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ABSTRACT
Graph Neural Networks (GNNs) have demonstrated strong power
in mining various graph-structure data. Since real-world graphs
are usually on a large scale, training scalable GNNs has become
one of the research trends in recent years. Existing methods only
produce one single model to serve all nodes. However, different
nodes may exhibit various properties thus require diverse models,
especially when the graph is large. Forcing all nodes to share a
unified model will decrease the model’s expressiveness. What is
worse, some small groups’ patterns are prone to be ignored by the
model due to their minority, making these nodes unpredictable and
even some raising potential unfairness problems.

In this paper, we propose a model-agnostic framework Ada-GNN
that provides personalized GNN models for specific sets of nodes.
Intuitively, it is desirable that every node has its own model. But
considering the efficiency and scalability of the framework, we
generate specific GNN models at the subgroup-level rather than
individual node-level. To be specific, Ada-GNNfirst splits the original
graph into several non-overlapped subgroups and tags each node
with its subgroup label. After that, a meta adapter is proposed
to adapt a base GNN model to each subgroup rapidly. To better
facilitate the global-to-local knowledge adaption, we design a feature
enhancement module that captures the distinctions among different
subgroups to improve the Ada-GNN’s performance. Ada-GNN is
model-agnostic and can be equipped to almost all existing scalable
GNN based methods such as GraphSAGE, ClusterGCN, SIGN, and
SAGN. We conduct extensive experiments with six popular scalable
GNN as base methods on two large-scale datasets, and the results
consistently demonstrate the generality and superiority of Ada-GNN.
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1 INTRODUCTION
In recent years, Graph Neural Networks (GNNs) have become
increasingly popular due to their versatile abilities in learning
graph structure data and widespread applications such as social
networks [11] [23], recommendation systems [6] [27], and
bioinformatics [29] [14]. Considering that the real-world graphs
are usually on a large scale, to facilitate the success of GNNs
applications, a lot of efforts have been devoted to designing effective
strategies to train GNNs efficiently on large-scale graphs. For
example, GraphSAGE [4] performs neighborhood sampling to
control the number of neighbors to be aggregated; ClusterGCN [2]
first partitions the original graph into non-overlapped subgraphs
with METIS [8], then performs graph convolutions on each
subgraph. By eliminating the bias during subgraph sampling,
GraphSaint [26] obtains a better way for subgraphs generation.
On the other hand, another line of methods, such as SGC [21],
SIGN [15], and SAGN [17], decouple the GNN into two parts:
pre-processing and post-classification, and the latter can easily
apply mini-batch training with the pre-processing output.

Although the above methods have achieved good performance
on large-scale graphs, they only focus on using a unified model for
representing all nodes in the graph while ignoring the diversity
among nodes. In fact, some researchers have achieved some
progress on the personalized model for each node, such as
Policy-GNN [10], which designs specific aggregation policy for
reflecting the diversity among nodes. However, since theweb-scaled
graphs in the real world, such as Facebook and Twitter, typically
have 108 ∼ 109 nodes [15], it is almost infeasible to perform
a node-level personalization on large-scale graphs due to the
limitation of memory and efficiency, which leads us to consider this
problem at a node-group-level (subgroup-level). For large-scale
graphs, it is natural for nodes to form local communities as
subgraphs, representing some common local patterns or sharing
some semantic meanings. For example, in an academic network,
researchers working in the same research area can form a subgraph;
in the traffic network, nearby POIs can form a subgraph. Different
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Figure 1: A study of subgroup diversity on the Arxiv1M
dataset. (a)We train a SIGNmodel on thewhole dataset (a.k.a
the base model), then evaluate the model’s performance on
each subgroup separately (the blue curve). The performance
is not even. We further finetune the base model with each
subgroup’s data respectively, and evaluate the dedicated
model (the orange curve), we find that some subgroups
improve but the others drop; (b) The label distribution in
different subgroups are diverse.

subgraphs may demonstrate different patterns, so that one unified
model may not be good enough to represent the subtle properties
encoded in different subgraphs.

To better illustrate the diversity among subgroups, we take a
one-million graph (Arxiv1M) for example. We divide the original
graph into 30 subgroups by METIS [8] algorithm. After that,
we conduct separate performance tests on each subgroup using
SIGN [15] trained on the whole graph in advance. The results
are reported in Figure 1(a). Besides the model performance, we
also print the distributions for top 10 labels in each subgraph
in Figure 1(b). It can be seen that the performance of the
unified model on the whole graph is uneven on each subgroup,
and different subgroups have different subgroup-specific data
distributions. Moreover, we fine-tune the unified SIGN model with
the local instances from each subgroup, the result is also shown in
Figure 1(a). We find that simply applying the pretrain-then-finetune
paradigm cannot achieve consistent improvement in general, which
indicates its insufficiency in capturing different data distribution
and motivates us to design a new method for model personalization
at the subgroup-level.

However, it is non-trivial to design a subgroup-level personalized
model for large graphs. The challenges mainly include: 1)How to
effectively capture and represent the distinctions among different
subgroups (which we call local distinction)? It is obvious that a model
cannot perform personalized operations without perceiving the
difference among subgroups; 2) How to ensure the useful common
knowledge among subgroups (which we call global coherence) is
preserved after we eventually acquire personalized local models?
Although the distinctions play important roles in personalization,
considering the fact that all subgroups are generated from the same
large graph, the common characteristics of subgroups should not
be ignored during personalized model learning. The performance
drop of the pretrain-then-finetune model in some subgroups in
Figure 1(a) exactly supports this assumption.

