
Interpretable Feedback for AutoML and a Proposal for
Domain-customized AutoML for Networking

Behnaz Arzani‡, Kevin Hsieh‡, Haoxian Chen⋄

Microsoft‡ and University of Pennsylvania⋄

Abstract

The barrier to entry for network operators to use machine
learning (ML) is high for operators who are not ML experts.
Automated machine learning (AutoML) promises operators
the ability to train ML models without requiring the expertise
of data scientists or the need to learn ML. However, AutoML
today: (a) is black-box; and (b) does not allow operators to
leverage domain expertise. We start this paper by describing
our broader vision for a domain-customized AutoML plat-
form for networking and propose a set of potential solutions
to realize that vision. As the first step, we introduce our feed-
back solution for AutoML that allows domain experts (who
are not experts in ML) to better understand how to improve
the input data to AutoML in order to achieve better accuracy.

ACM Reference Format:
Behnaz Arzani‡, Kevin Hsieh‡, Haoxian Chen⋄ . 2021. Inter-

pretable Feedback for AutoML and a Proposal for Domain-customized
AutoML for Networking. In The Twentieth ACM Workshop on Hot
Topics in Networks (HotNets ’21), November 10–12, 2021, Vir-
tual Event, United Kingdom. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3484266.3487373

1 Introduction
Prior work demonstrate ML can provide remarkable benefits
to production systems [7, 11, 12, 15, 20, 31, 55]. In many
cases, simply employing traditional ML techniques instead of
complex deep neural netowrks (DNNs) achieves significant
gains [6, 7, 15, 20]. While the end-to-end benefits remain
an open question, ML is a candidate for solving many net-
working use-cases. Unlike the heuristics (often approxima-
tions of integer programs) operators used in the past, ML can
adapt over time to new conditions through retraining, lever-
age historical data to make optimized decisions based on past
observations, and learn complex properties [11, 12, 31].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487373

However, building models for solving problems in network-
ing often requires careful domain customization [6, 35, 36].
Today, this requires someone with expertise in both domains
(networking and ML) to select the model, engineer features,
identify corner cases where the model can fail, and optimize
the model for performance and scale [1, 6, 15, 26, 34, 36, 51,
52, 55]. Such resources are scarce and the cost, in time and
human resources, of tackling such problems is high. This is
because of the scale, diversity, and complexity of the data
we collect [5, 6, 42, 43, 57], the pace at which our networks
evolve, and the number of questions we look to answer. Our
conversations with operators of our large public clouds indi-
cate the lack of operators with joint expertise is a bottleneck
when building ML models to solve problems in networking.
Others have made similar observations [1].

AutoML systems [18, 41] can address this problem and
our community’s early use of them show they can provide ben-
efit [23]. However, they fall short on their promises because
of two major shortcomings in existing AutoML systems:
(1) They do not allow operators to leverage their domain
expertise. Our community’s experience in developing ML
solutions for networking problems indicates the significant
role domain-expertise and domain-customization can play in
building more effective ML solutions. For example, Park [35]
leverages domain knowledge to reduce the state or action
space for reinforcement learning solutions. PrivateEye [7]
utilizes domain knowledge when engineering features which
help it scale. Existing AutoML solutions, unfortunately, do
not allow users to incorporate such domain knowledge.

Furthermore, priors play a crucial role in improving the ac-
curacy of many ML models. Examples include: independence
assumptions encoded in graphical models such as Bayes-
Nets [39], kernels used in Gaussian processes [21], and prior
distributions used for maximum likelihood estimations [40].
Current AutoML systems fail at efficiently leveraging such
priors: they either try to greedily search the prior space [21]
(at the cost of potentially using a sub-optimal one) or omit
such models entirely [18, 41] at the cost of forgoing the bene-
fits of such models in practice [2, 16, 28, 29].

A domain customized wrapper can allow operators to en-
code implicit or explicit priors into AutoML solutions. Take,
as an example, the scenario where an operator explicitly spec-
ifies independence assumptions across features. A straw-man
solution can take those assumptions and remove edges from
the full-mesh Bayes-Net graph or alternatively add zeros in
the covariance matrix for maximum likelihood estimators

https://doi.org/10.1145/3484266.3487373
https://doi.org/10.1145/3484266.3487373

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom B. Arzani et al.

with Gaussian priors. The wrapper can also infer these re-
lationships from the operator’s input. For example, the net-
work’s logical and physical topology can be an implicit indi-
cator of such relationships. Given these modified models the
AutoML framework can then include them in its search.
(2) They are black box. When AutoML fails to produce an
accurate model, the user has no idea how to move forward.
Even though many techniques exist to interpret what ML
models have learned (e.g., [3]), these techniques do not show
the user what to fix to improve the model’s accuracy. There-
fore, despite the many advances in ML and AutoML, non-ML
experts find it challenging to use AutoML in practice [8, 20].
The complexity of AutoML, and the fact that its users are
novices in ML increases the need for a feedback solution.

