
Show Me the Whole World: Towards Entire Item Space
Exploration for Interactive Personalized Recommendations

Yu Song
1,2,3,5

, Shuai Sun
1,2,3

, Jianxun Lian
4
, Hong Huang

1,2,3,†
, Yu Li

5
, Hai Jin

1,2,3
, Xing Xie

4

1
National Engineering Research Center for Big Data Technology and System, Wuhan, China

2
Service Computing Technology and Systems Laboratory, Wuhan, China

3
Huazhong University of Science and Technology, Wuhan, China

4
Microsoft Research Asia, Beijing, China

5
Meituan Group, Beijing, China

yusonghust@gmail.com,{honghuang,hjin}@hust.edu.cn,{jianxun.lian,xingx}@microsoft.com,liyu65@meituan.com

ABSTRACT

User interest exploration is an important and challenging topic

in recommender systems, which alleviates the closed-loop effects

between recommendation models and user-item interactions. Con-

textual bandit (CB) algorithms strive to make a good trade-off be-

tween exploration and exploitation so that users’ potential interests

have chances to expose. However, classical CB algorithms can only

be applied to a small, sampled item set (usually hundreds), which

forces the typical applications in recommender systems limited to

candidate post-ranking, homepage top item ranking, ad creative

selection, or online model selection (A/B test).

In this paper, we introduce two simple but effective hierarchical

CB algorithms to make a classical CB model (such as LinUCB and

Thompson Sampling) capable to explore users’ interest in the entire

item space without limiting to a small item set. We first construct a

hierarchy item tree via a bottom-up clustering algorithm to organize

items in a coarse-to-fine manner. Then we propose a hierarchical

CB (HCB) algorithm to explore users’ interest on the hierarchy

tree. HCB takes the exploration problem as a series of decision-

making processes, where the goal is to find a path from the root

to a leaf node, and the feedback will be back-propagated to all the

nodes in the path. We further propose a progressive hierarchical CB

(pHCB) algorithm, which progressively extends visible nodes which

reach a confidence level for exploration, to avoid misleading actions

on upper-level nodes in the sequential decision-making process.

Extensive experiments on two public recommendation datasets

demonstrate the effectiveness and flexibility of our methods.

∗This work is supported by the National Key Research and Development Program of

China under Grant (No. 2020AAA0108501) and National Natural Science Foundation

of China (No. 62172174).

† Hong Huang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498459

CCS CONCEPTS

• Information systems → Recommender systems; • Comput-

ing methodologies → Sequential decision making.

KEYWORDS

Recommender System, Contextual Bandit, Interest Exploration

ACM Reference Format:

Yu Song, Shuai Sun, Jianxun Lian, Hong Huang, Yu Li, Hai Jin, Xing Xie.

2022. ShowMe theWholeWorld: Towards Entire Item Space Exploration for

Interactive Personalized Recommendations. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining (WSDM ’22),
February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3488560.3498459

1 INTRODUCTION

Recommender systems help users to easily find their favorite items

from massive candidates. Typically, recommender models, such as

collaborative filtering [15] and DeepFM [9], exploit users’ historical

behaviors to learn users’ preference for future recommendations.

Recommender systems with only exploitation models usually suffer

from closed-loop effects [11]: users mostly only interact with the

items recommended by the system; the system further consolidates

users’ profiles with their interacted items recommended by the

deployed model. Therefore, as time goes on, the system will be

biased to a small, exposed set of interests for each user and keep

recommending a limited range of items to a same user.

Contextual multi-armed bandit algorithms, such as LinUCB [16],

are classical methods that leverage side information to provide a

good trade-off between exploration and exploitation, so that the

closed-loop effect can be alleviated. Items are treated as arms and

the recommender model is treated as an agent. Basically, at each

round, the agent chooses one arm which has the biggest potential

from𝐾 arm candidates, then receives a corresponding reward based

on user-item interaction. The goal is to maximize the cumulative

reward over 𝑇 rounds. However, these algorithms hold a premise

that 𝐾 is small, so enumerating all arm candidates’ scores and pick

up the best one is feasible. The premise is true for a few scenarios

where the candidates are naturally small, for example, homepage

breaking news ranking, ads creative ranking and online model

selection. In the scenario of general recommender systems, to fully

explore users’ potential interests and truly alleviate the closed-loop

effect, the arms candidates are the entire item repository, which

https://doi.org/10.1145/3488560.3498459
https://doi.org/10.1145/3488560.3498459

usually contains millions or even billions of items. Classical bandit

methods become infeasible due to the high computation cost of

enumerating every one of the arms.

To address the challenge, we first propose a generic hierarchical

contextual bandit (HCB) algorithm to efficiently explore the inter-

ests of users for large-scale recommendation scenarios. Tree struc-

ture are widely employed to partition the search space to reduce

the computational cost [12, 26, 41, 42]. HCB uses a tree structure as

the index for coarse-to-fine retrieval. For example, in e-commerce

scenario, “Apparel > Clothing > Women’s Clothing > Dresses” is a

path from general apparel to women’s dresses. Instead of using

the category taxonomy of items, we utilize a bottom-up clustering

method on item embeddings to organize items as a hierarchy tree,

on which each node contains a group of semantically similar items.

As a result, the number of items associated to each node on the

hierarchy tree can be balanced, and users’ collaborative behaviors

(such as co-click relations) can be encoded to form the hierarchy

tree. HCB leverages the hierarchical information and turns the

interest exploration problem into a series of decision-making prob-

lems. Starting from the root of the tree, on each non-leaf node, HCB

performs a bandit algorithm among the children arms to choose a

child node until a leaf node is reached. Afterward, another bandit

algorithm is responsible for recommending an item from the leaf

node to the user and collect her feedback as reward. The reward

will be back-propagated along the path to adjust the estimation of

users’ interest towards the hierarchy tree.

The process of HCB is like a depth-first search (DFS) idea. How-

ever, selecting a path in this DFS manner may cause new uncertain-

ties, especially for a deep tree. First, if the selection of the parent

node is misleading, all the subsequent choices will be impacted,

which we call the error propagation. Second, since user interests
are usually diverse, it is possible that the user is interested in many

child nodes located in different parts of the tree. Therefore, we

further propose a progressive HCB (pHCB) algorithm to reduce

uncertainties and enhance the capacity of recommendation. Like

the process of breadth-first search (BFS), pHCB explores items in

an adaptive top-down manner. On the one hand, it gradually main-

tains a limited number of nodes as a receptive field. If one node

has been explored multiple times and the user’s interest on this

node has been verified, the node’s children nodes will be included

to the receptive filed while the current node will be removed. On

the other hand, pHCB learns user interests of different aspects by

performing a bandit algorithm with visible nodes in the receptive

field as arms. Consequently, the pHCB avoids greedily selecting

only one node at each level to improve the HCB. To summarize, we

make the following contributions:

• We highlight the importance of exploring users’ interests in the

entire item space to truly alleviate the closed-loop effect in per-

sonalized recommender systems. To the best of our knowledge, it

is the first attempt to implement CB models on millions of items.

• Two simple yet effective algorithms, i.e. HCB and pHCB, are pro-

posed to explore potential interests of users efficiently through a

hierarchy item tree.

• We conduct experiments on two large-scale recommendation

datasets. Results show the superiority of HCB and pHCB over

baselines, as well as the flexibility to integrate with different

exploration methods such as LinUCB, Thompson Sampling and 𝜖-

greedy. In addition, we design an experiment to verify that thanks

to the exploring mechanism, both HCB and pHCB can effectively

alleviate the closed-loop effects in recommender systems and

learn better user profiles in the long term.

