly sent to the Actuator
at any stage of the learning epoch. This short-circuits the current
epoch and starts a new one. This is useful when the developer
can detect an error ahead of time (e.g., if a prediction is below a
confidence threshold).
Actuator interface. By design, the Actuator interface (Listing 2)
closely resembles the interface of an agent that does not use ML. It
is a simple control function called TakeAction that is called either
when new data becomes available or after a developer-specified
maximum wait time has elapsed, whichever comes first. The only
difference from non-learning agents is that learning agents use the
prediction from a model to decide which action to take.

The TakeAction signature takes an Option<Prediction> type
as an input. There may not always be a prediction available from the
model (even a default prediction), by the time the Actuator must
take an action, in which case the option type contains None. Even
if there is a prediction available, it may already be expired if there
were scheduling delays or throttling experienced by the agent. SOL
detects scheduling delays by inserting various timestamp checks
in the execution loop. It relies on the system clock for accurate
timekeeping. When a fresh prediction is not available within the
specified time frame for the Actuator to take an action, the agent
should take a conservative, safe action to preserve customer QoS
and node health, even if it comes at the cost of reduced efficiency.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Y. Wang, D. Crankshaw, N. J. Yadwadkar, D. Berger, C. Kozyrakis, and R. Bianchini

The Actuator requires its own safeguard specified in functions
AssessPerformance and Mitigate. AssessPerformance directly
assesses the agent’s behavior end-to-end, independently of the inter-
nal state of the model. Whenever it detects the safeguard-triggering
condition, the Mitigate function is then called to allow the agent
to take mitigating action. This safeguard serves as the last line of
defense for the agent, and mirrors the existing approach in pro-
duction, which requires node agents to have their own watchdogs.
The Actuator safeguard should measure proxies for the safety met-
ric of the particular agent and define acceptable impact to these
metrics as justified by business needs. For example, a poorly per-
forming SmartHarvest agent can starve customer workloads that
need CPU resources. Hence, its AssessPerformance function mon-
itors vCPU wait time for these customer workloads and triggers the
safeguard when the wait time exceeds a certain threshold (as con-
figured by the developer). The SOL runtime periodically evaluates
AssessPerformance and calls Mitigate when the performance
is unacceptable. The Mitigate function for SmartHarvest stops
borrowing cores from customer VMs to stop the agent from impact-
ing their performance. However, failing the Actuator performance
check is often a lagging indicator of negative impact. The safe-
guards in the Model may detect and avoid problems before they
trigger the Actuator safeguard, reducing the severity of impact.

Finally, the Actuator requires developers to provide an idem-
potent and stateless CleanUp function. This function can be safely
called at any time (e.g., by node SREs). It stops the agent and re-
stores the node to a clean state, regardless of whether the agent is
running normally, has crashed, or is hanging. SREs can also work
with developers to define additional signals (e.g., node health prob-
lems, frequent stalling of the agent) upon which agents should be
cleanly terminated with the CleanUp function.

4.2 SOL runtime design and operation
Design principles. The key design decision in SOL is to decouple
the potentially expensive data collection and ML component of
the agent from the control component. Internally, SOL maintains
two separate control loops running in separate threads. The Model
control loop collects data, updates the model, and produces predic-
tions to a message queue. The Actuator control loop consumes
predictions from this queue when available and periodically takes a
control action and monitors the end-to-end scenario performance.

The actuation logic is much simpler and less computationally ex-
pensive than the model logic, which may need to collect substantial
amounts of telemetry and perform many mathematical operations
to train the model or make predictions. The specific actuation varies
(e.g., collect monitoring data, making resource control decisions,
trigger alerts), but the structure is the same. At the same time, as
we discuss in §2, agents can run at best as soft real-time systems
that may be throttled or delayed without warning.

By decoupling the expensive model logic from the lightweight
actuation logic, we prevent the Model from starving the Actuator
during these periods of heavy throttling. This provides an oppor-
tunity for the Actuator to take a safe action to prevent node or
customer impact while the model may be completely unable to run.
Operation. Given an instantiation of the agent API, SOL auto-
matically starts and runs the Model and Actuator control loops

class Schedule
{

// Model
int data_per_epoch;
duration data_collect_interval;
duration max_epoch_time;
duration assess_model_interval;
// Actuator
duration max_actuation_delay;
duration assess_actuator_interval;

}
void main()
{

Schedule schedule(config_file);
Model* model = new OverclockModel ();
Actuator* act = new OverclockActuator ();
SOL:: RunAgent(model , act , schedule);

}

Listing 3: Executing an agent. Once developers have imple-
mented the SOL interface, they pass their implementation
to the SOL runtime for scheduling and execution.

according to developer-provided schedules (Listing 3). The Model
loop collects data at the frequency specified by the user until either
enough data has been collected and validated or the maximum
epoch time has elapsed. If enough data has been collected, SOL up-
dates the model and makes a prediction. Otherwise, it short-circuits
the learning epoch by sending a default prediction to the Actuator.