A feedback mechanism for AutoML should be able to de-
tect when the problem is infeasible, what features may need
to be changed, and what additional data can help the accuracy
of the model. It is important for the non-ML expert to under-
stand the justification for such feedback and to leverage their
domain knowledge to address the issues identified.

Thus, we believe a domain-customized AutoML system
with interpretable feedback can bridge the gap between net-
work operators and AutoML. Realizing this vision requires
extensive research in ML and networking. We take a first step
in addressing the second problem (black box) and we defer
the first problem (domain customization) to future work. Our
solution focuses on a specific type of interpretable AutoML
feedback: suggesting new data points the user can add to the
training data in order to improve the accuracy of the model
produced by the AutoML. Our contributions are as follows:
• We propose a vision on a domain-customized AutoML

system with interpretable feedback for networking.

• An interpretable feedback solution for AutoML. To the
best of our knowledge, this is the first work that proposes
a feedback mechanism for AutoML that suggests new data
points to improve AutoML accuracy. Our feedback solu-
tion is an interpretable data suggestion algorithm which
targets a domain-expert with limited ML background.
It not only provides explanations for the data being sug-
gested (that non-ML experts can understand) but also in
some cases outperforms existing active learning solutions.

Our solution is only the first step toward interpretable Au-
toML feedback. Other types of interpretable feedback such as
feature modifications and identifying confounding variables
require further research. We also need research by the HCI
community to help with how best to present the outcomes
of this feedback to a user with little to no ML background.
We invite the community to help further this research and
to help develop domain-customized AutoML solutions for
networking that our operators can reliably use in practice.

2 Background and motivation

We first motivate our solution using running examples and
then introduce relevant background material.

2.1 Motivation and Running Examples

The motivation for AutoML systems such as AutoSklearn [18]
and TPoT [41] is to enable non-ML experts (such as network
operators) to develop ML models for their domain-specific
problems. AutoML has the potential to address a key bottle-
neck of developing and deploying ML solutions in production
networks, which is the lack of ML expertise.

But the lack of a proper feedback mechanism for AutoML
limits its usability: when it fails to produce a model with suf-
ficient accuracy (the accuracy required by the domain expert
for using the solution in deployment), the network operator is
left with no follow up protocols — they would either need to
acquire a deeper understanding of ML or to revert to hiring a
data scientists to assist them in model development. Even ML
experts may find it difficult to improve the output of AutoML
as these systems typically produce an ensemble of models
instead of a single model that is easier to understand. We use
two running examples in this paper to illustrate both the need
and the utility of interpretable feedback for AutoML:
(1) Detecting DDoS traffic using flow-level measurements.
An operator wants to identify DDoS traffic and provides per-
flow features such as: source and destination ports, source
and destination IP addresses, and the number of packets/bytes
sent and received. The “Internet Firewall Data Data Set” from
the UCL KDD archives [25] is one such dataset.

In this example, the operator finds that the AutoML model
fails to predict the DDoS traffic accurately and the model
blocks a large fraction of legitimate customer traffic.
(2) A toy example in Congestion Control (CC). We con-
struct a simple example where a developer would like to
decide whether to use the Scream congestion control pro-
tocol [27]. The Scream congestion control algorithm was
designed for latency sensitive applications but may not al-
ways be the best protocol. Our problem is to identify whether
the application should use Scream to achieve the lowest end-
to-end latency given the current network conditions. Although
this is a toy problem, it is a problem that application develop-
ers encounter often in practice: picking the right congestion
control protocol to use can be critical for achieving good per-
formance [54] and depends on the properties of the network
(e.g., queue sizes, bottleneck bandwidths, . . .).

In this example, the developer (who has limited ML back-
ground) provides AutoML with training data that identifies
when Scream outperforms other congestion control protocols
based on the network properties (bottleneck bandwidth, la-
tency, loss rate, and number of concurrent flows). However,
she finds that the AutoML model fails to predict the cases
where Scream is not the best protocol.

Domain-customized AutoML for networking HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

Figure 1: An ALE plot for a problem deciding whether to
pick the Scream protocol.