2 RELATEDWORK

It is the first work to study entire space user interest exploration.

Our work is relevant to two lines of research, and we will review

them separately.

2.1 Contextual Bandit Algorithms

Contextual bandit algorithms aims to seek a balance between ex-

ploration and exploitation, which have been used in several appli-

cations, such as recommender systems [21], dynamic pricing [22],

quantitative finance [31] and so on. [4] reviews the existing practi-

cal applications of contextual bandit algorithms. By assuming the

payoffmodel is linear, LinUCB [16] and Thompson Sampling [2] and

two representative methods for solving contextual bandit problems.

Beyond them, a variety of algorithms have been proposed to opti-

mize the performance or learning speed. For example, ConUCB [40]

introduces conversations between the agent and users to askwhether

the user is interested in a certain topic occasionally. HATCH [39]

considers the resource consumption of exploration and proposes a

strategy to conduct bandit exploration with budget limitation. S-

MAB [6] considers two aspects, one is to maximize the cumulative

rewards and the other is to decide how many arms to be pulled

so as to reduce the exploration cost. GRC [37] develops a graph

regularized cross model to leverage the non-linearity of neural

networks for better estimating the rewards. Different from them,

our work commits to efficiently explore user interests in the entire

space, rather than from a small subset of items.

2.2 Cluster-of-Bandit Algorithms

In the past few years, cluster-of-bandit algorithms have attracted

the attention of some scholars. Generally, cluster-of-bandit algo-

rithms aim to model the dependency since the items or users are al-

ways related to each other. As a result, cluster-of-bandit algorithms

achieve better cumulative rewards than traditional contextual ban-

dit algorithms due to knowledge sharing. For example, CLUB [8],

DYNUCB [23], CAB [7] and COFIBA [17] assign users with similar

interests into a same subset to make decisions together, thus it make

contributions to accelerate the learning speed. Different from them,

this paper focus on modeling the item dependency. ICTRTS and IC-

TRUCB [35] explicitly model the item dependencies via clustering

of arms, but they are only designed for context-free bandits. Simi-

larly, [25] uses a taxonomy structure to exploit arm dependencies

with context-free bandits. Considering that context-free bandits

cannot utilize the abundant side information for making decisions,

their exploration ability has yet to be improved. HMAB [34] lever-

ages a tree-structured hierarchy constructed by domain experts

to design a hierarchical multi-armed bandit algorithm for online

IT ticket automation recommendation. However, domain knowl-

edge is hard to collect and HMAB can not be applied to large-scale

recommender systems because it needs to traverse all the paths in

the tree. Moreover, HMAB aims to learn latent parameters for the

Table 1: A collection of notations

Notation Description

U User set, U = {𝑢 (1) ,𝑢 (2) , · · · ,𝑢 (𝑀) }
A Arm set, A = {𝑎 (1) , 𝑎 (2) , · · · , 𝑎 (𝐾) }
I Item set, I = {𝑖 (1) , 𝑖 (2) , · · · , 𝑖 (𝑁) }
H The hierarchy tree for item set partition.

𝐶ℎ (𝑛) The set of child nodes of node 𝑛

𝑃𝑎 (𝑛) The parent node of node 𝑛

𝐼 (𝑛) The set of items mounted on node 𝑛

V𝑢 (𝑡) The receptive field of user 𝑢 at the 𝑡 -th round

𝑿𝑎 The (static) embedding features of arm 𝑎, 𝑿𝑎 ∈ R𝑑×1

𝜂 The Gaussian noise of reward, 𝜂 ∼ N(0, 𝜎2)
𝑖𝜋 (𝑡) The selected arm by policy 𝜋 at the 𝑡 -th round

𝑟𝜋 (𝑡) Reward of policy 𝜋 at the 𝑡 -th round

𝜽𝑢 , 𝜽
(𝑙)
𝑢 Learnable parameter of user 𝑢. A superscript indicates

the user parameter is for arms at level 𝑙 on H. 𝜽𝑢 , 𝜽 (𝑙)𝑢
∈ R𝑑×1

nodes in the hierarchy tree, which is totally different from our goal

of exploring users’ latent interests. Distributed bandit algorithms,

such as DCCB [14] and DistCLUB [20], aim to speed up the com-

putation by distributing the workloads in parallel. However, these

methods do not address the issue of searching from tremendous

items, the computational cost is still too expensive for responding

users’ requests in an online manner (for example, how to response

100 users’ concurrent requests within 10 milliseconds in a scenario

involving one million items). In summary, compared with existing

cluster-of-bandit algorithms, our HCB and pHCB algorithms lever-

age a bottom-up clustering method to build a hierarchical tree of

items, then explore users’ potential interests in the entire space of

items based on the item hierarchy.

3 PRELIMINARY AND PROBLEM

We start by introducing the multi-armed bandit algorithms and

the motivations of this paper. For better readability, we summarize

most of the notations used throughout the paper in Table 1.

3.1 UCB for Recommender Systems

The recommender system is regarded as an agent, where there are

𝑀 users and 𝑁 items. At each round 𝑡 = 1, 2, · · · ,𝑇 of interactions,

given a user 𝑢, the agent recommends an item 𝑖𝜋 (𝑡) to the user

according a policy 𝜋 . Then the agent receives a feedback 𝑟𝜋 (𝑡) from
the user, for example, if the user clicks on the item 𝑖𝜋 (𝑡), 𝑟𝜋 (𝑡) is
1 and otherwise it is 0. The optimal policy is denoted by 𝜋∗. The
goal is to learn a good policy 𝜋 , so that the cumulative regret over

𝑇 rounds, which is defined as below, is minimized:

𝑹 (𝑇) =
𝑇∑
𝑡=1

(𝑬 [𝑟𝜋∗ (𝑡)] − 𝑬 [𝑟𝜋 (𝑡)]) (1)

In practice, due to the absence of the optimal policy 𝜋∗, wemaximize

the cumulative reward

∑𝑇
𝑡=1 𝑬 [𝑟𝜋 (𝑡)] instead, because maximizing

cumulative reward equals to minimizing cumulative regret [17, 34,

38].

At the core of bandit algorithms is to find an optimal trade-off

between exploitation (to recommend fully based on user profiles

learned from user interaction history) and exploration (find out the

new items which user may potentially love better), so that users

diverse new interests have a certain chance to expose, meanwhile

the system won’t waste too many resources on items that users

are not interested in. Let’s consider the (user-centric) LinUCB [16]

algorithm. Each item is regarded as an arm. At 𝑡-th round, when

receiving a user visit request, the agent selects an arm 𝑎𝜋 (𝑡) by:

𝑎𝜋 (𝑡) = argmax

𝑎∈A𝑡
𝑅𝑎 (𝑡) +𝐶𝑎 (𝑡) (2)

The policy 𝜋 of LinUCB is a linear function between the feature vec-

tor 𝒙𝑎 and user hidden parameter 𝜃𝑢 , where the estimated reward

is 𝑅𝑎 (𝑡) = 𝜽𝑇𝑢 𝒙𝑎 + 𝜂, 𝜂 is a Gaussian random variable representing

environmental noise, whose mean is zero and variance is 𝜎2 ≤ 1,

The upper bound 𝐶𝑎 (𝑡) measures the uncertainty of the reward

estimation. The key point lies in how to determine the parameter

𝜽𝑢 and the upper bound 𝐶𝑎 (𝑡). With LinUCB, we have:

𝜽𝑢 =

(
𝑫𝑡
𝑇𝑫𝑡 + 𝐼𝑑

)−1
𝑫𝑡
𝑇 𝒓𝑡 (3)

𝐶𝑎 (𝑡) = 𝛼
√
𝒙𝑇𝑎 (𝑫𝑇𝑡 𝑫𝑡 + 𝑰𝑑)−1𝒙𝑎 (4)

where 𝑫𝑡 ∈ R𝑡×𝑑 is the matrix of interacted arms’ features up to

time 𝑡 , 𝛼 is a hyper-parameter to control the probability that the

bound𝐶𝑎 (𝑡) holds, 𝒓𝑡 ∈ R𝑡 is the user response vector up to time 𝑡 .