In addition, SOL assesses the model accuracy periodically (every
K epochs as specified by the user). If the model fails the accuracy
check, SOL continues to operate the Model control loop normally.
However, SOL intercepts predictions and instead passes a default
prediction to the Actuator. This still allows themodel to be updated
and produce predictions, hence providing the opportunity for the
model to recover from a period of bad performance. At the same
time, it prevents the Actuator from acting on bad predictions.

The Actuatorwaits on the prediction message queue for up to a
maximum wait time. When new predictions are available, it imme-
diately uses them to take actions. If a timeout occurs, SOL still calls
TakeAction to provide an upper bound on the time between con-
trol actions in the agent. SOL also periodically checks the Actuator
safeguard to detect behavior that could impact customer workloads
or node health. If the safeguard is triggered, it halts the Actuator
control loop until the unsafe behavior is no longer detected.

5 DEVELOPING AGENTS IN SOL
To build new agents in SOL, developers need to provide the im-
plementation of the four common ML operations along with the
various safeguards. SOL’s APIs direct development efforts towards
handling failure conditions ahead of time via the definition of safe-
guards. This requires developers to carefully reason through what
conditions are appropriate to monitor and what mitigating actions
should be taken in response. We argue this extra development
burden up front is crucial, as it helps substantially reduce the com-
plexity of managing learning agents in production. The operational-
ization complexity has been shown to contribute a significant part
of the total cost for deploying ML in production [31].

SOL: Safe On-Node Learning in Cloud Platforms ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

We implemented three on-node learning agents using SOL. They
differ in the type of node resources they manage, the input data and
MLmodels they use, and the timescales they run at. Next, we discuss
how these agents can benefit from learning, and their implementa-
tion in SOL. Unless otherwise stated, the various agent parameter
values were selected based on experimental tuning. In §6, we demon-
strate the consequences of running these agents unchecked during
failures and how SOL minimizes these consequences by detecting
and mitigating when failures occur.

5.1 CPU overclocking
CPU overclocking presents opportunities for substantial perfor-
mance improvements on some workloads [17]. However, overclock-
ing significantly increases power consumption and can shorten
hardware lifetimes. As cloud platforms explore providing over-
clockable VM offerings, they want to balance the performance
improvements with the extra power cost.

To address this problem, we created an intelligent on-node over-
clocking agent called SmartOverclock, which uses Q-learning [34],
a simple form of Reinforcement Learning (RL). It monitors the av-
erage Instructions Per Second (IPS) performance counter across
the cores of each VM and learns when to overclock the VM. At the
end of every 1-second learning epoch, the agent uses the observed
IPS and current core frequency to calculate the current RL state
and reward. It then updates the RL policy and uses it to pick the
frequency for the next learning epoch. Because the agent cannot
directly observe workload-level metrics (e.g., tail latency) inside
opaque VMs, it assumes that a workload benefits from overclocking
when higher CPU frequencies increase IPS. Though IPS is not a
perfect proxy for identifying whether overclocking is beneficial, it
works well for most optimized workloads. To balance exploitation
of the policy learned so far with exploration of new frequencies,
the agent uses the action selected by the RL policy 90% of the time
and randomly picks a frequency 10% of the time.
Validating data. The agent collects multiple CPU counters and
validates that they are within their expected ranges, discarding any
data that fails this check, e.g., the IPS value should be between 0 and
max_freq ∗ max_IPC. Even a small fraction of bad data can cause
the model to learn a sub-optimal policy and prevent workloads
from benefitting from overclocking (see §6).
Assessing the model. A poorly performing RL policy can cause
the agent to overclock workloads that do not benefit, resulting in
wasted power. To detect a bad policy, the agent (in the AssessModel
function) computes the difference, Δ𝑟 , between the observed reward
when overclocking and the expected reward from using the nominal
frequency. It discards predictions if the average Δ𝑟 over the last 10
epochs falls below a threshold. In this case, the agent continues to
randomly explore, but overrides the RL-selected actions by always
picking the nominal frequency as the default prediction.
Handling delayed predictions. Brief periods of wasted power are
acceptable for the agent to recover from short scheduling delays.
Thus, the Actuator will wait for up to 5 seconds (5 learning epochs)
for a prediction. If it has not received an un-expired prediction at
the end of this period, it takes the safe default action of setting the
CPUs to the nominal frequency to avoid wasting power.

Safeguarding the Actuator. As the end-to-end safeguard for the
Actuator, we define a factor 𝛼 , using three CPU counters: 𝛼 =

(unhalted_cycles - stalled_cycles)/total_cycles. This factor serves
as a binary indicator of whether a workload might benefit from
overclocking. If 𝛼 is low, the workload will not benefit much and
overclocking would simply waste power. The Actuator monitors
the 90𝑡ℎ-percentile (P90) of 𝛼 values over the past 100 seconds and
triggers the safeguard if this value is below a threshold. We use P90
to smooth transient drops in 𝛼 , while quickly exiting the safeguard
when activity increases again. The safeguard restores all cores to
the nominal frequency in the Mitigate function.
Cleaning up. The Cleanup function kills any running SmartOver-
clock agents and then restores all cores to the nominal frequency.