Benefits of interpretable feedback. Figure 1 depicts how
the network link rate affects the ML model decision for our
second running example. In this figure, we plot Accumulate
Local Effect (ALE), which is a technique that explains how
features influence a ML model (§2.3). There is a lot of vari-
ance in ALE when link rates are low or high, which suggests
the models in the AutoML ensemble cannot agree on these
feature ranges. The operator can then try to add more data
points with these feature ranges to improve AutoML accuracy.

Our solution returns per-feature feedback which by itself
provides interpretability: a user’s domain-knowledge of each
feature allows them to decide which parts of the feedback to
ignore and which to accept. But is the output of Figure 1
itself truly interpretable for a non-ML expert? The intuition
for the solution helps explain why the answer is yes:

Imagine a scenario where 𝑛 humans were blind-folded and
asked to learn whether a given animal was a cat or a rabbit.
These humans are presented with multiple examples of cats
and multiple examples of rabbits and are then asked what they
would think if they were presented with an animal whose ears
were 3 inches long? Disagreement between the humans would
indicate they were confused about whether 3 inch ears are
more common in rabbits or cats — more examples of animals
with 3 inch ears may help reduce the confusion.

Similarly, the values at each point of an ALE plot show
what a black-box ML model has learned about the relationship
between the value of a feature and the label it is trying to pre-
dict e.g., long ears are more indicative of a “rabbit” whereas
shorter ears are more indicative of a “cat”. The variance of
ALE-values across different ML models at a given value of
a feature is indicative of what these models have learned is
similar/different: bigger differences indicate that particular
feature at that point is “confusing” and more examples may
help in reducing that confusion. This intuition allows non-ML
experts to interpret the output of such feedback solutions.

2.2 Query by Committee

Query-by-Committee (QBC) [19, 47] is a popular active learn-
ing strategy that aims to minimize the data labeling cost for
training. QBC proposes the use of a bag of (sufficiently di-
verse) ML models to label individual candidate points. The
solution returns the data points which resulted in the most
disagreements across these ML models, and labeling these
data points are more likely to improve ML model accuracy.

QBC has synergies with AutoML solutions such as Au-
toSKlearn [18] and TPoT [41], which create an ensemble of
ML models. A key assumption of QBC is that the commit-
tee consists of a number of sufficiently diverse ML models,
which are non-trivial to identify even for ML experts [45].
However, this assumption can be met with AutoML systems
that create an ensemble specifically when the models are in-
dividually strong and make uncorrelated errors [18]. Hence,
we can re-purpose the models within the AutoML ensemble
itself to form a QBC committee. Several challenges remain:
(1) Requiring candidate data points. QBC requires unla-
beled candidate data points as input. The bag of models then
votes on them to produce a set of points that are most promis-
ing. In the context of feedback for AutoML, if the user pro-
vides a set of candidate points they can bias the output based
on their choice and limit the effectiveness of the data the so-
lution produces. Alternatively, one could create a candidate
set by sampling based on the distribution of the training set.
However, the training set too can suffer from the same biases:
in the context of our CC example, the developer may collect
data from production and miss observing unique cases that
only occur when the loss rate of the network is higher due to
failures or congestion. Our solution does not rely on an input
candidate set and provides samples from a subspace of the
set of all valid feature values to the user.
(2) They are not interpretable. QBC and other active learn-
ing solutions are not interpretable by an operator who is unfa-
miliar with concepts such as decision boundaries and model
confidence. Instead of using the model predictions, we use
model-agnostic interpretation algorithms (such as ALE, §2.3)
and the variance of the interpretations as a measure of dis-
agreement. Thus, by returning the “aggregate interpretations”
along with the standard deviation the user can understand how
each feature contributes to the overall disagreement among
the ML models in the AutoML ensemble.

2.3 ALE plots

Accumulate Local Effect (ALE) plots describe how features
influence the prediction of a ML model on average [4] (
See [4, 38] for more details). ALE computations result in a
figure similar to Figure 1 and allow the user to understand
what the ML model has learned about that feature.

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom B. Arzani et al.

3 Algorithm

The intuition for our algorithm is that the accuracy of AutoML
systems such as AutoSKlearn and TPoT is in part due to their
use of ensembles which contain a set of diverse ML models
with uncorrelated errors [18]. Thus, these models are suited
for QBC-like algorithms. In order to provide interpretability,
we change our metric for model disagreements from predic-
tion disagreements to the variance across their ALE plots.
ALE plots (and other model-agnostic interpretation methods)
are designed to provide insights to the user about what the
model has learned. Through this simple change to QBC we
are able to provide additional insights to the user about why
they should sample those additional data points and add them
to the training set. Our solution is as follows:
(1) The algorithm takes as input the ensemble produced by

AutoML M, a threshold T setting the variance we are
willing to tolerate, the feature-set 𝑋 and the domain of
each feature in that set: 𝑅(𝑋𝑆) for each 𝑋𝑆 ∈ 𝑋 (the range
of values each feature can take in R).