3.2 The Challenges

However, as revealed in Eq.(2), LinUCB needs to enumerate and

calculate the score for every arm and then select the best one. In

a modern recommender system, the number of items is usually

very large (millions or even billions), which makes it impossible

to calculate scores for all item. Thus, in the research community,

a typical setting for existing literature is to randomly sample a

small number 𝐾 (such as 50) arms from the entire 𝑁 arms at time

𝑡 , and perform LinUCB on this small arm set A𝑡 ; in industry, the

bandit algorithms can only be applied to scenarios whose candidate

pool is small, such as post-ranking stage of a recommender system,

homepage most popular item ranking, ad creative ranking, etc. We

argue that in order to fully explore users’ potential interest, it is

better to place the bandit module in the item retrieval stage (aka

the recall stage) of a recommender system, where the candidate

pool is the entire item set. Otherwise, in the post-ranking stage

of a recommender system, the candidates are actually proposed

by recommendation models and are strongly related to users’ past

behaviors. Thus, it is less meaningful to explore users’ interest

in the latter stages of a recommender system. To fully alleviate

the closed-loop effect, in this paper, we advocate to explore users’

interest in the entire space of item repository. However, to the best

of our knowledge, there is no work studying how to make the

bandit algorithm like LinUCB fit for a large candidate set.

To address the challenge, we propose to use a tree structure

to partition the entire item space into multiple sub-spaces and

build the hierarchical dependencies among items, to accelerate the

exploration. Formally, we define the Framework 1:

Framework 1. Tree-based Exploration The entire item set
can be organized as a hierarchical tree structureH , where nodes are

linked to a subset of items that share some common topics or user inter-
ests, and nodes moving from top to bottom reflects the topics/interests
partition being coarse-to-fine. During the tree-based exploration, we
will first select a node according to some mechanism, then select an
item from the candidates linked to this node. The user feedback on
the selected item will not only update the item-wise user preference
estimation, but also update the node-wise user preference estimation
along the hierarchical path.

4 METHODOLOGY

4.1 Tree Structure Construction

The tree structure plays a significant role in designing hierarchi-

cal bandit algorithms. Item category taxonomy can serve as the

hierarchy tree. However, due to the imbalanced number of items

under different category and lack of leveraging of users’ collec-

tive behaviors, simply using the category taxonomy may lead to

suboptimal performance, which is verified in Section 5. In view

of this, we first learn item embeddings based on item content and

user co-click behaviors, then design a bottom-up clustering method

based on K-Means clustering algorithm [18] to form a hierarchy

tree for modeling dependencies among items.

Specifically, to construct a tree structure with 𝐿 levels, at first, 𝑁

items are clustered into 𝑘𝐿 different subsets based on the similarity

of item embeddings. We treat each subset as a new node on the tree,

with an embedding vector being the average of all item embeddings

belonging to this node. Afterward, these 𝑘𝐿 nodes will be further

clustered into 𝑘𝐿−1 different subsets using K-Means and each subset

will be treated as a new node on the tree, forming a parent-children

relation. This step will be repeated several times until the depth

of the tree structure researches 𝐿. As a result, the constructed tree

structure, denoted byH , contains {𝑘0, 𝑘1, 𝑘2, · · · , 𝑘𝐿} nodes at each
level, where 𝑘0 = 1 because only a root node appears at the first

level. Intuitively, items within the same node are more similar to

each other, thus the clustering results reflect the dependencies

among items. InH , only the root node does not have parent node,

and leaf nodes have no children nodes.

4.2 Hierarchical Contextual Bandit

In this section, we introduce the proposed hierarchical contextual

bandit (HCB) algorithm, which empowers a base bandit model

to explore over the entire space of item repository. HCB can be

generalized to different bandit models, without loss of generality,

we take LinUCB as the base model to explain the algorithm.

There are two types of arms: nodes on the hierarchy treeH and

items mounted to the leaf nodes. Each node onH represents a cer-

tain group of items. The feature vector of a leaf node is the average

pooling of items mounted to it, and a non-leaf node’s feature vector

is the average pooling of its children nodes’ feature vectors. The

HCB algorithm makes decisions sequentially, starting from the root

node to a leaf node. At any non-leaf node 𝑛 (𝑙) (𝑡) at 𝑙-th level, the

policy 𝜋 selects one of the child nodes from 𝐶ℎ(𝑛 (𝑙) (𝑡)) by assum-

ing that the expected reward of an arm is in linear relation with

its feature vector, i.e., 𝜽 (𝑙)𝑢
𝑇
𝑿𝑛 , where 𝜽

(𝑙)
𝑢 is the latent parameters

of a given user 𝑢 towards the nodes at level 𝑙 , 𝑫 (𝑙) ∈ R𝑚×𝑑 is the

matrix comprised of interacted items at 𝑙-th level, each row of 𝑫 (𝑙)

Algorithm 1: The pseudo-code of HCB algorithm

Input: The tree structureH with depth as 𝐿, the total

number of rounds 𝑇 , hyper-parameter 𝛼 .

Output: The policy 𝜋 .

1 Initialize parameters of 𝜋 ;

2 for t = 1, 2, · · · ,T do

3 receive a user 𝑢;

4 set current node as the root ofH ;

5 for l = 1, 2, · · · , L-1 do
6 select a child node from current node with Eq. (7);

7 set current node as the selected child node;

8 end

9 select an item from the set of items of current (leaf)

node to user 𝑢 with Eq. (2);

10 receive the reward from user 𝑢;

11 propagate rewards to all nodes in the path;

12 according to Eq. (8), update parameters of 𝜋 ;

13 end

represents an item’s feature vector. Applying ridge regression to

the training samples to estimate the coefficients, we have:

𝜽 (𝑙)𝑢 =

(
𝑫 (𝑙)

𝑇
𝑫 (𝑙) + 𝑰

)−1
𝑫 (𝑙)

𝑇
𝒓𝑙 (5)

where 𝑰 is an identity matrix and 𝒓𝑙 is the vector of historical

rewards at node level 𝑙 . LinUCB also considers confidence interval to

better estimate the arm payoff. Let𝑨(𝑙) = 𝑫 (𝑙)
𝑇
𝑫 (𝑙) + 𝑰 . According

to [33], with probability 1 − 𝛿 , the upper bound is:����𝜽 (𝑙)𝑢 𝑇
𝑿𝑛 − 𝑬 [𝑟𝜋∗ |𝑿𝑛]

���� ≤ 𝛼√𝑿𝑇𝑛𝑨(𝑙)
−1
𝑿𝑛 (6)

for any 𝛿 > 0 and 𝛼 = 1 +
√
ln(2/𝛿)/2. In this way, the LinUCB

algorithm tends to select an arm with:

𝑛 (𝑙+1) (𝑡) = argmax

𝑛∈𝐶ℎ (𝑛 (𝑙) (𝑡))

(
𝜽 (𝑙)𝑢

𝑇
𝑿𝑛 + 𝛼

√
𝑿𝑇𝑛𝑨(𝑙)

−1
𝑿𝑛

)
(7)

If policy 𝜋 recommends 𝑖𝜋 (𝑡) to a given user and receives the

reward 𝑟𝜋 (𝑡), similar as [41], then each node on 𝑃𝑎𝑡ℎ(𝑟𝑜𝑜𝑡 →
𝑛 (𝐿) (𝑡)) also receives the same reward 𝑟𝜋 (𝑡). Therefore, the rewards
of all selected nodes can be obtained, we can update the learnable

parameters {𝜽 (0)𝑢 , 𝜽 (1)𝑢 , 𝜽 (2)𝑢 , · · · , 𝜽 (𝐿)𝑢 } at each level (where 𝜽 (0)𝑢
means the parameter towards item arms, the other 𝜽 (∗)𝑢 means

parameters towards node arms), which can be formulated as:

𝑨(𝑙) ← 𝑨(𝑙) + 𝑿 (𝑙)𝑿 (𝑙)𝑇

𝒃 (𝑙) ← 𝒃 (𝑙) + 𝑟𝜋 (𝑡)𝑿 (𝑙)

𝜽 (𝑙)𝑢 ← 𝑨(𝑙)
−1
𝒃 (𝑙)

(8)

where 𝑨(𝑙) and 𝒃 (𝑙) are initialized as 𝑑-dimensional identity matrix

and zero vector respectively. 𝑿 (𝑙) is the contextual embedding of

the selected node at 𝑙-th level.

The pseudo-code of HCB is provided in Algorithm 1. To illustrate

HCB, we offer a toy example shown in Figure 1. It has three layers

in the hierarchy tree. The agent makes three decisions sequentially,

A

B C D

E G H I J KF

L M N O P Q S TR

Candidate arms
at level 1

Candidate arms
at level 2

Candidate arms
at level 3

Figure 1: An illustration of HCB. The policy selects a path {

A, C, I, P } from root to a certain leaf node.

and finally select the path { 𝐴,𝐶, 𝐼, 𝑃 }. Then the agent will launch

another bandit selection among the items mounted to the leaf node

𝑃 . The reward on the selected item will impact the parameter esti-

mation on the hierarchy tree {𝜽 (0)𝑢 , 𝜽 (1)𝑢 , 𝜽 (2)𝑢 , 𝜽 (3)𝑢 }, by updating

the reward history 𝒓 (∗) and interaction history 𝑫 (∗) .

4.3 Progressive Hierarchical Contextual Bandit

The HCB learns the interests of each user via a sequential decision-

making processes and always select the item from the arriving leaf

node, which may lead to two problems: (1) the decisions made in up-

per levels severely impact the scope of lower-level nodes. Once the

policy makes a bad decision at a certain level, the rest selections are

all sub-optimal. The issue is especially true when the tree hierarchy

is deeper. We call this phenomenon error propagation; (2) Users may

be interested in more than one child node, thus the greedy selection

may fail to capture the comprehensive interests of users. Therefore,

we further propose a progressive hierarchical contextual bandit

(pHCB) algorithm for exploration in another manner on the tree.

The main idea is that the policy continuously expands the receptive

field from top to bottom according to the feedback obtained from

historical exploration. We first give a definition of receptive field.

Definition 1. Receptive Field is a personalized set of nodes
representing the current potential interests for each user to explore. At
the first round, the receptive field only consists of the root node (or is
set with prior knowledge). With the exploration process progressing,
the receptive field will be expanded (and reduced) when predetermined
conditions are met in an adaptive top-down manner. The nodes in the
receptive field are called visible nodes.

In HCB, only the leaf node is associated with a set of items. In

contrast, in pHCB we allow the policy to select a non-leaf node

and then recommend an item from the item set associated with the

non-leaf node. Hence, we have the Definition. 2 to define the item

set of each non-leaf node.

Definition 2. Given a non-leaf node 𝑛 and the set of child nodes
𝐶ℎ(𝑛), the item set of node 𝑛 will be the union of item sets of the
nodes in 𝐶ℎ(𝑛), that is 𝐼 (𝑛) = 𝐼 (𝑛 (1)𝑐) ∪ 𝐼 (𝑛

(2)
𝑐) ∪ · · · ∪ 𝐼 (𝑛

(𝑘)
𝑐) and

𝐶ℎ(𝑛) = {𝑛 (1)𝑐 , 𝑛
(2)
𝑐 , · · · , 𝑛 (𝑘)𝑐 }.

At 𝑡-th round, the agent faces a user 𝑢 whose receptive field is

denoted as V𝑢 (𝑡). pHCB algorithm treats each node in V𝑢 (𝑡) as

Algorithm 2: The pseudo-code of pHCB algorithm

Input: The tree structureH with depth as 𝐿, the total

number of rounds 𝑇 , the original receptive field

V(0), hyper-parameters 𝛼 , 𝑝 and 𝑞.

Output: The policy 𝜋 .

1 Initialize parameters of 𝜋 ;

2 for t = 1, 2, · · · ,T do

3 receive a user 𝑢;

4 select a node 𝑛 from current receptive fieldV𝑢 (𝑡);
5 select an item from 𝐼 (𝑛) to user 𝑢 with Eq. (2);

6 receive the reward from user 𝑢;

7 if node 𝑛 satisfies the expansion conditions then
8 add the nodes in 𝐶ℎ(𝑛) into the receptive field to

replace node 𝑛;

9 end

10 update parameters of 𝜋 ;

11 end

an arm, and selects the arm (denoted as 𝑛(𝑡)) with the highest esti-

mated reward according to Eq. (2). Next, another LinUCB is used to

select an item 𝑖𝜋 (𝑡) from 𝐼 (𝑛(𝑡)) and collect feedback from𝑢. pHCB
directly selects an arm from the receptive field without performing

sequential decision-making processes, which avoids the aforemen-

tioned concerns of HCB. If the number of items in 𝐼 (𝑛(𝑡)) exceeds
the single-round budget 𝑘 , then pHCB will randomly samples 𝑘

items from 𝐼 (𝑛(𝑡)) to perform LinUCB exploration.

Here we offer an example in Figure 2 for illustrating the ex-

panding process. Assuming at round 𝑇𝑎 , the receptive field of the

user 𝑢 consists of three nodes: 𝐵, 𝐶 and 𝐷 . In the next several

rounds, if node 𝐶 is selected multiple times and received several

positive rewards, making it meet the conditions of expansion, its

children nodes 𝐺,𝐻, 𝐼 will then be added into the receptive field

to replace 𝐶 . As a result, at round 𝑇𝑏 , the receptive field includes

nodes 𝐵, 𝐷,𝐺, 𝐻, 𝐼 . In this way, pHCB expands the receptive field

from coarse to fine and gradually discovers the interests of users.