5.2 CPU harvesting
The second agent we implement in SOL is the SmartHarvest agent
from prior work [37]. We adopt the same model design and param-
eters values as used in [37]. This agent opportunistically “harvests”
CPU cores that have been allocated to a (primary) set of VMs but
are currently idle. It then loans the harvested cores to a special
VM (called an ElasticVM), but must return the cores to the primary
VMs as soon as they need them. Prior work has shown that ML is
beneficial for this task [37], but it did not fully explore the design of
safeguards to ensure safe and robust agent performance. We choose
it as a case study to demonstrate the benefits of implementing
previously explored ML use cases in SOL (see §6).

The agent uses a cost-sensitive classifier from the VowpalWab-
bit framework [3] to predict the maximum number of CPU cores
needed by the primary VMs in the next 25 ms. It collects VM CPU
usage data from the hypervisor every 50𝜇𝑠 and computes distribu-
tional features over this data as input to the model.
Validating data.We perform range checks on the counter readings
similar to those of the SmartOverclock agent. In addition, if the
primary VMs use all their allocated cores during a learning epoch,
it is impossible to distinguish whether they needed exactly that
many cores, or whether they were under-provisioned during the
epoch and the degree of that under-provisioning. Learning from this
CPU telemetry can skew the model and cause it to systematically
underpredict primary core usage. We therefore also discard any
data collected during periods of full utilization by the primary VMs,
as done in [37].
Assessing the model. The original SmartHarvest designers did
not discuss approaches to assessing the accuracy of the learning
model, instead relying on their version of the Actuator safeguard to
detect and mitigate any problems. However, the Actuator safeguard,
while important, is a lagging indicator of impacted performance.
Assessing the model accuracy can detect some problems earlier.
Thus, our implementation measures the percentage of time that
predictions from the model lead to primary VMs running out of idle
cores. If this percentage is high, the model safeguard is triggered.
Handling delayed predictions. Similar to SmartOverclock, our
implementation of SmartHarvest sets a time limit on the wait time
for a prediction produced by the model. The agent waits for a
maximum of 100 ms (4 learning epochs) to account for its tighter
harvesting control loop.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Y. Wang, D. Crankshaw, N. J. Yadwadkar, D. Berger, C. Kozyrakis, and R. Bianchini

Safeguarding the Actuator. The agent uses a hypervisor counter
reflecting how long virtual cores of a primary VM have waited
for physical cores to run on as a proxy for workload QoS degrada-
tion. Long wait times indicate insufficient idle cores. The Actuator
safeguard monitors the P99 wait time using the same approach as
in [37]. If the value is high, it disables harvesting by giving all cores
back to the primary VMs.
Cleaning up. Cleanup kills any running SmartHarvest agents then
returns all harvested cores to the primary VMs.

5.3 Page classification for tiered systems
Our third SOL-based agent, called SmartMemory, targets managed
two-tiered memory systems, where a slower and lower-cost byte-
addressable memory (e.g., persistent [19, 38] or disaggregated mem-
ory) sits behind the faster but expensive DRAM-based first tier.
To efficiently use such systems, prior work exploited the highly-
skewed popularity of pages in real-world workloads [19, 38]. Build-
ing on this idea, our agent seeks to identify pages as hot, warm,
and cold, so that a small number of hot pages are stored in first-tier
DRAM [19, 38], warm pages are on slow memory, and cold pages
are compressed or not stored at all [21].

To determine page hotness, we can scan page access bits through
the hypervisor [19, 29, 38]. Frequent scanning provides more fine-
grained information about relative page access rates, but may also
degrade workload performance from TLBmisses. Each time a page’s
access bit is cleared, the page entry is flushed from the TLB.

Our agent uses ML to minimize the number of TLB flushes
while still accurately classifying memory as hot/warm/cold. It uses
Thompson Sampling [30, 35] with a Beta distribution prior, a well-
known multi-armed bandit [32] algorithm that yields good perfor-
mance in practice. The agent learns the best scanning frequency
for each 2MB region of memory, divided into 512 4KB pages. The
optimal scanning frequency is the lowest frequency that yields the
same number of accesses as the maximum frequency. This forces
hot batches to be sampled at the maximum frequency, while colder
batches can be sampled much less often. In every epoch, the agent
uses the Thompson Sampling models to decide how often to scan
each batch, ranging from 300ms to 9.6s. At the end of each 38.4-
second epoch (4x the maximum sampling period of 9.6s), the agent
observes whether each batch was oversampled, undersampled (as
approximated by number of consecutive access bits set), or well
sampled, and updates the models accordingly. The model then uses
the variable rate scans to estimate the minimal set of batches that
contributed 80% of total memory accesses. It classifies these batches
as hot, and the remainder as warm batches that are candidates for
first-tier DRAM offloading. Similar to the heuristic used in previous
work on cold memory detection [21], we treat batches that have
been untouched for more than 3 minutes as cold and exclude them
from scanning and our analysis.
Validating data. The access scanning driver will return an er-
ror code if it fails to scan or reset any access bits. In these cases,
ValidateData fails the sample.
Assessing the models. The main risk from inaccurate models is
that hot memory regions will be undersampled, leading the agent
to conclude they are colder than they really are. The SmartMemory

model randomly samples 10% of the batches at the maximum fre-
quency and computes the total number of accesses to these batches.
It uses this sample as ground truth to estimate the fraction of ac-
cess bits missed by the model-recommended scanning rates. If the
fraction of missed accesses rises above 25%, the model is deemed
to be undersampling page accesses.