To address these challenges, in this paper, we propose a
model-agnostic framework, Ada-GNN, to generate different

models for different subgraphs after considering both the global
coherence and local distinction. Ada-GNN is inspired by the
framework of Model-Agnostic Meta-Learning (MAML) [3][12],
whose goal is to train a base model from a variety of tasks, which
can be adapted rapidly to serve for a new task with only a small
number of task-specific training instances. Specifically, firstly we
use a graph partition algorithm like METIS to divide the whole
graph into multiple non-overlapped subgraphs, and tag each node
with its corresponding subgraph ID as the group-wise label. Each
subgraph can be regarded as a task, since it includes a set of nodes
as instances. Next, we design a meta adapter module to learn a
good global model from all subgroups and adapt to local models
with a few instances in a subgraph. The global-to-local mode can
help Ada-GNN both preserve global coherence and learn local
distinction. At last, in case that in a normal MAML-like framework,
local patterns may not be effectively reflected from a few support
instances, we further propose a feature enhancement module to
enhance raw features with group-wise signals, so that Ada-GNN
can learn the distinctions among subgroups more easily.

The contributions of this work are summarized as follows:
• Instead of using one unified model to learn representations
for all nodes on a large graph, we propose a model-agnostic
framework Ada-GNN for almost all scalable GNNs to improve
their performance by generating personalized models at the
subgroup-level. To the best of our knowledge, this is the first
time to take group-wise personalized model into consideration
on large-scale graphs.

• We propose two core components in Ada-GNN, including a
feature enhancement module and a meta adapter learner. The
feature enhancement module can generate more informative
features to capture the distinctions among subgroups, while the
meta adapter learner has the ability to adapt a global model
rapidly to a local model according to local training instances.

• We conduct comprehensive evaluations on two large-scale
datasets with various base GNN models. The results demonstrate
that Ada-GNN can effectively adapt to local patterns and thus
improve all GNNs’ performance significantly, and moreover, the
improvement is consistently across different subgroups.

2 RELATEDWORK
2.1 Graph Neural Networks
Many of the real-world data is organized as graph structures, such as
social, bioinformatics, traffic, and citation networks. Recently, GNNs
have attracted increasing attention in both academia and industry,
due to their advantages in graph structure learning. For example,
GCN [9] utilizes a simple convolution to aggregate information
from node’s neighbors, which provides efficient message passing
on graphs. In contrast, GAT [20] uses an attention mechanism
to aggregate information from neighbor nodes in a weighted
way. Motivated by the Weisfeiler Lehman graph isomorphism
test, GIN [24] uses a graph isomorphism network architecture to
enhance the performance of GNNs. In order to stack more GNN
layers and aggregate information from higher-order neighborhoods,
some researchers try to use skip-connections to increase GNN
models’ depth. For example, aiming at addressing the problems of
over smoothness and vanishing gradient, DeepGCN [13] borrows



the ideas from ResNet [5] and DenseNet [19] through residual
connections and dense connections to help models go deeper. Wu
et al. [22] offers a more comprehensive survey on existing graph
neural networks.

2.2 Scalable GNNs
How to train GNNs on large graphs (such as a social network
with millions of nodes) becomes one bottleneck, because a
gradient-based update for one node involves a large number of
neighboring nodes, which poses challenges on both computational
cost and memory space. To address the challenge, a lot of works
have been proposed to improve the time and memory efficiency of
GNNs, which can be categorized into three groups.

1) Sampling Based Methods: As an efficient and effective
way to alleviate the “neighbor explosion” problem in large
graphs, neighbor sampling methods received wide research focus.
GraphSAGE [4] randomly samples several neighbors for each node,
which greatly alleviates the memory cost during neighborhood
aggregation. Slightly different fromGraphSAGE, PinSAGE [25] uses
random walk to calculate the importance of neighbors for weighted
sampling. Through sampling the receptive domain of each layer
with importance, FastGCN [1] ensures that the important nodes
will have a great chance to be sampled during aggregation.

2) Subgraph Based Methods: Subgraph based methods mainly
aim at restricting the neighborhood search field through generating
multiple subgraphs, and then reduce the computation cost. For
example, inspired by mini-batch SGD, ClusterGCN [2] uses
non-overlapped partition methods to split the original graph into
several subgraphs and then trains GCN in each subgraph with
less time and memory consumption. GraphSAINT [26] also tries
to restrict nodes’ receptive fields through generating subgraphs
with the process of correcting bias and variance during sampling
subgraphs.

3) Decoupling Based Methods: A lot of work tries to decouple
the GNN model into graph pre-processing and post classification to
reduce the computation complexity. By simply using linear layers
as the post classifiers, SGC [21] achieves competitive performance
with much less time consumption after removing intermediate
non-linear activation. Inspired by the inception module in computer
vision, SIGN [15] makes each hop’s aggregation pass through a
multi-layer perceptrons (MLP), and then concatenates the encoded
representation as the input for a post MLP classifier. Based on SIGN,
the concatenation operation is replaced by attention mechanism
in SAGN [18] to further enhance the expressiveness of post
classifier, and label propagation modules are added to improve
the performance of model.

3 METHODOLOGY
3.1 Problem Formulation
To stay focus, in this paper we study the node classification problem,
but the method can be easily extended to other graph applications
such as link prediction.

A graph is denoted by G = (V,A,X), which consists of 𝑁 = |V|
vertices. A ∈ {0, 1}𝑁×𝑁 is the adjacency matrix, with A𝑖 𝑗 equal to
1 if there is an edge between node 𝑖 and node 𝑗 , and 0 otherwise.
X ∈ R𝑁×𝐹 denotes the 𝐹 -dimensional attribute vector for each

node inV . Let 𝑌 denote the set of node labels, and each node 𝑖 has
one unique label 𝑦𝑖 ∈ 𝑌 .