A critical mechanism of pHCB is how to expand the receptive

field. Since the tree nodes are organized in different granularity, the

nodes at top levels represent the coarse interests of users while the

nodes at bottom levels depict specific interests of users. We want

the receptive field be able to quickly converge to the leaf nodes,

thus we set the expansion conditions as follows: for a non-leaf node

𝑛 at the 𝑙-th level of H , if (1) it has been selected at least ⌊𝑞 ¤log𝑙⌋
times, and meanwhile (2) the average reward on this node is larger

than 𝑝 ¤log𝑙 (0 ≤ 𝑝 ≤ 1), then we expand the receptive filed by

replacing it with its children. 𝑞 and 𝑝 are hyper-parameters. The

log 𝑙 means that the nodes at a top-level are easier to be expanded

than those at a low level. One can also design more flexible rules

for expansion according to the actual application scenario. Overall,

the pseudo-code of the pHCB is available in Algorithm 2.

5 EXPERIMENTS

5.1 Experimental Settings

5.1.1 Datasets. We perform experiments on two public recom-

mendation benchmark datasets, basic statistics are shown in Table 2.

A

B C D

E G H I J KF

L M N O P Q S TR

Receptive field at 𝑇𝑎 Receptive field at 𝑇𝑏

Figure 2: An illustration of pHCB. At round 𝑇𝑎 , the recep-

tive field consists of nodes B, C and D; After several trials, at

round 𝑇𝑏 , node C meets the conditions of expansion, so the

receptive field changes to nodes B, D, G, H and I

Table 2: Overview of Datasets

Dataset #users #items # categories # interactions

MIND 1,000,000 161,013 285 24,155,470

Taobao 987,994 4,162,024 9,439 100,150,807

• MIND
1
[36]: The MIND dataset is the largest public bench-

mark dataset for news recommendations so far, which is con-

structed from the click logs of Microsoft News. We use Sentence

BERT [27] to train news embeddings from their contents, and

adopt a GRU [24] as the user model to fine-tune news embeddings

from the sequence of click logs.

• Taobao
2
: The Taobao dataset is constructed from user behaviors

of Taobao for E-commerce recommendations. Similar to MIND

dataset, we also utilize GRU to learn item embeddings from the

sequence of user behavior logs.

5.1.2 Baselines. We compare the proposed algorithms against

the following related and competitive bandit algorithms:

• LinUCB [16] is a classical contextual bandit algorithm. It only

works with item-level recommendation.

• HMAB [34] organizes arms into hierarchy tree purely by do-

main knowledge. It utilizes category information to model the

dependencies among items. Then the algorithm selects a path

from root node to a leaf node, and the leaf node is an item.

• ICTRUCB [35] formulates the item dependencies as the clusters

on arms. Different from our methods, it does not consider the

hierarchy.

• ConUCB [40] utilizes key-terms to organize items into different

subsets to represent dependencies among items. The algorithm

occasional conversation with users and leverages conversational

feedbacks on key-terms from users to accelerate the speed of

bandit learning.

5.1.3 OurMethods andVariants. Our goal is to propose a generic
algorithm that can empower different bandit models to be more

effective on large-scale item set exploration. Therefore, our main ex-

periments contain two groups: first, with LinUCB as the base bandit

model, to compare our algorithms (i.e., HUCB and pHUCB) with the

1
https://msnews.github.io/index.html

2
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1

aforementioned baselines (because most of the listed baselines are

based on LinUCB); second, with three different base bandit models,

including LinUCB, Thompson Sampling (TS) [2], and 𝜖-greedy, to

verify whether our algorithms are effective under different settings.

In the second group of experiments, we also compare two variants

of our models:

• CB-Category: It borrows the idea from HMAB [34] by using

the prior knowledge, i.e. the category taxonomy, to assign items

into different subsets. Each subset will be treated as an arm, the

policy first selects a subset and then recommends an item from

the subset to users with a base bandit algorithm.

• CB-Leaf: It is a variant of ICTRUCB [35]. Since the ICTRUCB

is designed for context-free bandits, to keep a fair comparison,

we also utilize K-Means clustering on item embeddings to assign

items into different subsets. Here, we treat the leaf nodes ofH
as the clustering results. Each leaf node will be treated as an arm,

the policy first selects a leaf node and then recommends an item

from the node to users with a base bandit algorithm.

Here, CB- can take a value from { LinUCB, Thompson Sam-

pling (TS), and 𝜖-greedy }, our experiments are separated into three

groups. For example, if the CB- model is LinUCB, then the involved

variants are LinUCB-Category, LinUCB-Leaf, and our final models

are HUCB and pHUCB. For all models, including our proposed ones

and baselines, we set the maximum times of score-computing per

round to 50 for a fair comparison. For example, in LinUCB, if the

number of arm candidates is 1000, then originally we need to com-

pute 1000 scores per round to select the best one in estimation,

which exceeds our budget, so we will randomly sample 50 arms

from the 1000 arms and then perform the LinUCB on the small set.

For hierarchical CB methods, the budget is evenly distributed to

each level, e.g., for pHCB, we have two levels of bandit, then each

level will get a budget of 25.

5.1.4 Evaluation. We evaluate the performance of different ban-

dit algorithms with off-policy user simulator evaluation. To reduce

the biases of the simulation, we utilize the IPS estimator [10, 28, 29],

which is a standard method used for off-policy evaluation of bandit

algorithms
3
. IPS learns to re-weigh the training samples by the

propensity score to learn an unbiased simulator. The simulator is

trained on the whole data to make the best use of information. This

evaluation enables us to compare the performance of candidate hy-

pothetical policies without expensive online A/B tests. Specifically,

the simulator learns the unbiased embeddings of users and items,

and the reward of a user 𝑢 towards an item 𝑖 is derived from the

inner product of their embeddings.

5.1.5 Reproducibility. For MIND dataset, each item is repre-

sented by a 64-dimensional embedding vector. The dataset has

been split for training/validation/test, only the click logs of the

training set is used for learning item embeddings and building tree

structures. The users without history logs or impression logs are

removed. The click is treated as positive feedback and non-click is

treated as negative feedback. The hierarchy tree structure is set to

{ 1, 100, 10000 }, which means there is 10000 leaf nodes, and only

one layer of non-leaf nodes. For Taobao dataset, each item is repre-

sented by a 32-dimensional embedding vector. As the same method

3
https://groups.google.com/g/open-bandit-project

https://msnews.github.io/index.html
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
https://groups.google.com/g/open-bandit-project

does in [41], we remove the users who have less than 10 behaviors

or the items appearing less than 10 times. We randomly select 10000

users for testing and 1000 users for validation, and the behavior

logs of the rest users are used for learning item embeddings. The

click is treated as positive feedback and the negative feedback is

generated via negativing sampling. The hierarchy tree structure is

set to { 1, 50, 5000, 50000 }, so that number of items mounted to a

leaf node is less than 100.

For the LinUCB-based algorithms, all learnable parameters are

initialized as all zero matrices or vectors, and the hyper-parameter

𝛼 is set as 0.5. The Gaussian prior is used to design Thompson

Sampling-based algorithms for contextual bandit. For 𝜖-greedy-

based algorithms, the 𝜖 is set as 0.05. With the help of validation

set, the hyper-parameters 𝑞 and 𝑝 of pHCB and its variants are set

as 10 and 0.1 respectively. Follow the setting in [40], we consider a

general configuration in which at each round, the computational

cost is limited as 50. Note here the arms can be nodes or items

depending on different bandit algorithms. The learning rate for

training GRU is 0.001, the hidden size is the same as the embedding

size, and optimizing with Adam optimizer [13]. All algorithms are

implemented with Python and PyTorch, and repeated 10 times to

report the average performance. The code and processed datasets

are released at https://github.com/yusonghust/HCB-pHCB for easy

reproducibility.