(2) The output of this algorithm is a set K of data points for
the user to label and add to the training set.

(3) For each model in M we apply a model-agnostic interpre-
tation algorithm. We use ALE in this work.

(4) Compute the standard deviation across the ALE values of
models in M for feature 𝑋𝑆 ∈ 𝑋 in its range 𝑅(𝑋𝑆).

(5) Return the subspace where the standard deviation is high
(higher than T) as the region for the user to sample more
points from. These subspaces are essentially a collection
of hyperplanes ∪𝑖𝐴𝑖𝑥 ≤ 𝑏𝑖 where 𝑥 is an | 𝑋 | ×1 variable
vector representing the features and 𝐴𝑖 are 𝑚× | 𝑋 |
matrices of constants (| 𝑋 | is the cardinality of the set 𝑋).
Similarly, 𝑏𝑖 are𝑚×1 vectors of constants. The magnitude
of 𝑚 depends on the regions where the standard deviation
exceeds T . The equations in𝐴𝑖𝑥 ≤ 𝑏𝑖 describe the regions
in the ALE plot where the variance is higher than T . Note,
we need a union of 𝐴𝑖𝑥 ≤ 𝑏𝑖 subspaces because the space
need not be continuous: in our example in Figure 1, if we
assume the bottleneck bandwidth is the only feature where
the variance exceeds the threshold, our feedback returns
𝑥 ≤ 45 ∪ 𝑥 ≥ 99 where 𝑥 is the config.link_rate feature.
The user can now sample more points from these regions
and add them to the training set.

(6) Return the average ALE plots (along with error-bars) as
explanations to the user (for example, see Figure 1).

Algorithm variants. A variant of the algorithm above runs
AutoML multiple times and uses the disagreements across
AutoML runs for feedback. This variant replaces the ensem-
ble M with a set M ′ where each 𝑚 ∈ M ′ is an ensemble
returned by an AutoML run. AutoML runs are intrinsically
non-deterministic due to their probabilistic search algorithms
and thus, each run produces a different bag of models: this

approach is more robust as it creates a more diverse bag of
models but also is more expensive as each AutoML run can
take a long time. We refer to this variant as Cross-ALE feed-
back and the earlier version as Within-ALE feedback. The
Cross-ALE solution has an additional benefit: it allows us to
extend our feedback solution to non-ensemble based AutoML
systems. In our evaluations we use 10 AutoML runs for M ′.

4 Evaluation

We first describe the experimental setup. We aim to answer:
(1) Can our feedback solution help operators improve the

accuracy of AutoML systems?

(2) How does our feedback solution work when the user has
complete control and can collect any data the feedback
solution specifies vs when the pool of data available to the
feedback system is fixed?

(3) How does our feedback solution compare against active
learning solutions that also suggest new labeled data that
can help improve the accuracy of ML models?

(4) How does our solution compare against other, traditional,
data-scientific approaches?

Implementation. We use AutoSKlearn [18]. We implement
our solution with ∼ 500 lines of python code. Each training
experiment runs AutoML for an hour. We repeat each ex-
periment 10 times, and with 20 different test sets, to ensure
statistical significance across runs. For our ALE-based solu-
tions, we uniformly sample from the regions of the ALE-plot
that exceed the variance threshold and add those points to
the training set. This evaluation represents the lower-bound
performance of our solution as users with domain knowledge
can potentially do better than uniformly sampling.
Datasets. We use two seperate datasets:
Scream vs rest. This is our example from §2. We use the
Pantheon emulator[54] to get the target performance (label)
for a given network condition (feature variables).

Because we collect the data through emulation, we can
easily collect any additional data the feedback solution speci-
fies. We use 1161 for training the initial AutoML system and
add an additional 280 points based on the feedback. We di-
vide an additional 4850 data points into 20 (roughly) equally
sized test sets at random (to measure statistical significance).
We also collect 2000 data points uniformly at random as the
candidate-set for our active learning benchmarks.
UCL dataset. To show the benefit of the interpretability of our
solution we use the “Internet Firewall Data Data Set” from the
UCL KDD archives [25]. We divide the data and use 40% for
training (26212 trining samples), 20% for testing — which we
further divide into 20 test sets for statistical significance, and
the remaining 40% as our candidate feedback pool. To ensure
we also measure statistical significance across different data
splits, we also repeat this splitting 5 times and report the