To provide safe default predictions under partial sampling or
undersampling, the agent downsamples the access scans from all
the batches to the lowest scanning frequency so that hit counts
across different batches are directly comparable. It then targets a
much more conservative 95% hottest batches to keep in first-tier
DRAM, selecting only the coldest 5% of batches as candidates for
warm memory using these downsampled hit counts. This helps
protect workload QoS without completely disabling the second tier.
Handling stale predictions. Unlike our other agents, SmartMem-
ory has no need to take any immediate mitigating action when
predictions are delayed. It simply leaves the hot and warm pages
where they are. If this decision becomes stale before the next pre-
diction is received, the non-blocking system design triggers the
Actuator safeguard to mitigate the problem.
Safeguarding the Actuator. The agent can directly observe the
number of memory accesses to each tier using existing hardware
counters. If the fraction of remote accesses over the last epoch is
above the 20% target service level objective (SLO), the Actuator
safeguard is triggered. In this case, the Actuator immediately mi-
grates the 100 hottest batches in the second-tier memory back to
the first tier. If the first tier does not have room for all 100 batches,
it migrates as many as possible starting with the hottest batch.
Cleaning up. Cleanup kills any active SmartMemory agents and
restores all second-tier batches back to the first tier until either all
batches have been restored or the first tier is full.

6 EVALUATION
We evaluate (1) the utility of ML in each SOL agent we build, and (2)
the efficacy of SOL’s API in detecting failure conditions and mitigat-
ing their impact. Each agent we study manages a different resource.
Therefore, the impact of failures on workload performance and
node health also differs across agents. We begin by evaluating all
safeguards using the SmartOverclock agent and include additional
experiments for the SmartHarvest and SmartMemory safeguards
where their behavior differs significantly from SmartOverclock.

6.1 Experimental Setup
Because agents running on each node are independent of each other,
we run experiments on a single node and inject failures into the
system to evaluate their resilience to these failures.

All experiments run on a two-socket Intel server with the Xeon
Platimum 8171M processor capable of running at up to 2.6GHz, with
26 cores per socket and 384 GB DRAM. To reduce performance jitter
for the customer VMs, we disable simultaneous multithreading, C-
states, and Turbo-Boost. The server runs the Hyper-V hypervisor.

We run the agents in user-space on the root partition of Hyper-
V. The overhead of running an agent is dependent on invocation
frequency and computation overhead of various learning functions
and safeguard checks. The SOL runtime manages the scheduling

SOL: Safe On-Node Learning in Cloud Platforms ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Figure 1: SmartOverclock learns to only overclock when the
workload can benefit. Performance and power are normal-
ized to the baseline values at 1.5GHz.

in user-space and runs in the same process as the agent, requiring
very few resources.

6.2 SmartOverclock
We set the nominal server frequency to 1.5GHz and let the agent
select from three possible CPU frequencies: 1.5, 1.9, and 2.3 GHz.
Within an epoch, the SmartOverclock agent sets cores for a VM
to the same frequency, but can change this frequency between
epochs. While per-core frequency scaling is possible, the agent has
no visibility into the thread scheduling (which governs per-core
utilization) within the VM.

We first compare workload performance and power consumption
of SmartOverclock to static policies that use a single frequency. The
Synthetic workload simulates a server that periodically (every 100
secs) receives a batch of compute-intensive requests and processes
them as quickly as possible, then is idle until the next batch arrives.
This workload only benefits from overclocking during its request-
processing phases. Performance is measured as the total time to
complete a fixed number of batches. ObjectStore is a distributed
key-value server running at high load that always benefits from
overclocking. Performance is reported as P99 latency. DiskSpeed
is a disk-bound workload that does not benefit from overclocking.
Performance is reported as throughput in requests/sec.

Figure 1 shows the normalized peformance and power drawn
by the three workloads at various static frequency settings and
when using SmartOverclock. It shows that SmartOverclock pro-
vides the highest or second highest performance, indicating that
it is overclocking workloads when they benefit. Statically over-
clocking the Synthetic workload at 2.3GHz only provides a 13%
performance gain over SmartOverclock, yet uses twice as much
power, demonstrating the inefficiency of static policies for dynamic
cloud workloads. ObjectStore shows similar trends. DiskSpeed il-
lustrates the case where SmartOverclock detects the workload’s

disk-bound behavior and keeps the frequency down, except for its
intentional exploration of other frequencies.

