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Abstract

The increased availability and maturity of head-mounted
and wearable devices opens up opportunities for remote com-
munication and collaboration. However, the signal streams
provided by these devices (e.g., head pose, hand pose, and
gaze direction) do not represent a whole person. One of the
main open problems is therefore how to leverage these sig-
nals to build faithful representations of the user. In this paper,
we propose a method based on variational autoencoders to
generate articulated poses of a human skeleton based on
noisy streams of head and hand pose. Our approach relies
on a model of pose likelihood that is novel and theoreti-
cally well-grounded. We demonstrate on publicly available
datasets that our method is effective even from very impov-
erished signals and investigate how pose prediction can be
made more accurate and realistic.

1. Introduction
Head-mounted and wearable devices are steadily increas-

ing in availability and maturity. These technologies open
up opportunities to build tools for remote communication
and collaboration that are human-centred, and which allow
us to work in the way we naturally interact when we meet
in person [27, 50, 62]. Mixed reality devices, such as Mi-
crosoft HoloLens, allow 3D content to be displayed and
viewed in physical space with local or remote collaborators,
all sharing a single coordinate system and spatial context.
However, to communicate effectively with remote collabo-
rators, there is a significant and largely unsolved challenge
to build faithful representations of the motion of a person
wearing such a headset from only head-worn sensors. There
is a high perceptual bar to meet if we are to trust such a
system to represent ourselves, as we are attuned to motion
that does not look human [44].

To sense the motion and actions of a user, devices such
as HoloLens provide a variety of signal streams derived
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using computer vision; these include the location and orien-
tation of the head-mounted device (HMD) relative to a world
coordinate system, hand pose (location and orientation of
the user’s hands relative to the HMD) and even eye track-
ing signals [66]. These signal streams provide invaluable
information but they do not represent a whole person. Fur-
thermore, while each individual stream has its own failure
rate due to detection or tracking errors, the combination of
all the streams has a much higher compound failure rate,
as a failure in any one subsystem can result in non-human
behaviour that breaks the trust and understanding required
for effective communication.

While the possibility of estimating the full body pose of a
person using egocentric views is an attractive prospect on fu-
ture devices [64, 52], no currently available consumer device
has suitable embedded cameras. On a wearable device, each
additional camera is costly in terms of power and thermal
dissipation [35], and so it is advantageous for motion pre-
diction systems to require as few cameras as possible. Even
if future devices provide egocentric body tracking cameras,
there will be an ongoing need to allow full-body representa-
tions for users of legacy or lower-power devices. Solutions
that predict body motion from external cameras mounted
on an interacting person are also promising [46], but are
limited to cases were there are multiple people interacting
and participants are always visible.

To address this challenge, we require a model of human
motion that is conditioned on limited low-level inputs and
provides plausible inferred body poses while staying respon-
sive to the signal streams. In this paper, we address an impor-
tant sub-problem: reconstructing the articulated pose of a hu-
man skeleton from noisy streams of head and hand pose. We
use the variational autoencoder (VAE) framework [30, 51],
which allows us to decompose the problem into a generative
model of human pose, with an inference model that maps
input signals into the learned latent embedding.

Our primary contribution is to show how to make this
framework effective even from very impoverished signals:
in our case the three orthogonal coordinate frames provided
by a head and hand tracker. Our secondary contribution is
to formulate a model of pose likelihood which is factorized



into approximately Gaussian models for each of the joints
in our skeletal model; this leads to an objective function
that is novel and theoretically well-grounded by the mani-
fold of poses for each joint in the special Euclidean group
SE(3). Finally, we show that the accuracy of pose predic-
tion can be improved in two main ways: first, by using a
generative model that is pretrained on full body poses, and
second, by providing a temporal history of head and hand
poses to the inference model.

2. Related Work
We present a deep generative model that is able to pro-

duce diverse and natural sequences of human body poses
within the constraints imposed by the head and hand tracking
signals. Our work therefore lies at the intersection of motion
control, motion prediction, and egocentric pose estimation.
However, unlike motion control approaches, we do not have
a clean future trajectory of the root joint or floor path. Un-
like motion prediction, our problem is focused on predicting
the present pose from incomplete data, rather than the far
future from complete previous knowledge. And unlike the
egocentric pose estimation literature, we assume that the
only available signals are the three coordinate frames that
give the position and orientation of the head and hands.