Table 3: Cumulative rewards of different algorithms

Dataset MIND TaoBao

Round 100 1000 2000 100 1000 2000

LinUCB 4.76 158.41 357.91 10.70 106.12 212.26

HMAB 4.41 217.40 520.97 10.74 120.89 255.22

ICTRUCB 5.60 300.83 709.05 10.98 135.99 290.33

ConUCB 7.47 188.50 409.23 13.04 273.86 584.84

HUCB 7.48 407.82 918.38 16.20 320.68 699.29

pHUCB 7.93 419.74 866.60 16.51 391.36 806.66

5.2 Experimental Results

5.2.1 ComparisonwithBaselines. Since all baseline algorithms

are on the basis of LinUCB, we also choose LinUCB as the base

algorithm for HCB and pHCB to keep a fair comparison. Note

that HCB and pHCB can work with different base algorithms, and

we discuss their generality in sec. 5.2.2. We compare the cumula-

tive rewards over 100/1000/2000 rounds
4
of different algorithms

in Table 3, and the best results are presented in bold. As can be

seen, our proposed algorithms, HUCB and pHUCB, outperform all

baselines across different datasets consistently at different rounds,

and pHUCB is generally better than HCB. For example, on the

largest TaoBao dataset, At 100/1000/2000 rounds, the performance

of pHUCBwas improved by 54.3%, 268.7%, and 280% compared with

LinUCB, respectively. Although HMAB, ICTRUCB, and ConUCB

achieve higher cumulative rewards over LinUCB, there is still a

considerable gap between these algorithms and ours. The superi-

ority of pHUCB over HUCB further verifies that by expanding the

4
Considering that the two datasets have different number of users and items, for better

alignment, here we denote one round as one pass of all users receiving one recommended
item.

receptive field in a progressive manner, the pHCB algorithm is able

to better discover the comprehensive interests of users.

5.2.2 Flexibility andVariants Study. Next, we report the cumu-

lative reward of our algorithms and their variants, in Figure 3, based

on three different base bandit algorithms. From the experimental

results, we have the following observations.

• Constructing item dependencies in the form of clusters indeed

helps a lot in accelerating the exploration. This can be verified

from that both our algorihtms (HCB and pHCB) and their variants

(CB-category and CB-Leaf) outperform the corresponding base

bandit model.

• HCB and pHCB achieve the highest cumulative rewards on both

two datasets in most of the cases, indicating that the proposed

hierarchical algorithms are effective. As we can see, the perfor-

mance of baseline algorithms has a noticeable gap between our

proposed algorithms. This result is reasonable since our pro-

posed methods introduce the hierarchy knowledge to take the

item dependencies into consideration, which greatly improves

the efficiency of exploration. Although the two variants, such as

CB-Category and CB-Leaf, also organize items into different clus-

ters, they fail to model the coarse-to-fine item dependencies as

tree structures. Apart from that, the pHCB algorithm beats other

methods, which verifies that the progressive exploration can

adaptively discover the diverse interests of users with a receptive

field.

• Our algorithms have strong flexibility. We have tested the perfor-

mance with base models varying in { LinUCB, Thompson Sam-

pling, 𝜖-greedy }, the conclusions are consistent, which proves

our proposed frameworks can well generalize to various bandit

algorithms.

5.2.3 Parameter Sensitivity. In this subsection, we study the

impacts of hyper-parameters. Since the pHCB performs best in

most of the cases, we particularly study the key hyper-parameter of

it, i.e.,𝑞 and 𝑝 , which control the expansion conditions:𝑞 determines

the number of trails at one arm and 𝑝 indicates the threshold of

average reward for expanding child nodes. To study their impacts,

we take pHUCB as an example and vary 𝑞 from {0, 5, 10, 15, 20, 25}
and 𝑝 from {0, 0.05, 0.1, 0.15, 0.2, 0.25} to see how the final rewards

(at round 1000) will be affected.

As shown in Figure 4, different hyper-parameters have a notice-

able influence on the cumulative reward of pHUCB algorithm over

1000 rounds. For MIND dataset, if 𝑞 is too small or 𝑝 is too large,

the cumulative rewards become worse since the former makes the

expansion conditions unreliable and the latter makes the receptive

field difficult to expand. As for the Taobao dataset, the trend of

impacts caused by 𝑞 is similar to the MIND dataset. Meanwhile, the

model is less sensitive with parameter 𝑝 . Overall, from Figure 4 we

learn that a suggested configuration is 𝑝 = 0.1 and 𝑞 = 10.

5.2.4 Alleviate Closed-Loop Effects. Typically, recommender

models trained from historical logs are designed for exploitation

purposes, which we denote as exploitation models. Such recommen-

dation systems suffer from closed-loop effects [11] because they

only learn users’ interests from historical logs, but they do not have

the ability to explore new interests of users. In contrast, contex-

tual bandit algorithms are more effective to break the information

https://github.com/yusonghust/HCB-pHCB

0 200 400 600 800 1000
round

0

100

200

300

400

500
cu

m
ul

at
iv

e
re

w
ar

d

HUCB
pHUCB
LinUCB-Leaf
LinUCB-Category
LinUCB

(a) MIND, LinUCB

0 200 400 600 800 1000
round

0

100

200

300

400

500

cu
m

ul
at

iv
e

re
w

ar
d

HTS
pHTS
TS-Leaf
TS-Category
TS

(b) MIND, Thompson Sampling

0 200 400 600 800 1000
round

0
25
50
75

100
125
150
175
200

cu
m

ul
at

iv
e

re
w

ar
d

HEGreedy
pHEGreedy
EGreedy-Leaf
EGreedy-Category
EGreedy

(c) MIND, 𝜖-greedy

0 200 400 600 800 1000
round

0

100

200

300

400

500

600

cu
m

ul
at

iv
e

re
w

ar
d

HUCB
pHUCB
LinUCB-Leaf
LinUCB-Category
LinUCB

(d) Taobao, LinUCB

0 200 400 600 800 1000
round

0

100

200

300

400

500

cu
m

ul
at

iv
e

re
w

ar
d

HTS
pHTS
TS-Leaf
TS-Category
TS

(e) Taobao, Thompson Sampling

0 200 400 600 800 1000
round

0

100

200

300

400

500

600

cu
m

ul
at

iv
e

re
w

ar
d

HEGreedy
pHEGreedy
EGreedy-Leaf
EGreedy-Category
EGreedy

(f) Taobao, 𝜖-greedy

Figure 3: Cumulative rewards of our algorithms and variants based on LinUCB, Thompson Sampling and 𝜖-greedy, on the

MIND dataset and Taobao dataset, respectively.

0 0.05 0.1 0.15 0.2 0.25
p

320

340

360

380

400

420

440

460

cu
m

ul
at

iv
e

re
w

ar
d

p

0 5 10 15 20 25
q

q

(a) MIND

0 0.05 0.1 0.15 0.2 0.25
p

320

340

360

380

400

420

cu
m

ul
at

iv
e

re
w

ar
d

p

0 5 10 15 20 25
q

q

(b) Taobao

Figure 4: Effect of hyper-parameters of pHUCB.

cocoons with exploration strategies. To verify that our model is

able to explore the potential interests of users thus alleviate the

closed-loop effects, we design an additional experiment as follows.

We select three exploitation models, i.e., Linear model, GRU,

and Transformers [32] as baselines. These exploitation models are

first pre-trained by the historical logs of existing users to get the

deployed models. Then, we use exploitation models as well as our

proposed models as "deployed models" to serve users. Specifically,

in this stage, for each new user (whose logs are not used in the first

pre-trained stage), we randomly sample only three clicked items as

visible historical logs for generating her initial user embedding with

a deployed model. Then we can recommend two hundred items

to the user with a deployed model and collect the user’s feedback.