Generally, in node classification tasks, only part of nodes are
associated with labels during training, denoted asV𝐿 . The goal is to
learn a graph-based mapping function 𝑓𝜃 : {𝑣𝑖 ,G} ↦→ {1, 2, ..., |𝑌 |}
based on V𝐿 as the training set, so that by leveraging the graph
signal, 𝑓𝜃 can map each unlabeled node 𝑣𝑖 inV to one label.

3.2 Framework Overview
Traditionally, GNN models such as SGC, ClusterGCN, and SIGN
generate one single model 𝑓𝜃 after training, then use it to make
predictions for all nodes. When the graph is large, it is intuitive
that subgraphs located in different regions on the graph may have
their own special patterns. For example, the traffic map of Beijing
is different from that of Shanghai to a great extent, although they
are both parts of the traffic map of China. Thus, the final model’s
expressiveness will be compromised if we force all the nodes in the
big graph to share one unified model.

To address the problem, we propose Ada-GNN, which is a
model-agnostic framework, to empower a GNN model with the
ability of adapting to local patterns. An overall illustration of
Ada-GNN is shown in Fig. 2. There are three main components
in Ada-GNN, including node tagging, meta adapter, and feature
enhancement module. Given an original graph G, we first apply a
graph partition method to generate 𝑀 non-overlapped subgroups
{V1,V2, ...,V𝑀 }, then each node will be tagged with the ID of its
belonging subgroup. This step is called node tagging. After that,
to make subgroup-level patterns easier to be captured, we propose
a feature enhancement module to generate additional subgroup
features which record the distinctions among subgroups. Finally,
inspired by the Model-Agnostic Meta-Learning (MAML) [3][12]
framework, we propose an adaptive learner, called meta adapter, to
ensure that a global GNN model can rapidly adapt to local patterns
in each subgroup and finish the coarse-to-fine model transition.
In addition, we design an fairness controller to alleviate the
subgroup-wise unfairness problem in Ada-GNN. In the following
sections, we will introduce these components of Ada-GNN in detail.

3.3 Node Tagging & Base GNN Model
Firstly, we employ a graph partition algorithm to divide the original
graph into multiple disjoint subgraphs. How to partition the
graph is not the research focus of this paper, and here we choose
METIS [8] after considering its high efficiency and effectiveness
in graph partition. After that, instead of making each subgraph
a separated and independent graph, here we only tag each node
with its corresponding subgroup ID, while leaving the original
graph structure unchanged, which is different from the operations
in ClusterGCN [2]. The advantages are two-fold: 1) preserving
the original graph structure makes the proposed framework
compatible with all kinds of base GNN models, because various
graph operations like graph partition [2][26] and inception-like
[15] propagation are still applicable; 2) node tagging does not cause
any information loss due to the edges across subgraphs are not
removed.

To fully represent the information of a node 𝑣𝑖 , a GNN model
aggregates the features from its neighbor nodes and fuses neighbor
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Figure 2: An overview of the Ada-GNN framework

informationwith its own. This aggregation can be repeatedmultiple
times so that high-order neighborhood information can be captured.
Ada-GNN is model-agnostic, but for better illustration, we take
SAGN [17] as an example. SAGN aggregates neighbors’ messages
without feature transformation and non-linear activation:

X̄(𝑘) = ĀX̄(𝑘−1) (1)

where Ā is a transition matrix derived from A through a
prepossessing step such as the row-stochastic random walk. X̄(𝑘)

is the 𝑘-hop smoothed node feature matrix. X̄(0) is the original
feature matrix (which stores the node attributes). To obtain the
𝑘−hop representation H(𝑘) , SAGN applies a MLP operation:

H(𝑘) = 𝑀𝐿𝑃 (𝑘) (X̄(𝑘) ) (2)

Multi-hop’s neighborhood information is merged via an
attention pooling:

H𝑎𝑡𝑡 =

𝐿∑
𝑘=0

𝛼 (𝑘)H(𝑘) (3)

𝛼 (𝑘) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑘 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ( [H(𝑘) | |H(0) ] ·W𝑎)) (4)
where | | means the concatenation operation and 𝛼 (𝑘) is the
attention score of 𝑘-hop neighborhood’s information. SAGN’s final
representation of nodes is:

H𝑓 = 𝑀𝐿𝑃 (H𝑎𝑡𝑡 + XW𝑟 ) (5)

To fulfill the personalization for different subgroups, possible
solutions include (1) finding a most suitable base GNN model
for each subgroup, e.g., GraphSAGE for subgroup #1, SAGN for
subgroup #2; (2) using one base model, but searching for a set of
most suitable hyper-parameters for each subgroup, e.g., different
hop depth 𝑘 for different subgroups; (3) using one base model and
one set of hyper-parameters, but adapting to different parameters
for each subgroup, e.g., different subgroups have different attention

parametersW𝑎 and final merging parametersW𝑟 . We argue that
method (3) is the best choice as a prior study in personalized GNN
models, and the reasons are three-fold. Firstly, by sharing model
backbone and hyper-parameters among subgroups, the structure of
the GNN model is universal so that common knowledge is easy to
share across subgroups. Secondly, the flexibility of changing model
structure requires some complex techniques such as AutoML, which
will increase the computational cost of the framework. Thirdly,
theoretically, it is feasible to acquire subgroup personalization via
adapting to different model parameters. For instance, if subgroup
#1 mainly relies on self-information when neighbors’ message is
noisy, the final local model will adjust the parameter W𝑟 in Eq.(5)
to emphasize the influence of X for subgroup #1.