Motion control. Motion control is the problem of gener-
ating plausible and varied motion given control input: a
temporally dense, usually user-defined signal, such as direc-
tion or trajectory. Traditional approaches use graph-based
search algorithms to find suitable segments in the motion
database and concatenate them to produce the desired se-
quence [5, 55]. While effective, flexible—and in the case
of nearest-neighbour motion matching [11]—widely used,
search-based techniques are constrained by their memory
requirements, which scale linearly with the amount of data.
Machine learning techniques address this problem by distill-
ing the motion database into a statistical model with bounded
runtime memory and computation requirements. Recent
approaches rely on phase-functioned or motion matching
networks to create full body animations from e.g. game con-
troller input [23, 22]. However, the requirement to provide
reliable future direction and position vectors based on the
pelvis make motion matching unsuitable for HMDs.

Motion prediction. Work in the area of motion and pose
prediction attempts to forecast future body poses from ob-
served past data. Deterministic approaches treat the problem
as a regression task with a single correct solution. These in-
clude feed-forward networks [10, 41], convolutional autoen-
coders [24, 17], recurrent neural networks [42, 15, 16, 25],
often with adversarial components [17, 33], or reinforce-
ment learning [67]. Other approaches include probabilistic

models, such as conditional restricted Boltzmann machines
[61, 60], variational autoencoders [2, 3, 69, 73], and normal-
izing flows [20]. In general, research in this area assumes
that body poses observed in the past are complete—with no
missing joints. In addition, it ignores the notion of a motion
controller. Both of these conditions make our problem dis-
tinct, i.e. body pose prediction should be from very sparse
signals (i.e. the head and hands only), and these signals
provide motion cues to guide prediction.

Egocentric pose estimation. Capturing full 3D body mo-
tion from head-mounted cameras presents a significant chal-
lenge, mostly due to self-occlusions. Most approaches for
egocentric motion estimation are based on head-mounted
cameras and reconstruct upper body motion (hands, arms
and torso) [14, 38, 12, 70, 53]. The approach proposed by
Jiang and Grauman [26] reconstructs full-body pose by esti-
mating egomotion from the scene observed from a camera
placed on the user’s chest. Yuan and Kitani [71, 72] pro-
pose a method based on a control-based representation of
humanoid motion. The setup in [52] consists of a pair of fish-
eye cameras mounted on a helmet, which capture the whole
body. More recent methods for full-body pose estimation
from more compact head-mounted devices have proven suc-
cessful [68, 64, 63]. However, despite severe self-occlusions,
the information available in these cases is still richer than
the head and hands signal we consider in this paper.

Other related work. In the context of reconstructing
poses from partial data, a related problem is to recover 3D
poses from 2D images [4, 9, 32, 43, 47, 54, 59, 65, 74],
with some methods explicitly targeting ambiguous scenarios
[1, 8, 34, 56, 57, 58]. In particular, [8] considers the set-
ting where the images present heavy occlusions, which is in
some sense more closely related to our setting. Other related
but distinct settings are motion in-betweening and infilling
[18, 19, 28] where the task in broad terms is to fill temporal
gaps in observed sequences. Regarding learning a VAE on
human poses, [49] proposes a similar approach, but has a
different context and goal (learning a human pose prior), ad-
ditional terms in the loss function that do not derive from the
VAE formulation [49, Sec. 3.3], and a different likelihood
function (cf. Eq. (4) and Appendix A in this paper).