Note here the user embedding will be refreshed once the model re-

ceives positive feedback. This stage is performed for every deployed

model respectively. The third stage is about evaluating the quality

of impression logs produced by the deployed models. We utilize the

collected historical logs together with all the rest historical logs of

existing users (which are used in the first stage) as training samples

to train an evaluating model (here we use the matrix factorization

(MF) model as the evaluating model, each user and item will be

mapped to an embedding vector. MF-based collaborative filtering

method is one of the most popular models for personalized rec-

ommendations) and evaluate the trained model on the same test

samples for a fair comparison. In order to prove the advantages

of our bandit algorithms in exploring user interests, we select two

hundred of test users with the most diversified interests as new

Table 4: Test LogLoss and AUC of different algorithms

Dataset MIND TaoBao

Method LogLoss AUC LogLoss AUC

Linear 1.679±0.005 0.703±0.005 0.693±0.001 0.530±0.001
GRU 1.759±0.004 0.686±0.003 0.688±0.001 0.535±0.002

Transformer 1.377±0.008 0.695±0.006 0.683±0.001 0.546±0.001
HUCB 0.681±0.004 0.720±0.003 0.660±0.001 0.649±0.002
pHUCB 0.680±0.005 0.723±0.002 0.661±0.002 0.647±0.003

users: we calculate the Gini impurity [19] of the historical items

clicked by the user according to the category of items. Obviously,

the larger the Gini impurity, the more diverse the interests of the

user. The users of the training set are treated as existing users.

We report the test log loss (LogLoss) and area under curve (AUC)

score in Table 4. We can observe that both our methods, HUCB

and pHUCB, achieve much higher performance than exploitation

models including the Linear model, GRU, and Transformers, which

demonstrates that our proposed models can effectively help to

alleviate the closed-loop effects in recommender systems.

6 CONCLUSION

In this paper, we propose a general hierarchical bandit framework

for entire space user interest exploration. Specifically, we design

two algorithms, i.e., HCB and pHCB. The HCB algorithm makes a

sequence of decision-making tasks to find a path from the root to

a leaf node, while the pHCB progressively expands the receptive

field in a top-down manner to explore the user interests, which is

more flexible and also achieves more satisfactory results. Extensive

experiments are conducted to demonstrate the effectiveness of

the proposed framework on two real-world datasets with three

different base bandit algorithms. In the future, we plan to combine

our methods with the start-of-the-art deep learning methods to

estimate reward for making more reasonable decisions. Moreover,

we assume the items are static in this paper by fixing the tree

structure unchanged. It would be interesting to extend the proposed

frameworks to the non-static setting, which has not been well

studied yet.

REFERENCES

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. 2011. Improved al-

gorithms for linear stochastic bandits. In Proceedings of the 24th International
Conference on Neural Information Processing Systems. 2312–2320.

[2] Shipra Agrawal and Navin Goyal. 2013. Thompson Sampling for Contextual

Bandits with Linear Payoffs. In Proceedinds of International Conference on Machine
Learning. 127–135.

[3] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.

Journal of Machine Learning Research 3, Nov (2002), 397–422.

[4] Djallel Bouneffouf and Irina Rish. 2019. A survey on practical applications of

multi-armed and contextual bandits. arXiv preprint arXiv:1904.10040 (2019).
[5] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual bandits

with linear payoff functions. In Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics. JMLR Workshop and Conference

Proceedings, 208–214.

[6] Edouard Fouché, Junpei Komiyama, and Klemens Böhm. 2019. Scaling multi-

armed bandit algorithms. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1449–1459.

[7] Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni

Zappella, and Evans Etrue. 2017. On context-dependent clustering of bandits. In

Proceedinds of International Conference on Machine Learning. PMLR, 1253–1262.

[8] Claudio Gentile, Shuai Li, and Giovanni Zappella. 2014. Online clustering of

bandits. In Proceedinds of International Conference on Machine Learning. 757–765.
[9] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction.

In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI’17). AAAI Press, 1725–1731.

[10] Jin Huang, Harrie Oosterhuis, Maarten de Rijke, and Herke van Hoof. 2020.

Keeping Dataset Biases out of the Simulation: A Debiased Simulator for Rein-

forcement Learning based Recommender Systems. In Proceedinds of Fourteenth
ACM Conference on Recommender Systems. 190–199.

[11] Amir H Jadidinejad, Craig Macdonald, and Iadh Ounis. 2020. Using Exploration

to Alleviate Closed Loop Effects in Recommender Systems. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2025–2028.

[12] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. 2016. Extreme multi-

label loss functions for recommendation, tagging, ranking & other missing label

applications. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 935–944.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[14] Nathan Korda, Balazs Szorenyi, and Shuai Li. 2016. Distributed clustering of

linear bandits in peer to peer networks. In Proceedinds of International conference
on machine learning. PMLR, 1301–1309.

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[16] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-

bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. 661–670.

[17] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. 2016. Collaborative

filtering bandits. In Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval. 539–548.

[18] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 2003. The global k-means

clustering algorithm. Pattern recognition 36, 2 (2003), 451–461.

[19] Wei-Yin Loh. 2011. Classification and regression trees. Wiley interdisciplinary
reviews: data mining and knowledge discovery 1, 1 (2011), 14–23.

[20] Kanak Mahadik, Qingyun Wu, Shuai Li, and Amit Sabne. 2020. Fast distributed

bandits for online recommendation systems. In Proceedings of the 34th ACM
International Conference on Supercomputing. 1–13.

[21] Jérémie Mary, Romaric Gaudel, and Philippe Preux. 2015. Bandits and recom-

mender systems. In Proceedinds of International Workshop on Machine Learning,
Optimization and Big Data. Springer, 325–336.

[22] Kanishka Misra, Eric M Schwartz, and Jacob Abernethy. 2019. Dynamic on-

line pricing with incomplete information using multiarmed bandit experiments.

Marketing Science 38, 2 (2019), 226–252.
[23] Trong T Nguyen and Hady W Lauw. 2014. Dynamic clustering of contextual

multi-armed bandits. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management. 1959–1962.

[24] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017.

Embedding-based news recommendation for millions of users. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1933–1942.

[25] Sandeep Pandey, Deepak Agarwal, Deepayan Chakrabarti, and Vanja Josifovski.

2007. Bandits for taxonomies: A model-based approach. In Proceedings of the
2007 SIAM International Conference on Data Mining. SIAM, 216–227.

[26] Yashoteja Prabhu and Manik Varma. 2014. Fastxml: A fast, accurate and stable

tree-classifier for extreme multi-label learning. In Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining. 263–
272.

[27] Nils Reimers, Iryna Gurevych, Nils Reimers, Iryna Gurevych, Nandan Thakur,

Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. 2019. Sentence-BERT:

Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing. Association for

Computational Linguistics.

[28] Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. 2020. A

Large-scale Open Dataset for Bandit Algorithms. In Proceedinds of ICML 2020
Workshop on Real World Experiment Design and Active Learning.

[29] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and

Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning

and evaluation. In Proceedinds of International conference on machine learning.
PMLR, 1670–1679.

[30] David Sculley. 2010. Web-scale k-means clustering. In Proceedings of the 19th
international conference on World wide web. 1177–1178.