3.4 Meta Adapter
Inspired by the global-to-local learning framework in
MAML [3][12], which aims at training a good global initialization
𝜃 that can help local models rapidly adapt to new tasks, we design
a meta adapter to generate personalized models for different
subgroups, while sharing common global knowledge from the
original graph. The overall process is illustrated in the Meta
Adapter module in Figure 2. Meta adapter first initializes the
global model with random parameters 𝜃 . There are two kinds
of parameters updates in meta adapter, named local adaption
and global optimization. Each subgroup is regarded as one task,
with training instances separated into support set and query set.
Support set is used for local adaption. In other words, with copying
𝜃 as initialization for a local model 𝜃 ′

𝑖
, meta adapter trains the

local model on support set to match the 𝑖𝑡ℎ subgroup’s pattern.
After local updates, the quality of local models is evaluated on the
local query sets, and the gradients derived from query sets will
guide the updating direction for the global model, which is called
global optimization. Through this step, the meta adapter achieves



the ultimate goal: to generate a good global model, which can be
adapted rapidly to different subgroups based on corresponding
task-specific support sets. As for the inference stage, the meta
adapter only has the local adaption step, because we do not have
query labels for global optimization. More Specifically, meta
adapter has the following two processes:

Train Process. Algorithm 1 in the appendix shows the detailed
training process of Ada-GNN. Firstly, the parameters of the global
model (line 1) are randomly initialized as 𝜃 . Then, based on a
partitioning algorithm,𝑀 subgroups are generated for node tagging
(line 2), denoted as {V1,V2, · · · ,V𝑀 }. After that, the meta adapter
enters the phrase of subgroup-aware model training (lines 4-11). In
each subgroupV𝑖 , training instances (which are labeled nodes in
the training set) constitute support setV𝑖,𝑆 and query setV𝑖,𝑄 . On
the support set, by minimizing the following loss function:

L𝑆
𝑖 (𝜃,G) = 1

|V𝑖,𝑆 |
∑

𝑗 ∈V𝑖,𝑆

L(𝑦 𝑗 , 𝑦 𝑗 (𝜃 )) (6)

which is also named as train loss, we can get the adapted local
parameters 𝜃 ′

𝑖
:

𝜃 ′𝑖 = 𝜃 − 𝛾1
𝜕L𝑆

𝑖
(𝜃,G)
𝜕𝜃

(7)

where 𝑦 𝑗 , 𝑦 𝑗 represent the true label and predicted label for node 𝑗 ,
respectively. L is the entropy loss function in most cases. 𝛾1 is the
local learning rate. We hope that through the local adaption step,
errors in the query setV𝑖,𝑄 can be minimized and local distinctions
can be learned. To this end, we calculate the evaluation loss in query
set:

L̂𝑖 = L𝑄

𝑖
(𝜃 ′𝑖 ,G) = 1

|V𝑖,𝑄 |
∑

𝑗 ∈V𝑖,𝑄

L(𝑦 𝑗 , 𝑦 𝑗 (𝜃 ′𝑖 )) (8)

and use it to update the global model with following functions:

L𝑚𝑒𝑡𝑎 =

𝑀∑
𝑖=1

L̂𝑖 (9)

𝜃 = 𝜃 − 𝛾2
𝜕L𝑚𝑒𝑡𝑎

𝜕𝜃
(10)

whereV𝑖,𝑄 denotes the query set in subgroupV𝑖 ,𝑀 denotes the
subgroup number, L̂𝑖 denotes the evaluation loss of subgroupV𝑖 ,
and 𝛾2 is the global learning rate. Through accumulating multiple
subgroups’ evaluation loss and applying it to the global parameters
once (line 11 and 13),𝜃 would be forced to learn the global coherence
among all subgroups. Normally, the train nodes and validation
nodes in each subgroup should represent support set and query set,
respectively. However, because we do not want to use validation
sets during training, which might cause an unfair comparison with
other scalable GNNs, we re-use the train nodes in each subgroup as
query set as well. Thanks to the global-to-local mode, meta adapter
could successfully find desirable parameters 𝜃 which could adapt to
an optimal space with only𝐾 steps for all subgroups. The algorithm
will repeat the above procedures until 𝜃 is stable.

Test Process. The test process of Ada-GNN is very similar to
the train process. The only difference is that there is no global
optimization for global model 𝜃 anymore. After local adaption,
each local model will be directly evaluated through the test nodes
in the corresponding subgroup. Note that, there is no need for meta
adapter to store all local models’ parameters after training. Instead,

with a trained global initialization, the global model 𝜃 can rapidly
adapts to 𝜃𝑖 for subgroup 𝑖 via corresponding support sets V𝑖,𝑆 .
In other words, given the trained global parameters 𝜃 , Ada-GNN
could rapidly generate all local models (lines 3-6) and perform an
evaluation on each subgroup (line 8). The pseudo codes of the test
process are shown in Algorithm 2 in the appendix.

3.5 Feature Enhancement Module
Essentially, the classicalMAML framework relies on the distribution
of <feature, label> mapping to capture the special patterns in a local
task in an implicit manner. However, when the support set is small
(which is the common case for a MAML setting), the local pattern
cannot be effectively reflected. We argue that to facilitate the local
model adaption process, it will be helpful to provide informative
group-level signals to describe the local patterns in an explicit
manner. These signals should be easy to be obtained, informative
to distinguish subgroups, and can directly influence the model
prediction [16].