SmartOverclock does not achieve the same performance as a
static 2.3GHz frequency for CPU-bound workloads for two reasons:
(1) agent exploration intentionally sacrifices short-term benefit for
long-term adaptability, and (2) learning a model requires repeated
observations to learn changes in workload dynamics. SmartOver-
clock sacrifices optimal peak performance for near-optimal perfor-
mance and power usage on a wide range of workloads, achieving a
higher performance/power ratio.
Invalid data.We now evaluate the impact of invalid data on Smar-
tOverclock’s model accuracy for the Synthetic workload. In Figure 2,
we vary the percentage of bad data the agent collects by randomly
returning out-of-range IPS readings to the agent a fixed percentage
of the time. Without data validation, even 5% of invalid IPS read-
ings causes a 17% drop in performance, while with data validation
the workload still sees optimal performance. Eventually, too many
invalid data readings will prevent the model from making a pre-
diction at all and the scheduling delay safeguard will get triggered,
returning cores to the nominal frequency.
Inaccurate model.We study the SmartOverclock model safeguard
on all three workloads in Figure 3 by breaking the model, causing
it to consistently select the highest frequency. Without the model
safeguard, there is nothing to stop the agent fromwasting power.On
the DiskSpeed workload, this results in a 268% increase in power
draw, whereas the model safeguard can detect this failure and
increases total power draw by only 18%. ObjectStore benefits from
overclocking and so a broken agent that always overclocks still
achieves good results. However, the workload could change phases
at any time without the agent changing its overclocking decision.
Delayed predictions. Next, we turn to the effectiveness of SOL’s
decoupled non-blocking design in preventing delayed predictions
from impacting node health. We study the worst case occurence of
a delay during phase changes in the Synthetic workload, which can
cause the agent to waste power by overclocking an idle workload.
We inject a 30-second delay in the Model thread when the work-
load finishes processing a batch and compare SOL’s non-blocking
Actuator to a blocking version that waits to change core frequency
until a prediction is available. As Figure 4 shows, the blocking
agent overclocks the workload for 30 seconds into its idle phase,
increasing power consumption by 36%. The non-blocking agent
waits a maximum of 5 seconds for a prediction from the model. In
the absence of fresh predictions, it restores the node to a safe state
(nominal frequency), consuming only an additional 3% of power.
Actuator safeguard. Fianlly, we evaluate the SmartOverclock ac-
tuator safeguard, which uses 𝛼 to detect when the workload is in a
stable phase of low CPU utilization. Many cloud workloads include
VMs that are transiently idle for many minutes at a time (e.g., a
VM that runs periodic data processing jobs for 30 minutes every
hour). During these idle periods, the Actuator safeguard completely
disables overclocking to avoid wasting power. Figure 5 illustrates
that the safeguard can detect and disable the agent during periods
of low activity while remaining sensitive enough to quickly detect
a period of higher CPU activity and re-enabling the agent.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Y. Wang, D. Crankshaw, N. J. Yadwadkar, D. Berger, C. Kozyrakis, and R. Bianchini

Figure 2: SmartOverclock data validation safeguardmitigates
transient data errors. Power and performance are normalized
to the ideal agent decision-making (all valid data).

Figure 3: SmartOverclock model safeguard detects when RL
overclocks without gains. Power and performance are nor-
malized to the ideal agent decision-making (correct model).

Figure 4: Non-blocking Actuator for SmartOverclock pre-
vents wasted power when predictions are unavailable.

Figure 5: The SmartOverclock actuator safeguard reduces
wasted power during long-lasting idle phases.

6.3 SmartHarvest
We next evaluate our implementation of the SmartHarvest agent in
SOL. Prior work [37] provides a thorough evaluation of the benefits
of machine learning for CPU harvesting, so we focus our evalua-
tion on the additional safety provided by SOL’s safeguards. When
comparing the original implementation of SmartHarvest to the SOL
implementation, we find that they have a similar number of lines
of code – 1900 in the original compared to 1990 in SOL. However,
the version in SOL contains the full set of safeguards required by
the framework, while the original version lacks this functionality,
making it more susceptible to operational issues. Guiding develop-
ers to ensure that their learning agents are appropriately hardened
is a primary goal of SOL. Without this hardening, these issues can
be difficult to detect and debug in production, hence reducing QoS
and/or platform efficiency.

We evaluate the SmartHarvest agent when it tries to predict the
CPU utilization of a co-located primary VM. We use either of two
latency-sensitive workloads from TailBench [18] as the primary
VM: image-dnn which performs image recognition and moses

which does language translation. We measure performance of both
workloads as their P99 latency.
Invalid Data. In the leftmost plot in Figure 6, we evaluate the
SmartHarvest data validation safeguard, which discards observa-
tions when the primary VM is using all available cores. Without this
safeguard, SmartHarvest consistently underpredicts the primary
VM’s CPU utilization in both workloads, causing the primary VM’s
P99 latency to increase by as much as 40%. With the safeguard, the
impact on the primary VM’s P99 latency is substantially less than
10% (the acceptable performance envelope in [37]).
Inaccurate model. In the case of a broken model (middle plot of
Figure 6), the SmartHarvest model safeguard detects that the model
is consistently underestimating the primary VM’s CPU demand.
When the safeguard is triggered, SOL switches to the default pre-
dictions which alleviate the impact on the primary VM’s workload
at the cost of harvesting fewer cores.
Delayed predictions. We see a similar impact on workload la-
tency in the rightmost plot of Figure 6, when we insert 1-second
scheduling delays during periods when the primary VM increases

SOL: Safe On-Node Learning in Cloud Platforms ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Figure 6: SmartHarvest safeguards: The left plot shows that the data validation safeguard prevents bad data from biasing the
model to underestimate primary VM CPU demand, reducing the impact on customer workloads by up to 4x. The middle plot
shows that the model safeguard reduces the impact of a broken model on workloads by up to 4x. The right plot shows that the
non-blocking SOL implementation reduces the impact on workloads by up to 3x compared to a blocking agent.