3. Background and Notation
The SMPL model of human shape and pose. We use
the SMPL model [37] to represent articulated human body
pose. In particular, we represent the pose as a configuration
of 22 joints arranged in a kinematic tree that defines the
coarse structure of the human skeleton;1 see Figure 1. Each

1While the original SMPL model includes 24 joints, we exclude the two
joints that model hand bending, leaving a full articulated model of body



Figure 1. The SMPL model with the 22 bones used in this work,
left: in the neutral pose, and right: when posed by rotations Ω.

of these 22 joints has a six degrees-of-freedom (6-DoF)
pose given by an element of the Lie group SE(3), so we
think of a full body pose as an element of SE(3)22. The
kinematic tree defines the position of any joint j in a full
body pose by the shape of the skeleton in the neutral pose,
and the rotation ωj ∈ SO(3) of the joint relative to its
parent in the tree. In this way, we are able to easily move
between local and global representations of full body pose,
with local pose Ω = {ωj}22j=1 and global pose x = G(Ω)
calculated by recursively evaluating the pose of each joint in
the kinematic tree. We are focused entirely on learning the
relative poses Ω of the joints and ignore the question of shape
in this work. We use the mean shape of the SMPL model in
all our experiments, and leave the problem of skeletal shape
inference for future work.

Variational autoencoders. In a latent variable model, we
suppose that an observable random variable x can be ob-
tained as a transformation of an unobserved (or latent) ran-
dom variable z. Writing pθ(x) and pθ(z) for the distributions
of x and z, respectively, with parameters θ, we have the la-
tent variable model: pθ(x) =

∫
z
pθ(z)pθ(x | z)dz. In most

practical cases, optimizing the marginal likelihood pθ(x) is
not directly possible due to the intractability of the integral.
Thus, in variational inference the quantity being maximized
is typically the Evidence Lower Bound (ELBO):

log pθ(x) = log

∫
z

pθ(x | z)pθ(z)dz (1)

= logEqϕ(z)

[
pθ(x | z)pθ(z)

qϕ(z)

]
≥ Eqϕ(z)

[
log

pθ(x | z)pθ(z)
qϕ(z)

]
= Eqϕ(z) [log pθ(x | z)]−DKL(qϕ(z)∥pθ(z))

which bounds the log likelihood from below for any dis-
tribution qϕ(z) parameterized by ϕ. In the last line, after
changing the signs to obtain a loss function, the first term

pose without hand articulation

can be interpreted as expected reconstruction loss, and the
second as a regularizer for the latent representations z.

Notation. We denote a full body pose by x ∈ SE(3)22,
partitioned as follows:

x = [xb,xhh] (2)

where xhh ∈ SE(3)3 denotes head and hands, and xb ∈
SE(3)19 the rest of the body. When considering the temporal
dimension, we add the time step index as a superscript. For
example, xt

hh is the head and hands observation at time t,
and xt1:t2

hh is a sequence of head and hands observations
between t1 and t2, both included, with t1 ≤ t2.

4. Methods
A generative model of human poses. We model human
poses xt with a latent variable model:

pθ(x
t) =

∫
zt

pθ(x
t | zt)p(zt)dzt (3)

with θ being a parameter vector.2 We assume that a pose x
arises from a generative process where a latent variable z
is sampled from a fixed prior distribution p(z), and then a
pose is sampled from a conditional distribution pθ(x | z). We
choose the prior to be an isotropic Gaussian with unit vari-
ance: p(z) = N (z; 0, I), and parameterize the likelihood
pθ(x | z) with a decoder network dθ(z) as follows.

The random variable x ∈ SE(3)22 represents the 6-DoF
pose of all 22 joints in the SMPL model [37] relative to some
choice of global coordinate frame. As is standard [31], we
assume conditional independence of our generative model
pθ(x | z). Thus, we have a factorization

pθ(x | z) =
22∏
j=1

pθ(Pj | z)

where Pj is the 6-DoF pose of joint j. Note that pθ(Pj | z)
is a probability distribution over the Lie group SE(3). Let
(µj,θ(z),σ

2
j,θ(z)) represent the component of dθ(z) corre-

sponding to the jth joint. Then we take

pθ(Pj | z) ∝ exp

{
−1

2
dSE(3)

(
Pj ,µj,θ(z);σ

2
j,θ(z)

)2}
(4)

where dSE(3)(A,B; Σ) represents the left-invariant geodesic
distance between A,B ∈ SE(3) arising from the quadratic
form Σ defined on se(3) ≃ R6. In this work, we take σ2

j,θ

to be constant and independent of both j and θ for simplicity.
Specifically, we choose

σ2
j,θ =

[
s21I 0
0 s22I

]
, (5)

2When no confusion arises, we will drop the dependence on time t.



where s1 = 2 centimeters, s2 = 0.1 radians, and I is the
3× 3 identity matrix. See Appendix A for an explanation of
how to interpret pθ(Pj | z) as the product of two independent
(nearly) Gaussian distributions.