To this end, we propose a feature enhancement module that
extracts and appends group-level features to node attributes for
better distinction among subgroups. The group-level features
include 1) normalized labels distribution; 2) one-hot encoding
subgroup ID. The two auxiliary information will be appended
to the original node features. Due to the limited number of
classes and subgroups, feature enhancement module only adds
little computation and memory costs while yielding much better
performance. As a result, the new feature vector for node 𝑢 in
subgroup V𝑖 is derived as:

x̄𝑢 = [x𝑢 , a𝑖 ] (11)

where [·, ·] indicates the concatenation operation, a𝑖 denotes the
group-level features for subgroup V𝑖 , which can be represented as:

a𝑖 = [𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖 , 𝐼𝐷𝑖 ] (12)

where 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖 denotes the label distribution in subgroupV𝑖 ,
and 𝐼𝐷𝑖 denotes the one-hot encoded ID index of subgroupV𝑖 . After
feature enhancement, the meta adapter can perceive and adapt to
local patterns better.

3.6 Group-wise Fairness Discussion
The classical supervised learning paradigm aims to minimize
the overall loss in Eq. 9, which indicates an optimal accuracy
performance in the global view. To achieve this, the model will often
converge to a tricky state where for some groups the performance
is extremely high and for some other groups the performance is
extremely low. This is one type of unfairness problems, whichmeans
that some groups’ performance is sacrificed too much to pursue an
overall metrics. From the view of responsible Artificial Intelligence
(AI), we hope the performance of different groups should not be
biased severely. A natural merit of Ada-GNN is that fairness level
can be easily controlled in the framework.

Specifically, we slightly modify Eq. 9 to mitigate the potential
unfairness problem and let the model spare more effort on
subgroups that have poor performance:

L∗
𝑚𝑒𝑡𝑎 =

𝑀∑
𝑖=1

𝑤𝑖 L̂𝑖 (13)



Table 1: Dataset Statistics

Dataset Vertices Edges Class Train/Val/Test
Arxiv1M 1,546,782 13,701,428 172 0.71 / 0.17 / 0.12

Amazon2M 2,449,029 61,859,140 47 0.70 / 0.20 / 0.10

where 𝑤𝑖 represents the weight for subgroup V𝑖 , which is
determined by the accuracy of the subgroup on the validation set
with softmax as modulation:

𝑧𝑖 =
1/𝑚𝑖𝑐𝑖∑𝑀
𝑖=1 1/𝑚𝑖𝑐𝑖

(14)

𝑤𝑖 =
𝑒𝑥𝑝 ((𝑧𝑖 −𝑚𝑎𝑥 (𝑧))/𝜏)∑𝑀
𝑖=1 𝑒𝑥𝑝 ((𝑧𝑖 −𝑚𝑎𝑥 (𝑧))/𝜏)

(15)

where 𝑚𝑖𝑐𝑖 is the micro f1 score of subgroup V𝑖 , and 𝜏 is
temperature parameter. With this fairness module, the weights
of groups with poor performance will be dynamically lifted during
the training process. The fairness module is optional in Ada-GNN,
it depends on the trade-off between the global accuracy and
group-wise fairness concern.

4 EXPERIMENTS
4.1 Experimental Settings
We evaluate Ada-GNN and other baselines on a server with Intel(R)
Xeon(R) CPU E5-2680 and GPU Tesla V100 with 32GB Memory.
Our experiment environment is Ubuntu 18.04 with CUDA 11.4. All
methods are implemented using Python 3.7 with PyTorch 1.8.0 and
Deep Graph Library (DGL) 0.6 [28]. To be fair, we report the average
results after repeating each method five times.

4.1.1 Datasets. We perform experiments on two large-scale
graph datasets. The basic statistics are shown in Table 1.
• Arxiv1M: This is a homogeneous network composed of a
subset of papers that are published in arXiv. All paper nodes
are indexed by ogbn-papers100M in advance [7]. Each node
represents an arXiv paper, and each directed edge represents
the citation relationship between two paper nodes. By averaging
the embeddings of words in the title and abstract of the paper, a
128-dimensional feature vector is attached to each paper node.
In total, there are 172 classes, which represent 172 arXiv subject
areas.

• Amazon2M: An undirected item-item graph in which vertices
are products sold by Amazon and edges represent whether two
items are purchased by the same customer [7]. Each product node
comes with a 100-dimensional feature vector which is generated
from the product’s description. In total, 47 product categories are
used as node labels.

4.1.2 Baselines. Intuitively, the node diversity phenomenon is
more severe on large graphs, we are more interested to see
how Ada-GNN can improve those base GNN model which are
scalable. Thus, we choose six different GNN methods, including
GraphSAGE [4], SGC [21], ClusterGCN [2], GraphSAINT [26],
SIGN [15], and SAGN [17]. They represent different types
of scalable structures: GraphSAGE samples a fixed number of
neighbors for each node to avoid the neighborhood explosion

problem; SGC reduces model complexity by eliminating non-linear
functions between GCN layers and transforming nonlinear GCNs
into simple linear models; ClusterGCN is a framework for training
large-scale GNN via partitioning the origin graph into small disjoint
subgraphs; GraphSAINT explicitly considers the deviation caused
by subgraph sampling on GCN calculation, which can ensure that
the aggregation process of nodes after sampling is unbiased and the
variance caused by sampling is as small as possible; SIGN passes
each hop’s neighborhood aggregation through a MLP encoder
and then concatenates the encoded representation as the input
for a post MLP classifier; SAGN leverages attention module to
attentively merge multi-hop’s neighborhood message, and uses a
Self-Label-Enhance (SLE) training mechanism to improve the model
performance.