Figure 7: SmartMemory vs static access bit scanning.

CPU utilization. This worst-case scenario illustrates the importance
of SOL’s non-blocking design. If the agent blocks on a prediction
from the model, a 1-second delay can cause up to a 30% increase in
workload latency. This increase happens because during the delay,
the primary VM’s CPU utilization increases and it needs more cores,
but the agent is blocked and cannot respond. The non-blocking
agent has no information during the delay either, but it can quickly
take the safe action of restoring all cores back to the primary VM.

6.4 SmartMemory
The SmartMemory agent handles delayed predictions and invalid
data similarly to the other agents. Hence, we focus on (1) demon-
strating the effectiveness of adaptive access bit scanning in reducing
access bit resets and (2) the importance of SOL’s safeguards in pro-
tecting workloads from too many slow tier-2 memory accesses.

In Figure 7, we compare the SmartMemory agent to two base-
lines without any safeguards: always scanning at the maximum
frequency (300ms) and always scanning at the minimum frequency
(9.6s). We evaluate on three workloads: ObjectStore, SQL (a stan-
dard OLTP benchmark executed on SQL Server), and SpecJBB
(which executes SPECjbb2000 [1] for performance evaluation of
server-side Java). For all workloads, the agent tries to maximize
remote (tier-2) memory usage while ensuring that at least 80% of
memory accesses are local as the service-level objective (SLO).

The top plot shows the reduction in access bit resets compared
to the fastest frequency. SmartMemory reduces access bit scans

Figure 8: SmartMemory Model and Actuator safeguards.

by up to a 48%, while still reducing local memory size by 51% to
64% (middle plot). In the bottom plot, we observe the importance of
SOL’s safeguards. Access bit scans reflect only the current memory
access patterns regardless of scanning frequency. Even when scan-
ning at the maximum frequency, if the workload access patterns
change, safeguards are needed to quickly mitigate SLO violations.
Further, the bottom plot shows that sampling at the minimum fre-
quency does not provide enough resolution to identify the hottest
batches when targeting the 80% local accesses SLO, resulting in
SLO attainment as low as 9%.
Model and Actuator safeguards. Figure 8 presents a more de-
tailed evaluation of the SmartMemory Model and Actuator safe-
guards. We designed a workload that is difficult for SmartMemory
to learn well: it oscillates between running SpecJBB for 150 seconds
and sleeping for 80 seconds, resulting in frequent and rapid shifts
in memory access patterns.

Without any safeguards, the SmartMemory agent only meets
the SLO 66% of the time. When we add the Actuator safeguard, the
agent can recover from instantaneous SLO violations immediately
instead of waiting for the next learning epoch. We observe this
effect at 250 seconds and 500 seconds, where the Actuator safeguard
line on the bottom plot immediately drops back below 20% remote
accesses. However, starting around 800 seconds, the models have
consistently low accuracy for several epochs and we see that the
Actuator safeguard takes multiple minutes to fully mitigate the SLO
violation. In contrast, with the Model safeguard enabled, the agent
is prevented from using the inaccurate predictions starting at 800

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Y. Wang, D. Crankshaw, N. J. Yadwadkar, D. Berger, C. Kozyrakis, and R. Bianchini

seconds, using the default predictions instead and avoiding the SLO
violation in the first place.

Only SmartMemory with all safeguards enabled can both avoid
using inaccurate predictions in the first place (Model safeguard), and
quickly recover from SLO violations when they happen (Actuator
safeguard). With all safeguards, SmartMemory meets the SLO 90%
of the time, even on this intentionally difficult workload.

7 RELATEDWORK
We are not aware of any prior characterizations of node agents in
public cloud platforms or work on general and extensible frame-
works for implementing safe and robust on-node learning agents.
Infrastructure for ML deployment. Centralized ML systems,
where models are trained offline and served online, have become
the standard deployment strategy [2, 5, 9–12, 14, 28]. Though useful
for many scenarios, these systems cannot be used for the on-node
learning tasks SOL addresses.
On-nodeML. Recent works explored online learning for improving
on-node resource efficiency or workload performance [4, 7, 8, 16,
25, 27]. Though effective for their particular use-cases, they did not
propose general frameworks for implementing agents or address the
deployment constraints of public cloud platforms (e.g., the need to
learn at the platform level from opaque VMs, instead of inside VMs
or with application changes). SOL helps developers build agents
that run safely outside of customer VMs without any visibility into
or changes to them.
Safeguards for learning. There has been some exploration of
the safety challenges involved in online ML [23, 24, 33, 37]. For
example, the authors of [24] discuss a fallback policy when the
model performs badly. SmartHarvest [37] focused on protecting the
performance of customer workloads from poor predictions. None
of these works helps developers with which issues to manage or
how to build agents in a safe and robust manner.