We note that there does not exist a bi-invariant geodesic
distance on SE(3) [48, Theorem 1], so one must make a
choice of a left-invariant metric or a right-invariant metric.
The former corresponds to a metric which is invariant to
global coordinate changes, while the latter corresponds to
a metric which is invariant to local coordinate changes. In
our setting, we choose the left-invariant metric because our
choice of local coordinates is fixed by the SMPL model,
while our choice of global coordinates is arbitrary.

An inference model of latent space. Following the varia-
tional autoencoder framework [30, 51], we define an infer-
ence model with parameters ϕ that parameterizes the approx-
imate posterior of the latent variables, qϕ(z | f(x)). Here
f(x) can be any information that might help inference, and
it is reasonable to assume that it should depend on x. Since
we are interested in generating full body poses from partial
observations (in particular, from head and hands only), we
train special inference models that infer plausible values of
z—i.e., that will generate plausible poses through the gen-
erative model—from those partial observations. Although
the classic VAE setting corresponds to f(x) = x, this is not
necessary (see Eq. (1)). We define the approximate posterior
as a Gaussian with diagonal covariance:

qϕ(z | f(x)) = N
(
z; µϕ(f(x)),diag

(
σ2

ϕ(f(x))
))

(6)

where the mean and scale parameters, µϕ(f(x)) and
σ2

ϕ(f(x)), are given by an encoder network eϕ(f(x)). We
describe the choices of f we use in this paper below.

Training encoder and decoder networks. The inference
and generative models (i.e., the encoder and decoder net-
works) are typically trained end-to-end by maximizing a
Monte Carlo approximation of the ELBO (1) via stochastic
gradient ascent. Since the prior and approximate posterior
are multivariate Gaussians, the KL divergence term can be
computed analytically. On the other hand, the reconstruc-
tion term has to be estimated by sampling from the inference
model. Furthermore, in order to control the trade-off between
the two terms of the loss, we follow the β-VAE framework
[21] and scale the KL divergence by a (fixed) non-negative
scalar β. The objective function then becomes:

L(θ, ϕ) = 1

S

(
S∑

s=1

log pθ
(
x | z(s)

))
(7)

− βDKL(qϕ(z | f(x)) ∥ p(z))

with z(s) ∼ qϕ(z | f(x)) for s = 1, . . . , S. Using Equations
(4) and (5) and the results from Appendix A, we have that

log pθ
(
x | z) is a weighted sum of the squared positional and

angular errors at each joint.

Inference from incomplete data. As we are interested in
full body pose prediction from head and hands data, we
consider the case where inference input depends only on
xhh. The first obvious case is f1(x) = xt

hh where the input
is simply the head and hands observation. Then we can
note that optimizing the generative model requires Monte
Carlo samples from the inference model qϕ(z | f(x)). If the
inference model has less information available, the quality
of inference—how close the inference model is to the true
posterior pθ(z |x)—might be impaired, which could, in turn,
negatively affect the training of the generative model. One
way to address this issue is to pre-train a regular VAE using
full body poses as inputs to the inference model, freeze the
generative model, and define a new inference model condi-
tioned on incomplete information. We can then optimize the
ELBO using the pre-trained generative model. Since head
and hands observations from previous time steps might help
inference by resolving ambiguities arising from the miss-
ing information we also explore the effect of including this
information in f(x). In summary, we consider five settings:

• Model 0: f0(x) = xt, i.e., the classic VAE setting,
which is inapplicable in practical contexts given the
requirement for full body pose as input.