Domain-customized AutoML for networking HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

Algorithm (X) balanced accuracy P(no feedback, X) P(X, within ALE) P(X, cross ALE)
Without feedback 68.7% ± 4.05% NA 0.0009 3.33 × 10−6
Within-ALE 71.2% ± 4.3% 0.0009 NA 1.66 × 10−5
Cross-ALE 75.0% ± 4.4% 3.33 × 10−6 0.99 NA
Uniform 64.1% ± 4.1% 0.99 4.02 × 10−5 7.86 × 10−6
Confidence based 67.1% ± 5.5% 0.99 2.38 × 10−7 2.38 × 10−6
Upsampling 76.7% ± 2.7% 2.38 × 10−7 1 0.99
QBC 68.9% ± 5.1% 0.093 0.004 2.38 × 10−7
Within-ALE-Pool (180 points) 67.4% ± 4.9% 0.99 7.86 × 10−6 4.76 × 10−7
Cross-ALE-Pool (91 points) 69.18% ± 3.9% 0.123 0.013 0.013

Table 1: Scream vs rest balanced accuracy. We use P(x,y) to show the p-values. The Within-ALE-Pool and Cross-ALE-Pool
algorithms are the variants of the ALE approach. All the other algorithms add 280 points to the training set.

results across all these scenarios. This also is a multi-class
classification problem with 4 classes.
Metrics. We compute balanced accuracy over each test set as
our accuracy measure. We use this metric to avoid biases due
to label imbalance. To measure statistical significance, we
use the p-values reported by the one-sided wilcoxon signed
ranked test [53]. We use an 𝛼 = 5%.
Benchmarks. We use the following benchmarks:
Uniform. We uniformly sample from the feature space the
same number of points that we use for the ALE feedback and
add it to the training set as the simplest baseline.
Confidence-based feedback. We compare against one of the
most commonly used active learning solution, confidence-
based sampling [32, 50]. We use the prediction probability
returned by AutoSKlearn as a measure of confidence and,
from a uniformly sampled candidate pool (2000 uniformly
sampled points for the Scream vs rest dataset), return the
points with the least confidence as feedback. We fix the num-
ber of points we return to the user so that it is the same as the
number of points returned by the ALE feedback.
QBC for AutoML. We also compare against QBC. We modify
QBC so that it uses the models in the AutoML ensemble as
the committee instead of creating a curated ensemble which
is itself difficult [22, 45]. The main diffrence between this
approach and ours is in using ALE-variance instead of entropy.
Here, we use the same candidate pool as the one we use for
the confidence-based feedback.
Upsampling. The first dataset suffers from label imbalance.
In that instance we compare our solution to a standard data-
science solution to label imbalance, upsampling [13].
4.1 Results over the Scream vs. rest dataset
We first describe our results over the scream vs rest dataset
(Table 1). We also report the statistical significance (p-values)
of the one sided Wilcoxon signed ranked test where the al-
ternate hypothesis is that the non-ALE approach has less
balanced accuracy compared to the ALE-based approach. We
see our ALE based approaches outperform both active learn-
ing approaches with high statistical significance.

This type of feedback is what the ALE-based feedback is
designed for — the user has the ability to gather more data

based on the feedback and provide the necessary labels. Our
intuition is that the ALE-based solutions outperform the other
baselines because these baselines are limited to the unlabeled
candidate data pool provided to them: they do not suggest
new candidate points themselves but instead are only able to
assign a score to any unlabeled data point in the given pool. In
contrast, ALE suggests the entire subspace of samples which
are likely to improve AutoML’s accuracy.

To check this hypothesis we also use the same candidate
pool as the one used for the active learning baselines for the
Cross-ALE and Within-ALE approaches (these are the Within-
ALE-Pool and Cross-ALE-Pool algorithms in Table 1). Be-
cause we limit the algorithms to the candidate pool, we are
not able to use the same number of points compared to the
other benchmark active learning solutions, which significantly
disadvantages our ALE-based approaches (we show the num-
ber of data points we add to the training set in parenthesis).
The performance of the ALE-based algorithms drops signifi-
cantly and becomes comparable to the other active learning
solutions. Even in these scenarios, the ALE approach is com-
parable to the other active learning solutions and is preferred
as a feedback solution to AutoML due to its interpretability.

Upsampling the training set outperforms all other approaches:
upsampling deals with the fundamental underlying problem
with the training set (label imbalance). Even in this case the
Cross-ALE is on average within 1% of upsampling.