4.1.3 Implementation Details. For all baselines, the
hyper-parameters are set to be the same with the corresponding
paper’s settings, and in order to provide a fair comparison, all
hidden dimensions are set to 128. We use the open-sourced codes
released by the authors and DGL official forum for comparison
with Ada-GNN. As for Ada-GNN, we use METIS algorithm to
perform node tagging and generate subgroups. Due to the limited
number of training samples, too much subgroups might cause
insufficient training for each local model and huge memory cost.
Therefore, unlike the large partition size in ClusterGCN, we set
subgroups’ number𝑀 as 5 in our work. Besides, to make Ada-GNN
adapt more rapidly, the adaption step 𝐾 should not be large, and is
set to 5 except in the hyper-parameter study section. Both local
learning rate 𝛾1 and global learning rate 𝛾2 are set to 0.005. Other
hyper-parameters, such as weight decay rate and dropout rate,
are all set to be the same with the settings in corresponding local
models. The detailed hyper-parameters analysis in Ada-GNN will
be further discussed in subsection 4.6.

4.2 Overall Evaluation of Ada-GNN
We evaluate the node classification performance of our model –
Ada-GNN and other different models on Amazon2M and Arxiv1M.
To demonstrate that Ada-GNN is a model-agnostic framework
and can be applied to different base GNN models, we choose
GraphSAGE, SGC, ClusterGCN, GraphSAINT, SIGN, and SAGN
as base GNN models in experiments, which are denoted as
Ada-GraphSAGE, Ada-SGC, Ada-ClusterGCN, Ada-GraphSAINT,
Ada-SIGN, and Ada-SAGN, respectively. Table 2 reports the overall
performance of our proposed model as well as the baseline methods,
from which we have following observations:
• Equipped with the Ada-GNN framework, all the base models
get consistent improvement in both micro-f1 and macro-f1
performance on two datasets, which demonstrates the necessity
of local adaption in big graphs and the effectiveness of our
proposed framework in improving various types of GNN models.

• Among the base models, SAGN achieves the best performance,
and Ada-SAGN can further improve it on both Arxiv1M and
Amazon2M dataset, reaching the state-of-the-art performance.
Overall, decoupling based methods (SIGN, SAGN) generally
perform better than subgraph based methods (ClusterGCN,
GraphSAINT), which is consistent with the conclusions in
existing literature [17].



Table 2: Overall performance (in percentage) comparisons
of Ada-GNN with six different base models

Models Arxiv1M Amazon2M
micro-f1 macro-f1 micro-f1 macro-f1

GraphSAGE 54.12±0.03 32.17±0.21 83.01±0.04 47.77±0.18
SGC 52.73±0.17 28.96±0.28 74.17±0.01 37.88±0.47

ClusterGCN 55.49±0.02 34.01±0.41 85.71±0.02 49.87±0.27
GraphSAINT 54.60±0.02 24.31±0.34 87.02±0.01 44.40±0.22

SIGN 58.20±0.03 35.85±0.25 85.38±0.06 50.34±0.43
SAGN 59.42±0.02 36.07±0.15 87.56±0.03 55.21±0.13

Ada-GraphSAGE 54.54±0.15 33.05±0.23 85.47±0.13 50.10±0.57
Ada-SGC 53.87±0.29 32.53±0.37 76.15±0.01 42.42±2.78

Ada-ClusterGCN 58.25±0.17 35.33±0.31 86.56±0.05 51.15±1.23
Ada-GraphSAINT 55.90±0.21 33.15±0.44 87.73±0.11 45.67±1.31

Ada-SIGN 59.60±0.11 35.81±0.75 86.79±0.14 52.62±0.39
Ada-SAGN 59.92±0.12 36.19±0.27 87.84±0.08 55.32±0.13

• All models perform better on Amazon2M than on Arxiv1M. The
main reason may be that the number of class in Arxiv1M is much
more than that in Amazon2M, which makes it be much harder to
predict. In addition, the density (i.e., the average degree of nodes)
of the Amazon2M graph is much higher than that of the Arxiv1M
graph, which yields more sufficient neighbor information, thus
bring better performance.

4.3 Subgroup-level Analysis
In order to analyze the influence of Ada-GNN on each subgroup
after learning the local patterns, we set the subgroup number
to 5 and compare the results between each base model and its
corresponding adapted model at subgroup-level. The results are
shown in Figure 3 and Figure A1 in the appendix. As illustrated
in the figures, for most of the cases, Ada-GNN’s improvement is
consistent across subgroups with different base models, due to the
successful subgroup-level personalization.

One interesting observation is that all models demonstrate the
same bias on subgroup-level’s performance trend and unfairness
problem. For example, on the Arxiv1M dataset, all models follow
the trend that subgroup #1 > subgroup #5 > subgroup #2 >

subgroup #4 > subgroup #3, which indicates that the main reason
for uneven performance is not due to the model’s nature, but
caused by diversity of data distribution across different subgroups.
This phenomenon supports the motivation of enabling subgroup
personalization and the following fairness controller. After applying
Ada-GNN, basemodels’ performance on all subgroups are improved,
which verifies that the overall gain of Ada-GNN in Table 2 does
not come from sacrificing one subgroup’s performance to remedy
another subgroup’s performance. Instead, Ada-GNN can help local
model to better learn the local patterns of each subgroup, so almost
all subgroups get improved.