• Model 1: f1(x) = xt
hh.

• Model 2: f2(x) = xt−T :t
hh , which gives the inference

model a history of head and hand observations.

• Model 3: f3(x) = xt
hh, as in model 1, but with the

generative model dθ(z) pre-trained as a standard VAE
(model 0).

• Model 4: f4(x) = xt−T :t
hh , as in model 2, but with the

generative model dθ(z) pre-trained as a standard VAE
(model 0).

5. Experiments
This section describes how we test models trained in these

five settings for the target problem: generating plausible full-
body pose of users wearing an HMD.

5.1. Data

Datasets. For training data we need sequences of full body
motion that capture the target poses and temporal behaviour
we want to learn. For this purpose, it’s convenient to use
motion capture data that has been fitted to express the pose in
each frame with the SMPL model. Such a dataset is provided
by Mahmood et al. in the form of AMASS [39]. We use the
KIT [40], MPI_HDM05 [45] and CMU [13] datasets from



Figure 2. Overview of the five settings considered in this paper
(numbers on the right). Model 0 is the standard VAE, and z is
a representation of the reconstructed pose on the right. All other
models have only head and hand poses available for inference of z
(highlighted in orange in the meshes on the left). Models 1 and 3
take static head and hands observations as input, while models 2
and 4 have access to previous frames. Models 3 and 4 do not train a
decoder from scratch, but use a pre-trained decoder from model 0.

AMASS, and process each by downsampling each sequence
by an integer factor, such that the final framerate is as close
as possible to 30 Hz, the minimum framerate across these
datasets. Since we also want to use sequences as input, we
fix a sequence length L = 16 for training, corresponding
to approximately 0.5 seconds, and Ltest = 64 for testing
and visualization, corresponding to approximately 2 seconds.
During preprocessing we discard all sequences shorter than
Ltest. Then we randomly choose approximately 5% of the
remaining sequences from each of the three datasets, and
hold them out for testing. From each training and test se-
quence we then extract subsequences of length L and Ltest,
respectively, with a sliding window that shifts by 4 frames at
a time. The resulting training and test set comprise 278,431
sequences of length L = 16, and 11,797 sequences of length
Ltest = 64, respectively.

Data representations. Each frame is stored as the local
rotations Ω of the 22 joints in the SMPL body model, in the

Figure 3. Simplified diagram of encoder from sequences (top)
and decoder (bottom). We omit the encoder from static poses
as it simply consists of a residual network. In the encoder, input
body poses are represented as global translations and rotations of
all joints (in the fully observable case, i.e., in model 0) or only head
and hands (in all other cases). Each resnet consists of a number of
residual blocks, each containing 2 linear or convolutional layers.
The total number of residual blocks is the same in the pose encoder,
sequence encoder, and decoder.

axis-angle representation. For simplicity, we set the origin
of the coordinate system to the position of the pelvis, which
is the root of the kinematic tree. When loading the datasets,
we convert the axis-angle vectors to rotation matrices, and
rotate the pelvis of each frame around the vertical axis such
that, in the final frame of each sequence, the projection
onto the ground plane of the direction faced by the pelvis
is always the same. In this way the generative model is
trained to only produce poses facing a specific direction,
thus enforcing rotation invariance around the vertical axis.
This makes sense in the context of deployment to available
HMDs, which commonly provide an inertial measurement
unit that can output an ‘up’ (gravity) vector, about which we
can rotate the input data to perform a similar normalization.

Note that by using the left-invariant geodesic on SE(3)
as our log-likelihood, the loss computed during training is
independent of these data normalization choices.

5.2. Model Architecture

Here we describe the encoder and decoder architectures
used in our experiments. For further implementation details
we refer to Appendix B.