Finally, we see that, as expected, Cross-ALE outperforms
Within-ALE. However, using Cross-ALE is more costly as the
user will have to run the AutoML system multiple times.
4.2 Results over UCL dataset
We use this dataset to illustrate the interpretability of our
ALE solution and summarize the overall accuracy numbers
as follows: we find that ALE based feedback improves accu-
racy with statistical significance compared to the raw training
data (P-value is 0.02 and 0.04 for Within-ALE and Cross-ALE
respectively). Our baselines slightly (1-2% on average) outper-
form ALE, although without statistical significance (i.e., we
cannot accept the alternate hypothesis that these approaches
are better). However, we show next the solution provides
significant benefit to operators by being interpret-able.

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom B. Arzani et al.

(a) Unpredictive feature (b) Predictive feature

Figure 2: Example ALE plots from the UCL dataset 2

We illustrate the benefit of the interpretability of ALE in
Figures 2a and 2b. As Figure 2a shows, the source port feature
shows high variance especially around lower values. Based
on domain knowledge, the operator knows source ports are
typically assigned by the host kernel and though sometimes
informative, are expected to be more noisy than other features.
Alternatively, we see high variance across the destination port
range 443-445 (Figure 2b). Port 443 is reserved for HTTPs
which is one of the most common targets of distributed denial-
of-service (DDoS) attacks [7]. Given these two insights, the
operator can discard the bound on the source port and focus
on collecting more data around the 443 destination port. In
contrast, existing active learning solutions only choose a set of
data points for labeling, and the user (1) has no idea why these
points are needed; and (2) cannot leverage domain knowledge
to determine the weaknesses of original data.
Setting the threshold. Our solution’s only hyper-parameter
is the threshold T . In our experiments we used the median
of the standard deviation across features: 0.02 for the scream
vs rest and 0.01 for the two UCL datasets. Lower thresholds
result in larger feature subspaces — a larger area for the
user to sample — whereas larger thresholds result in smaller
subspaces. It is important to consider the users’ sampling
budget to set the threshold. When the budget is high, it is
better to set the threshold lower: larger feature subspaces are
more likely to help prevent overfitting. In contrast, when the
sampling budget is low, a higher threshold may be better as
it helps focus sampling on feature subspaces that are more
likely to fall on the decision boundary.
5 Discussion and Limitations
Our work presents an interpret-able feedback solution for
AutoML where operators can prioritize bounds containing
features they know can influence the label or tune the thresh-
old they use for each feature based on their domain knowledge.
Our approach also comes with the following limitations:
Bounded, at best, by the theoretical guarantees of QBC.
Our feedback solution is based on QBC. While we do not
provide a theoretical analysis of our solution, in principle,
the theoretical analysis of QBC should apply here as well.

However, it needs to be extended to account for our use of
ALE instead of predictions as well as for the fact that we apply
the feedback en-mass (as opposed to sample by sample).
Not applicable to AutoML systems that do not return an
ensemble of models. Our solution takes advantage of Au-
toML systems such as AutoSKlearn [18] and TPoT [41] that
return an ensemble of ML models. Some of the commercial
AutoML offerings such as [9] also return an ensemble of
models. Thus, there exist a sufficiently diverse set of AutoML
systems where our solution is applicable. However, there are
many AutoML systems where this is not the case e.g., [49].
In such cases, we would need an automated mechanism to
find a sufficiently diverse set of ML models before we can
return feedback to the user. This is a topic of future research.

6 Related Work

Active learning. Decades of research in active learning
established many strategies to suggest data for labeling so
that the learning algorithm can perform better with less train-
ing [45]. Popular active learning strategies include uncer-
tainty sampling [32], QBC [47], expected model change [46],
expected error reduction [44], and variance reduction [56].
Many works propose learning active learning strategies [10,
14, 17, 24, 30, 48]. However, existing active learning solu-
tions have two key shortcomings that limit their usability for
AutoML: (1) they do not provide any insight on why/how
they suggest to label a particular set of data samples; and (2)
most active learning solutions are based on the characteristics
of a single and fixed ML model. Our algorithm is specifically
designed for users of AutoML without much ML expertise.
Hence, our algorithm differs from prior active learning work
in that: (1) it provides interpretable data suggestions so that
the users can understand the weaknesses of the training data;
and (2) it naturally supports dynamic ML model and hyperpa-
rameter selection, which is the main focus of AutoML.

Interpretable machine learning. Interpretable ML en-
ables humans to understand the cause of a decision by ML
models [33, 37]. In contrast, our work (1) provides inter-
pretable new data suggestions to AutoML users, and leverages
a ML interpretation method to provide such suggestions; and
(2) is the first that proposes using ALE to interpret AutoML
pipelines.