4.4 Ablation Study
In this section, we investigate the contribution of the meta adapter
and the feature enhancement module to Ada-GNN, by removing
one of them from Ada-GNN in a time (for example, without the
meta adapter or without the feature enhancement) and check how

Figure 3: Subgroup-level comparisons between base models
and adapted local models on Arxiv1M

the performance is impacted. We further compare Ada-GNN with a
simple pretrain + finetune paradigm, which regards the base model
as a pretrained global model and fine-tunes it with subgroup’s
samples only before evaluating the subgroup’s test samples. From
Table 3 we have the following observations:
• The pretrain + finetune paradigm cannot bring consistent
improvement over the base model, while Ada-GNN can bring
consistent improvement over the base model and in most of the
cases outperforms pretrain + finetune (The only exception is with
SGC. However, SGC’s best performance is still far behind the
other models’). This indicates that learning to keep the global
coherence is indispensable during adapting to local distinctions.

• Removing either the meta adapter or the feature enhancement
module will lead to a significant performance drop. For example,
in Ada-SIGN, when removing the meta adapter, the performance
drops from 0.5960 to 0.5936; while removing the feature
enhancement module, it drops from 0.5960 to 0.5714.

• By comparing base model with w/o adapter, we can see that
subgroup-level features indeed carry useful signals which
enhance the attributes of nodes, and by comparing w/o adapter
with Ada-GNN, we can see that meta adapter is a better way to
make use of subgroup-level features.

• Without feature enhancement module, meta adapter can
not consistently improve the base model. This matches our
expectation, because in the local adaption step, we only use a
few supporting instances which may not reflect the unique data
distribution of each subgroup well.

4.5 Fairness Analysis
Next, we evaluate the optional module - the fairness controller -
to verify if the group-wise variance can be alleviated by adding
this module. To be specific, we compare the standard deviations of
subgroup-level performance among settings of applying Ada-GNN
with (w/) or without (w/o) fairness module, as well as the base
model, on the Amazon2M dataset. We follows the experimental
setting in Section 4.1 and 𝜏 in Eq.15 is set to 0.01. From Table 4 we
have these observations:
• After applying fairness module, the subgroup-level
performance’s standard deviation of Ada-GNN is indeed
reduced with all base models, which indicates that the



Table 3: An ablation study on removing the meta adapter or/and the feature enhancement module (in micro-f1). Numbers in
bold type indicate the best setting for each base model.

Model
Arxiv1M Amazon2M

base
model

pretrain+
finetune

w/o
adapter

w/o
feature

Ada-
GNN

base
model

pretrain+
finetune

w/o
adapter

w/o
feature

Ada-
GNN

Ada-SGC 0.5273 0.5412 0.5329 0.5336 0.5387 0.7417 0.7852 0.7601 0.7479 0.7615
Ada-ClusterGCN 0.5549 0.5615 0.5806 0.5816 0.5825 0.8571 0.8602 0.8606 0.8576 0.8656

Ada-SIGN 0.5820 0.5840 0.5936 0.5714 0.5960 0.8538 0.8529 0.8644 0.8559 0.8679
Ada-SAGN 0.5942 0.5927 0.5977 0.5960 0.5992 0.8756 0.8736 0.8772 0.8764 0.8784

Table 4: Comparison on overall performance and standard
deviations among base models, Ada-GNNs (Ada), and
Ada-GNNs with fairness module (Ada𝐹𝑎𝑖𝑟 )

Model SAGE SGC SAINT SIGN
mic std mic std mic std mic std

base 83.01 2.20 74.28 2.48 87.02 2.90 85.38 1.70
Ada 85.47 2.54 76.10 2.35 87.73 3.01 86.79 2.41

Ada𝐹𝑎𝑖𝑟 85.00 1.72 76.00 1.41 87.21 1.48 85.84 1.60

(a) Influence of subgroup number 
M on Ada-GNN

(b) Influence of adaption steps
K on Ada-GNN

Subgroup Number Adaption Step

m
ic
ro
f1

m
ic
ro
f1

Figure 4: The influence of subgroup numbers 𝑀 (a) and
adaption steps 𝐾 (b) over Arxiv1M. For conciseness we only
demonstrate two base models: SGC and SIGN.

performance of all subgroups becomes much more even with the
help of fairness module.

• The overall performance of Ada-GNN will slightly decrease
after applying fairness module. The main reason might be
that the fairness module forces meta adapter to focus more
on inferior subgroups, and this leads to less improvement on
subgroups which are easy to learn. Thus, currently it is trade-off
between the optimal accuracy and decent fairness. We leave the
problem of fulfilling fairness while keeping optimal accuracy as
a future work. Note that, although fairness module will hurt the
performance of Ada-GNN to some extent, there are still obvious
improvement compared with base GNN models.

4.6 Hyper-parameters Analysis
We analyze two most important hyper-parameters of Ada-GNN:
the number of subgroups𝑀 during node tagging, and the number
of adaption steps 𝐾 in meta adapter.

4.6.1 The number of subgroups𝑀 . We show how the number
of subgroups 𝑀 during node tagging would influence Ada-GNN.
To study the impact of the subgroup numbers𝑀 in our model, we
investigate the performance of Ada-SGC, Ada-SIGN by varying
the values of 𝑀 in [2, 5, 10, 50, 100]. As shown in Figure 4(a),
with the increase of𝑀 , there is a downward trend on performance
over Arxiv1M, which indicates that a too large subgroups number
might cause insufficient training samples, and harm the model
performance. On Amazon2M, similar results can be shown
in Figure A2(a) in the appendix. We also find an interesting
observation that in Ada-SGC and Ada-SIGN, the performance
increases at first and then drops slowly. We hypothesize that
Ada-SGC might benefit from the personalization when we adjust
𝑀 from 2 to 5, while Ada-SIGN’s performance get consistent
improvement due to better personalization when we increase 𝑀
from 2 to 50.
4.6.2 The number of adaption steps 𝐾 . In this part, we test
the impact of the adaption steps 𝐾 on model performance. In
expectation, a small number of adaption steps are enough to capture
the subgroup pattern, and further increasing the adaption step
number will not further improve the performance but cause more
computational time. To verify this, we vary the adaption steps 𝐾
in [1, 3 ,5, 10, 20]. As shown in Figure 4(b), in Arixv1M, with the
increase of𝐾 , performance of Ada-SGC andAda-SIGN both increase
at first until reaching a converged status with slight fluctuation. For
conciseness, the results on Amazon2M are provided in Figure A2(b)
in the appendix. Note that, in some cases, Ada-GNNs even could
achieve optimal performance with 𝐾 = 1. The result matches our
expectation, which indicates that Ada-GNN could rapidly adapt
to local models with limited adaption steps with a trained global
initialization. Usually, a setting of 𝐾 = 5 could be near-optimal.