Decoder. See Fig. 3 (bottom) for a simplified diagram of
the decoder. The first component of the generative model
is a neural network that takes as input a latent vector z of



size d and outputs a vector of size 22 · 6 = 132 encoding a
continuous 6D representation [75] of the relative rotation of
all 22 joints. This neural network consists of a linear layer
that maps z onto a 256-dimensional space, followed by a
number of residual blocks and a final linear layer that out-
puts a 132-dimensional vector. Following Zhou et al. [75],
this vector is then transformed into 22 rotation matrices
Ω̂ ∈ SO(3) ⊂ R3×3 via Gram-Schmidt orthogonalization
and finally, using the forward kinematics G(Ω̂) of the SMPL
model, into 22 matrices that represent x: the global transla-
tions and rotations of the joints.

Encoder from static poses. The inference model takes as
input the SE(3) global translations and rotations of each
joint, each represented by a vector in R3 and a 3× 3 matrix,
which are both flattened to give a vector of size 12. The num-
ber of input joints is either 3 (in the head and hands case)
or 22, thus the input has size 3 · 12 = 36 or 22 · 12 = 264
respectively. Similarly to the decoder described above, this
input is linearly transformed into a 256-dimensional vector,
passed through a series of residual blocks, and finally trans-
formed with a linear layer into a vector of size 2d represent-
ing the mean and log variance of the approximate posterior.

Encoder from sequences. See Fig. 3 (top) for a simplified
diagram of this encoder. The inputs to the encoder in this
case are the SE(3) global translations and rotations of each
joint at each time step of the sequence, represented as in the
static case above. Note that in the sequential case we only
consider head and hands input, thus the input has size 36×L,
with L the sequence length. In this encoder we use 1D con-
volutional layers where along the channel dimension we con-
catenate a vector with a linear positional encoding in [−1, 1],
similar to the approach described by Liu et al. [36].

The first component of the encoder is a linear mapping
that maps each input frame independently to a vector of
size 128. This is followed by a series of residual blocks
similarly to the decoder, with the difference that most of the
residual blocks are based on 1D convolutional layers rather
than linear layers. The output is again a vector of size 2d
that parameterizes the variational distribution.

5.3. Results

Hyperparameter sweep. We train the 5 classes of models
described above, and for each class we vary the following
hyperparameters:

• β in the objective function (7) takes values in
{0.0001, 0.01, 0.1, 1, 5}. Note that when β ≪ 1 the
VAE roughly approximates a deterministic autoencoder.

• The latent space dimensionality is d ∈ {15, 30, 60}

Figure 4. Ground truth and reconstructions of a walking se-
quence by different models. First row: ground truth. In the other
rows, models 1 to 4 are reported in order. The meshes are color-
coded according to position error.

• Encoder and decoder always have the same number of
residual blocks, which is either 3 or 6.

Overall we have 30 different hyperparameter combinations
and 5 model types, thus 150 models in total. From model 0
we only need the pre-trained decoder, and in the following
evaluation we consider models 1 to 4, totalling 120 models.

Qualitative results. The datasets used in this work encom-
pass a wide variety of motions, from standing or walking to
dancing or playing sports. Given our focus on typical use
cases for HMDs, we would like to get a sense of how our
approach performs when a person is engaged in common
everyday behaviours. Fig. 4 shows a ground truth walking
sequence along with the output sequences reconstructed by
the proposed approach (models 1 to 4) given only head and
hands observations. We qualitatively observe (see also Sup-
plementary Material) that including past information seems
to lead to more accurate and natural generated sequences.
Furthermore, perhaps unsurprisingly, the main contribution
to the average position error appears to come from the leg
joints (knees, ankles, and feet).

Quantitative results. We now quantitatively evaluate the
trained models on a broader test set consisting of randomly
selected sequences from the datasets mentioned earlier. We
compute the following metrics:



• Average position error: The average Euclidean dis-
tance between the ground truth and predicted 3D joint
positions. For a sequence of length T and a set of joints
J , this metric is defined as:

1

T · |J |

T∑
t=1

∑
j∈J

∥x̂t
j − xt

j∥2 (8)

where xt
j and x̂t

j denote the true and predicted (3-
dimensional) global position of joint j at time step t,
respectively.