8 CONCLUSION
This paper explored the challenges in improving production public
cloud platforms by infusing online machine learning into their
node agents. We first surveyed the existing (non-learning) agents
in Azure and found that 35% of the 77 agents have the potential
to benefit from learning. We then presented SOL, a general and
extensible framework for developing on-node learning agents that
can operate safely under various realistic issues, including bad data,
scheduling delays, inaccurate models, and external interference.
To demonstrate SOL, we implemented three agents using it and
experimentally showed (1) the benefits of infusing learning into the
agents, and (2) how the design of SOL ensures that they are robust
to a variety of failure conditions.

ACKNOWLEDGEMENTS
We would like to thank our shepherd Akshitha Sriraman and the
anonymous reviewers for many helpful comments. We would also
like to thank John Thorpe for valuable preliminary investigations.
This work was partially supported by the Stanford Platform Lab
and its affiliates. Yawen Wang was also supported by a Microsoft
Research Dissertation Grant.

REFERENCES
[1] 2006. SPEC JBB2000. https://spec.org/jbb2000/. Retrieved in January 2021.
[2] 2020. Torchserve. https://pytorch.org/serve/. Retrieved in January 2021.
[3] 2020. Vowpal Wabbit. https://github.com/VowpalWabbit/vowpal_wabbit/wiki.

Retrieved in January 2021.
[4] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi

Mao, and Mohammad Alizadeh. 2018. Placeto: Efficient progressive device place-
ment optimization. In Machine Learning for Systems Workshop at the 32nd Con-
ference on Neural Information Processing Systems.

[5] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,
Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin
Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-Scale
Machine Learning Platform. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/
3097983.3098021

[6] Ricardo Bianchini, Marcus Fontoura, Eli Cortez, Anand Bonde, Alexandre Muzio,
Ana-Maria Constantin, Thomas Moscibroda, Gabriel Magalhaes, Girish Bablani,
and Mark Russinovich. 2020. Toward ML-Centric Cloud Platforms. Commun.
ACM 63, 2 (2020). https://doi.org/10.1145/3364684

[7] Vladimir Bychkovsky, Jim Cipar, Alvin Wen, Lili Hu, and Saurav Mohapatra.
2018. Spiral: Self-tuning services via real-time machine learning. Blog post
at https://engineering.fb.com/data-infrastructure/spiral-self-tuning-services-via-
real-time-machine-learning (2018).

[8] Victor Carbune, Thierry Coppey, Alexander Daryin, Thomas Deselaers, Nikhil
Sarda, and Jay Yagnik. 2018. SmartChoices: Hybridizing Programming and
Machine Learning. In Reinforcement Learning for Real Life Workshop at the 36th
International Conference on Machine Learning.

[9] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles.

[10] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao Zhang,
Michael J Franklin, Ali Ghodsi, and Michael I Jordan. 2015. The Missing Piece in
Complex Analytics: Low Latency, Scalable Model Management and Serving with
Velox. In Proceedings of the 17th Biennial Conference on Innovative Data Systems
Research.

[11] Dan Crankshaw and Joseph Gonzalez. 2018. Prediction-Serving Systems: What
Happens When We Wish to Actually Deploy a Machine Learning Model to
Production? ACM Queue 16, 1 (2018). https://doi.org/10.1145/3194653.3210557

[12] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System.
In Proceedings of the 14th USENIX Symposium on Networked Systems Design and
Implementation.

[13] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013). https://doi.org/10.1145/2408776.2408794

[14] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems. https://doi.org/10.1145/2541940.2541941

[15] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David
Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. 2020. Protean: VM Allocation Service at Scale. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and Implementation.

[16] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hoff-
mann, and Haryadi S Gunawi. 2020. LinnOS: Predictability on Unpredictable
Flash Storage with a Light Neural Network. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation.

[17] Majid Jalili, Ioannis Manousakis, Íñigo Goiri, Pulkit Misra, Ashish Raniwala,
Husam Alissa, Bharath Ramakrishnan, Phillip Tuma, Christian Belady, Marcus
Fontoura, and Ricardo Bianchini. 2021. Cost-Efficient Overclocking in Immersion-
Cooled Datacenters. In Proceedings of the 48th Annual International Symposium
on Computer Architecture. https://doi.org/10.1109/ISCA52012.2021.00055

[18] Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark suite and
evaluation methodology for latency-critical applications. In Proceedings of the
IEEE International Symposium on Workload Characterization.

[19] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring the Design
Space of Page Management for Multi-Tiered Memory Systems. In Proceedings of
the USENIX Annual Technical Conference.

[20] Alok Kumbhare, Reza Azimi, Ioannis Manousakis, Anand Bonde, Felipe Frujeri,
Nithish Mahalingam, Pulkit Misra, Seyyed Ahmad Javadi, Bianca Schroeder,
Marcus Fontoura, and Ricardo Bianchini. 2021. Prediction-Based Power Over-
subscription in Cloud Platforms. In Proceedings of the USENIX Annual Technical
Conference.