7 Call to Further Research

We have found through our experience in both designing mod-
els for production networks; and in talking to our operators: a
domain-customizable AutoML platform accompanied with
interpretable feedback can make a huge difference in opera-
tors’ ability to leverage ML. We took the first step and showed
it is possible to create interpretable feedback solutions. We
invite the community to help us further this research.

Domain-customized AutoML for networking HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

8 Acknowledgements

The authors would like to thank the anonymous reviewers
and their shepherd Nick Feamster for their useful feedback
on this work. We would also like to thank Srikanth Kandula
for his feedback on the early drafts of this publication.

References
[1] The good, the bad, and the ugly of ml for networked

systems. https://www.microsoft.com/en-us/research/video/
the-good-the-bad-and-the-ugly-of-ml-for-networked-systems/.

[2] N. Agarwal, S. Jabin, S. Z. Hussain, et al. Analyzing real and fake users
in facebook network based on emotions. In 2019 11th International
Conference on Communication Systems & Networks (COMSNETS),
pages 110–117. IEEE, 2019.

[3] D. Apley. Aleplot: Accumulated local effects (ALE) plots and partial
dependence (PD) plots, 2017. R package version, 1, 2017.

[4] D. W. Apley and J. Zhu. Visualizing the effects of predictor variables in
black box supervised learning models. CoRR, abs/1612.08468, 2019.

[5] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Padhye, B. T.
Loo, and G. Outhred. 007: Democratically finding the cause of packet
drops. In 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), pages 419–435, 2018.

[6] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking
the blame game out of data centers operations with netpoirot. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages 440–453.
ACM, 2016.

[7] B. Arzani, S. Ciraci, S. Saroiu, A. Wolman, J. Stokes, G. Outhred, and
L. Diwu. PrivateEye: Scalable and privacy-preserving compromise
detection in the cloud. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2020.

[8] B. Arzani and B. Rouhani. Towards a domain-customized auto-
mated machine learning framework for networks and systems. CoRR,
abs/2004.11931, 2020.

[9] https://azure.microsoft.com/en-us/services/machine-learning/
automatedml/.

[10] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of active learning
algorithms. In Proceedings of the International Conference on Machine
Learning (ICML), 2003.

[11] W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler. The
power of ensembles for active learning in image classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9368–9377, 2018.

[12] L. Bottolo, S. Richardson, et al. Evolutionary stochastic search for
bayesian model exploration. Bayesian Analysis, 5(3):583–618, 2010.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
SMOTE: synthetic minority over-sampling technique. J. Artif. Intell.
Res., 16, 2002.

[14] H. Chu and H. Lin. Can active learning experience be transferred?
In Proceedings of IEEE International Conference on Data Mining
(ICDM), 2016.

[15] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini. Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles,
pages 153–167. ACM, 2017.

[16] B. Eriksson, P. Barford, J. Sommers, and R. Nowak. A learning-based
approach for ip geolocation. In International Conference on Passive
and Active Network Measurement, pages 171–180. Springer, 2010.

[17] M. Fang, Y. Li, and T. Cohn. Learning how to active learn: A deep
reinforcement learning approach. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2017.

[18] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter. Auto-sklearn: efficient and robust automated machine
learning. In Automated Machine Learning, pages 113–134. Springer,
Cham, 2019.

[19] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling
using the query by committee algorithm. Machine learning, 28(2),
1997.

[20] J. Gao, N. Yaseen, R. MacDavid, F. V. Frujeri, V. Liu, R. Bianchini,
R. Aditya, X. Wang, H. Lee, D. A. Maltz, M. Yu, and B. Arzani.
Scouts: Improving the diagnosis process through domain-customized
incident routing. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication
(SIGCOMM), 2020.

[21] Z. Ghahramani. The automatic statistician. 2014.
[22] R. Gilad-Bachrach, A. Navot, and N. Tishby. Query by committee

made real. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2005.

[23] J. Holland, P. Schmitt, N. Feamster, and P. Mittal. New directions in
automated traffic analysis. arXiv preprint arXiv:2008.02695, 2020.

[24] W. Hsu and H. Lin. Active learning by learning. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 2015.

[25] https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data.
[26] N. Jay, N. H. Rotman, P. Godfrey, M. Schapira, and A. Tamar. Internet

congestion control via deep reinforcement learning. arXiv preprint
arXiv:1810.03259, 2018.