5 CONCLUSION
In this paper, we propose a model-agnostic framework Ada-GNN,
which learns personalized models for different subgroups by
considering both their distinctions and similarities. We adopt the
concept of global-to-local in MAML for designing our meta adapter,
which provides Ada-GNN with the capability of rapidly adapting
to local models. Moreover, node tagging and feature enhancement
module are designed for splitting different subgroups and capturing
the distinctions among them, respectively. At last, we discuss the
issue of fairness in Ada-GNN and propose fairness module as an
optional solution. Extensive experimental results on two large-scale
datasets with six different base GNN models demonstrate that
Ada-GNN can consistently improve various GNN models.
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A APPENDIX
A.1 Ada-GNN Algorithms

Algorithm 1 Ada-GNN Train Process
Input: Graph𝐺 , Hyper-parameters: local learning rate 𝛾1, global

learning rate 𝛾2, subgroup nums𝑀 and local adaption steps 𝐾 .
Output: Global model parameters 𝜃
1: Randomly initialize global model parameters as 𝜃 .
2: Split 𝐺 into𝑀 subgroups, denoted as {V1,V2, ...,V𝑀 }.
3: while not converged do
4: for each subgroupV𝑖 do
5: Initialize the local model parameters 𝜃 ′

𝑖
with 𝜃 .

6: for each adaption step in 𝐾 do
7: Compute the train loss L𝑖 (𝜃 ′𝑖 ) through support setV𝑖,𝑆

in subgroupV𝑖 .
8: Local updates: 𝜃 ′

𝑖
= 𝜃 ′

𝑖
− 𝛾1

𝜕L𝑖 (𝜃 ′𝑖 )
𝜕𝜃 ′

𝑖

.
9: end for
10: Compute evaluation loss L̂𝑖 through query set V𝑖,𝑄 in

subgroup V𝑖 .
11: L𝑚𝑒𝑡𝑎 += L̂𝑖

12: end for
13: Global updates: 𝜃 = 𝜃 − 𝛾2

𝜕L𝑚𝑒𝑡𝑎 (𝜃 ′)
𝜕𝜃

.
14: end while
15: return 𝜃

Algorithm 2 Ada-GNN Test Process
Input: Graph 𝐺 , Splitted subgroups {V1,V2, · · · ,V𝑀 }, Trained

global parameters 𝜃 , Hyper-parameters: local learning rate 𝛾1,
local adaption steps 𝐾 .

1: Initialize global model with trained parameters 𝜃 .
2: for each subgroupV𝑖 do
3: Initialize the local model parameters 𝜃 ′

𝑖
with 𝜃 .

4: for each adaption step in 𝐾 do
5: Compute the train loss L𝑖 (𝜃 ′𝑖 ) through support set V𝑖,𝑆

in subgroupV𝑖 .
6: Local updates: 𝜃 ′

𝑖
= 𝜃 ′

𝑖
− 𝛾1

𝜕L𝑖 (𝜃 ′𝑖 )
𝜕𝜃 ′

𝑖

.
7: end for
8: Evaluation through test nodes in subgroup V𝑖 with adapted

local model 𝜃 ′
𝑖
.

9: end for

We provide the complete process of Ada-GNN’s training process
and test process in Algorithm 1 and Algorithm 2 respectively, which
are the core components helping Ada-GNN to learn both local
and global information simultaneously. Those algorithms are also
literally described in Section 3.4 for better understanding.

A.2 Subgroup-level Analysis
As shown in Figure A1, the Ada-GNN brings consistent
improvement for almost all base models on the subgroup-level.
The only two exceptions are with SIGN on subgroup #1 and
subgroup #5 in Amazon2M. The reason may be the insufficient
model personalization caused by a small subgroup number. In

(a) Performance on Arxiv1M

(b) Performance on Amazon2M

Figure A1: Subgroup-level comparisons between base
models and adapted local models on Arxiv1M (a) and
Amazon2M (b).

(a) Influence of subgroup number 
M on Ada-GNN

(b) Influence of adaption steps
K on Ada-GNN

Subgroup Number Adaption Step

m
ic
ro
f1

m
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Figure A2: The influence of subgroup numbers 𝑀 (a) and
adaption steps 𝐾 (b) over Amazon2M. For conciseness we
only demonstrate two base models: SGC and SIGN.

Section 4.6.1, we further discuss the influence of subgroup number
𝑀’s influence on Ada-GNNs’ performance.

A.3 Hyper-parameters Analysis
We conduct hyper-parameters experiments on Arxiv1M and
Amazon2M to analyze the impact of subgroup number 𝑀 and
adaption step 𝐾 . Here we provide the results on Amazon2M in
Figure A2. Readers can find detailed experimental analysis in
Section 4.6.
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