[21] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,

https://spec.org/jbb2000/
https://pytorch.org/serve/
https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1145/3364684
https://doi.org/10.1145/3194653.3210557
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/ISCA52012.2021.00055

SOL: Safe On-Node Learning in Cloud Platforms ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

et al. 2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Pro-
ceedings of the 24th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. https://doi.org/10.1145/3297858.3304053

[22] Anthony Liguori. 2017. Introducing the Nitro Hypervisor – the Evolution of
Amazon EC2 Virtualization. https://www.youtube.com/watch?v=LabltEXk0VQ

[23] Kiwan Maeng and Brandon Lucia. 2020. Adaptive Low-Overhead Scheduling
for Periodic and Reactive Intermittent Execution. In Proceedings of the 41st ACM
SIGPLANConference on Programming Language Design and Implementation. https:
//doi.org/10.1145/3385412.3385998

[24] Hongzi Mao, Malte Schwarzkopf, Hao He, and Mohammad Alizadeh. 2019. To-
wards Safe Online Reinforcement Learning in Computer Systems. In Proceedings
of the 33rd Conference on Neural Information Processing Systems.

[25] Nikita Mishra, John D Lafferty, and Henry Hoffmann. 2017. ESP: A Machine
Learning Approach to Predicting Application Interference. In Proceedings of the
14th IEEE International Conference on Autonomic Computing. https://doi.org/10.
1109/ICAC.2017.29

[26] Ravi Murty. 2019. Powering next-gen Amazon EC2: Deep dive into the Nitro
system. https://www.youtube.com/watch?v=rUY-00yFlE4&t=2634s

[27] Rajiv Nishtala, Paul Carpenter, Vinicius Petrucci, and Xavier Martorell. 2017.
Hipster: Hybrid Task Manager for Latency-Critical Cloud Workloads. In Proceed-
ings of the 23rd IEEE International Symposium on High Performance Computer
Architecture. https://doi.org/10.1109/HPCA.2017.13

[28] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. In ML Systems Workshop at the
31st Conference on Neural Information Processing Systems.

[29] SeongJae Park, Yunjae Lee, and Heon Y Yeom. 2019. Profiling Dynamic Data
Access Patterns with Controlled Overhead and Quality. In Proceedings of the 20th
International Middleware Conference Industrial Track. https://doi.org/10.1145/
3366626.3368125

[30] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng
Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1

(2018). https://doi.org/10.1561/2200000070
[31] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Di-

etmar Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine Learning:
The High Interest Credit Card of Technical Debt. In Software Engineering for Ma-
chine Learning Workshop at the 28th Conference on Neural Information Processing
Systems.

[32] Aleksandrs Slivkins. 2019. Introduction to Multi-Armed Bandits. Foundations and
Trends® in Machine Learning 12, 1-2 (2019). https://doi.org/10.1561/2200000068

[33] Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2021. Automatically Enforc-
ing Fresh and Consistent Inputs in Intermittent Systems. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. https://doi.org/10.1145/3453483.3454081

[34] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction.

[35] William R. Thompson. 1933. On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples. Biometrika 25, 3/4
(1933).

[36] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. 2015. Large-Scale Cluster Management at Google
with Borg. In Proceedings of the 10th European Conference on Computer Systems.
https://doi.org/10.1145/2741948.2741964

[37] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari,
Neeraja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis, and
Ricardo Bianchini. 2021. SmartHarvest: Harvesting Idle CPUs Safely and Effi-
ciently in the Cloud. In Proceedings of the 16th European Conference on Computer
Systems. https://doi.org/10.1145/3447786.3456225

[38] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nim-
ble Page Management for Tiered Memory Systems. In Proceedings of the 24th
International Conference on Architectural Support for Programming Languages and
Operating Systems. https://doi.org/10.1145/3297858.3304024

https://doi.org/10.1145/3297858.3304053
https://www.youtube.com/watch?v=LabltEXk0VQ
https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1109/ICAC.2017.29
https://doi.org/10.1109/ICAC.2017.29
https://www.youtube.com/watch?v=rUY-00yFlE4&t=2634s
https://doi.org/10.1109/HPCA.2017.13
https://doi.org/10.1145/3366626.3368125
https://doi.org/10.1145/3366626.3368125
https://doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000068
https://doi.org/10.1145/3453483.3454081
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/3447786.3456225
https://doi.org/10.1145/3297858.3304024

	Abstract
	1 Introduction
	2 Production On-Node Management
	3 On-Node Learning
	3.1 When is on-node ML necessary?
	3.2 On-node ML challenges and requirements

	4 SOL Interface and Design
	4.1 SOL interface
	4.2 SOL runtime design and operation

	5 Developing Agents in SOL
	5.1 CPU overclocking
	5.2 CPU harvesting
	5.3 Page classification for tiered systems

	6 Evaluation
	6.1 Experimental Setup
	6.2 SmartOverclock
	6.3 SmartHarvest
	6.4 SmartMemory

	7 Related Work
	8 Conclusion
	References