[27] I. Johansson and Z. Sarker. Self-clocked rate adaptation for multimedia.
RFC, 8298:1–36, 2017.

[28] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A tool for failure
diagnosis in ip networks. In Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data, pages 173–178, 2005.

[29] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl.
Detailed diagnosis in enterprise networks. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, pages 243–254,
2009.

[30] K. Konyushkova, R. Sznitman, and P. Fua. Learning active learning
from data. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[31] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015.

[32] D. D. Lewis and W. A. Gale. A sequential algorithm for training text
classifiers. In Proceedings of the Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR), 1994.

[33] Z. C. Lipton. The mythos of model interpretability. Commun. ACM,
61(10), 2018.

[34] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource manage-
ment with deep reinforcement learning. In Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, pages 50–56. ACM, 2016.

[35] H. Mao, A. Narayan, P. Negi, H. Wang, J. Yang, H. Wang, M. Khani,
S. He, R. Addanki, R. Marcus, et al. Park: An open platform for learning
augmented computer systems. 2019.

[36] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video stream-
ing with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 197–210. ACM, 2017.

[37] T. Miller. Explanation in artificial intelligence: Insights from the social
sciences. CoRR, abs/1706.07269, 2017.

[38] C. Molnar. Interpretable Machine Learning. Lulu. com, 2020.
[39] K. Murphy et al. The bayes net toolbox for matlab. Computing science

and statistics, 33(2):1024–1034, 2001.
[40] I. J. Myung. Tutorial on maximum likelihood estimation. Journal of

mathematical Psychology, 47(1):90–100, 2003.
[41] R. S. Olson and J. H. Moore. TPOT: A tree-based pipeline optimization

tool for automating machine learning. In Proceedings of the Workshop

https://www.microsoft.com/en-us/research/video/the-good-the-bad-and-the-ugly-of-ml-for-networked-systems/
https://www.microsoft.com/en-us/research/video/the-good-the-bad-and-the-ugly-of-ml-for-networked-systems/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom B. Arzani et al.

on Automatic Machine Learning (AutoML@ICML). PMLR, 2016.
[42] A. Roy, D. Bansal, D. Brumley, H. K. Chandrappa, P. Sharma, R. Tewari,

B. Arzani, and A. C. Snoeren. Cloud datacenter sdn monitoring: Expe-
riences and challenges. In Proceedings of the Internet Measurement
Conference 2018, pages 464–470. ACM, 2018.

[43] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren. Passive realtime data-
center fault detection and localization. In 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 17), pages
595–612, 2017.

[44] N. Roy and A. McCallum. Toward optimal active learning through sam-
pling estimation of error reduction. In Proceedings of the International
Conference on Machine Learning (ICML), 2001.

[45] B. Settles. Active learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 2009.

[46] B. Settles, M. Craven, and S. Ray. Multiple-instance active learning.
In Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS), 2007.

[47] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee.
In Proceedings of the Annual Conference on Computational Learning
Theory (COLT), 1992.

[48] S. Sinha, S. Ebrahimi, and T. Darrell. Variational adversarial active
learning. In Proceedings of International Conference on Computer
Vision (ICCV), 2019.

[49] C. Steinruecken, E. Smith, D. Janz, J. R. Lloyd, and Z. Ghahramani.
The automatic statistician. In Automated Machine Learning - Methods,
Systems, Challenges. Springer, 2019.

[50] S. Tong and D. Koller. Support vector machine active learning with
applications to text classification. J. Mach. Learn. Res., 2, 2001.

[51] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to
route. In Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, pages 185–191. ACM, 2017.

[52] K. Winstein and H. Balakrishnan. Tcp ex machina: Computer-generated
congestion control. 2013.

[53] R. Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical
trials, pages 1–3, 2007.

[54] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein. Pantheon: the training ground for internet congestion-
control research. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC).

[55] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao,
M. Chintalapati, A. Krishnamurthy, and T. Anderson. Deepview: Vir-
tual disk failure diagnosis and pattern detection for azure. In 15th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18), pages 519–532, 2018.

[56] Z. E. Zheng and B. Padmanabhan. On active learning for data acqui-
sition. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM), 2002.

[57] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy,
and T. Anderson. Understanding and mitigating packet corruption in
data center networks. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages 362–375. ACM,
2017.

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Motivation and Running Examples
	2.2 Query by Committee
	2.3 ALE plots

	3 Algorithm
	4 Evaluation
	4.1 Results over the Scream vs. rest dataset
	4.2 Results over UCL dataset

	5 Discussion and Limitations
	6 Related Work
	7 Call to Further Research
	8 Acknowledgements
	References