[31] Weiwei Shen, Jun Wang, Yu-Gang Jiang, and Hongyuan Zha. 2015. Portfolio

choices with orthogonal bandit learning. In Proceedinds of Twenty-fourth interna-
tional joint conference on artificial intelligence.

[32] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-

resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[33] Thomas J Walsh, István Szita, Carlos Diuk, and Michael L Littman. 2009. Explor-

ing compact reinforcement-learning representations with linear regression. In

Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.
591–598.

[34] Qing Wang, Tao Li, SS Iyengar, Larisa Shwartz, and Genady Ya Grabarnik. 2018.

Online it ticket automation recommendation using hierarchical multi-armed

bandit algorithms. In Proceedings of the 2018 SIAM International Conference on
Data Mining. SIAM, 657–665.

[35] Qing Wang, Chunqiu Zeng, Wubai Zhou, Tao Li, S Sitharama Iyengar, Larisa

Shwartz, andGenady YaGrabarnik. 2018. Online interactive collaborative filtering

using multi-armed bandit with dependent arms. IEEE Transactions on Knowledge
and Data Engineering 31, 8 (2018), 1569–1580.

[36] Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian,

Danyang Liu, Xing Xie, Jianfeng Gao, Winnie Wu, et al. 2020. Mind: A large-scale

dataset for news recommendation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 3597–3606.

[37] Xian Wu, Suleyman Cetintas, Deguang Kong, Miao Lu, Jian Yang, and Nitesh

Chawla. 2020. Learning from Cross-Modal Behavior Dynamics with Graph-

Regularized Neural Contextual Bandit. In Proceedings of The Web Conference 2020.
995–1005.

[38] Liu Yang, Bo Liu, Leyu Lin, Feng Xia, Kai Chen, and Qiang Yang. 2020. Exploring

Clustering of Bandits for Online Recommendation System. In Proceedinds of
Fourteenth ACM Conference on Recommender Systems. 120–129.

[39] Mengyue Yang, Qingyang Li, Zhiwei Qin, and Jieping Ye. 2020. Hierarchical

Adaptive Contextual Bandits for Resource Constraint based Recommendation. In

Proceedings of The Web Conference 2020. 292–302.
[40] Xiaoying Zhang, Hong Xie, Hang Li, and John CS Lui. 2020. Conversational con-

textual bandit: Algorithm and application. In Proceedings of The Web Conference
2020. 662–672.

[41] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.

2018. Learning tree-based deep model for recommender systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1079–1088.

[42] Jingwei Zhuo, Ziru Xu, Wei Dai, Han Zhu, Han Li, Jian Xu, and Kun Gai. 2020.

Learning Optimal Tree Models under Beam Search. In Proceedinds of International
Conference on Machine Learning. PMLR, 11650–11659.

APPENDIX

1. Regret Analysis

As defined in Eq. (1), the regret is defined as the difference between

the expected reward under hindsight knowledge and the actual

reward under the algorithm. The regret bound we would like to

obtain is established on a premise that the clustering structure is

known to the algorithm ahead of time, which is consistent with

the scenario of this paper. In this case, each cluster is viewed as

an independent arm, according to [1, 3, 5], the regret bound is

up to logarithmic terms ln(𝑇), ln(𝑁), and ln(1/𝛿). By hiding the

logarithmic factors with notation Õ, the cumulative regret over 𝑇

rounds is bounded with probability 1 − 𝛿 as:

𝑅(𝑇) = Õ
(
𝐾∑
𝑘=1

(𝜎𝑑 + ||𝑿𝑘 | |
√
𝑑)
√
𝑇

)
(9)

In Eq. (9), we shall assume that | |𝑿𝑘 | | = 1 for all clusters
5
.

Then as proven by [8], one can replace

√
𝑇 of each arm by a term

formulated as

√
𝑇 (1

𝐾
+
√
|𝑉𝑘 |
𝑁
), where |𝑉𝑘 | is the size of 𝑘-th cluster

and 𝑁 is the total number of items. As a result, the regret bound

becomes:

𝑅(𝑇) = Õ
(
(𝜎𝑑 +

√
𝑑)
√
𝑇

(
1 +

𝐾∑
𝑘=1

√
|𝑉𝑘 |
𝑁

))
(10)

In Eq. (10), according to [8], the worst case occurs when each

cluster has the same size
𝑁
𝐾
, leading to the regret bound:

𝑅(𝑇) = Õ
(
(𝜎𝑑 +

√
𝑑)
√
𝐾𝑇

)
(11)

Here we first discuss the regret bound for HCB. For simplicity, we

assume that the number of clusters are reduced𝑚 times that of the

previous level. At the beginning, each item is treated as a cluster,

i.e. the number of clusters should be 𝑁 . In this case, the regret

bound holds Õ
(
(𝜎𝑑 +

√
𝑑) log𝑚 (𝑁)

√
𝑚𝑇

)
. For pHCB, the receptive

field expands in a progressive manner, assuming the final size of

receptive field is 𝑟 , the regret bound is at most Õ
(
(𝜎𝑑 +

√
𝑑)
√
𝑟𝑇

)
.

As proven in [5], if the arm set is fixed over time and contains 𝑁

arms, the regret bound of the contextual bandits with linear payoff

functions is up to O(
√
𝑇𝑑ln3/2 (𝑁𝑇 ln(𝑇)/𝛿))). It is significantly

larger than the regret bound of HCB and pHCB due to the higher

order of logarithmic terms and 𝑑 ≪ 𝑁 , 𝑚 ≪ 𝑁 and 𝑟 ≪ 𝑁 in

most instances. Therefore, our proposed algorithms can improve

the exploration efficiency substantially by reducing the cumulative

regret. Moreover, the exploration time complexity is reduced from

O(𝑁) to O(log(𝑁)) with the help of hierarchy.

2. Tree Construction Time Cost

Next, we study the time cost spent on constructing different tree

structures. K-Means clustering is utilized to assign items into mul-

tiple subsets, which has also proven to be one of the effective clus-

tering methods. However, when dealing with millions of items, the

5
Without loss of generality, we can conduct 𝑙2 normalization over the contextual

vector associated with each arm.

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

T
im

e
co

st
 (h

ou
r)

1000_10
1000_100_10
10000_1000_100_10

(a) MIND

0.0 0.5 1.0 1.5 2.00.0

0.6

1.2

1.8

2.4

T
im

e
co

st
 (h

ou
r)

10000_100
50000_5000_50
100000_10000_1000_100_10

(b) Taobao

Figure 1: Time cost of tree construction on two datasets.

𝑎_𝑏_𝑐 means there are a, b and c nodes from bottom to up

levels of the tree structure.

time cost is still unacceptable. Therefore, we adopt the MiniBatchK-

Means [30] clustering to speed up K-Means when the number of

items exceeds half a million. We build different tree structures on a

Linux server with an Intel(R) Xeon(R) CPU E5-2680, 250GBMemory.

As shown in Figure 1, the construction of tree structures is very fast

onMIND dataset, with less than one hour’s cost even for the deepest

structure. On Taobao dataset, although it contains millions of items,

the construction process only spends around two hours for the

deepest structure. This demonstrates that the bottom-up clustering

method for tree structure construction is quite time-efficient.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Contextual Bandit Algorithms
	2.2 Cluster-of-Bandit Algorithms

	3 Preliminary and problem
	3.1 UCB for Recommender Systems
	3.2 The Challenges

	4 Methodology
	4.1 Tree Structure Construction
	4.2 Hierarchical Contextual Bandit
	4.3 Progressive Hierarchical Contextual Bandit

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	References