• Average velocity error: The average Euclidean dis-
tance between the ground truth and predicted 3D joint
velocities. This metric is defined as:

1

(T − 1) · |J |

T∑
t=2

∑
j∈J

∥v̂t
j − vt

j∥2 (9)

where v denotes joint velocity:

vt
j =

xt
j − xt−1

j

∆t
(10)

(and similarly for v̂) and the sampling period ∆t is
1/30 seconds.

• Average acceleration: The average magnitude of the
predicted joint accelerations. This metric measures the
smoothness of the generated pose sequence [72], and is
defined as

1

(T − 2) · |J |

T∑
t=3

∑
j∈J

∥âtj∥1 (11)

where â denotes joint acceleration

âtj =
v̂t
j − v̂t−1

j

∆t
. (12)

Here J denotes a set of joints over which the above met-
rics are averaged. We report results for the full body as
well as for the legs only. Note that predicting the motion
of the lower body represents the greatest challenge for all
methods on this problem, as our input signals appear only
from the upper body.

Fig. 5 shows position and velocity errors averaged over
the full body. The label ‘static’ denotes inference models that
take as input head and hands information at the current time
step only, while ‘sequence’ indicates that the input includes
head and hands history. Models marked as ‘pretrained’ in-
dicate that the decoder paired with the inference model has
been pretrained with an encoder of full-body pose (model 0).

Although these metrics do not seem to be particularly
discriminative in this case, this improves when considering

Figure 5. Average joint position (top) and velocity (bottom) errors
on test sequences. Average over full body.

the same metrics on leg joints only, as shown in Fig. 6.
Here the benefit of a deeper architecture is more evident,
and including past head and hands information in the input
appears to consistently improve both position and velocity
errors. While the best option in terms of position error is
to train the decoder from scratch along with a sequential
inference model (model 2), pretraining the decoder seems to
lead to the lowest average leg velocity error.

In Fig. 7 we look at average joint accelerations of the
reconstructed sequences, both on the full body and on legs
only. This can be considered a proxy for smoothness, which
is a relevant property of the generated sequences, considering
our main use cases. These plots highlight a trend towards
lower average joint accelerations for pretrained decoders and
sequential input. In particular, training a VAE from scratch
with an inference model that takes as input head and hands at
the current time step appears to lead to high acceleration, and
therefore less smooth sequences. This trend is particularly
clear when averaging over legs only.

Finally, note that increasing the depth of the networks
seems to improve results in terms of position error, but not
necessarily velocity error. This is not particularly surprising,
as deeper networks tend to work better and we are optimizing
position error, not velocity. Although the reason why deeper



Figure 6. Average joint position (top) and velocity (bottom) errors
on test sequences. Average over legs only.

networks do not appear to achieve a lower velocity error is
not obvious, one possible avenue to explore in future work
could be to include a temporal consistency term in the loss.

5.4. Limitations

While our results are encouraging, we also observed sev-
eral limitations with the proposed approach. Walking motion
can be represented faithfully, but also fails in some instances
to take full advantage of the temporal history in the way we
might hope. Some limitations are inherent to our formula-
tion of the problem: for example, neither the restriction to a
single body shape nor the assumption that hand signals are
always available would hold true for a real deployment. It
would be interesting to explore these aspects in future work,
in particular the even more extreme data imputation problem
where a full body pose has to be computed in frames where
only a head tracking signal is available.

6. Conclusion
We introduce a novel problem of generating plausible

and diverse body poses based on an impoverished control
signal coming from a head-mounted device. We show that,
surprisingly, there is sufficient information in a stream of

Figure 7. Average joint accelerations for different models on test
sequences. Top: full body; bottom: legs only.

head and hand poses to reconstruct a plausible full body
pose. To return to the problem described in the introduc-
tion, we recognize that the predicted pose may not be an
accurate reconstruction of the person wearing an HMD; for
lower body in particular, the signals are too limited for us
to hope for that. However, remembering that our goal is
to allow two or more people to communicate effectively
and collaborate with each other, we believe that the sys-
tem described here has valuable properties. First, for poses
observed in the training data, the reconstructed head and
hand positions are indeed a good match to the input signals,
which is important as they form the primary communication
cues. Second, the stream of predicted poses is surprisingly
smooth, despite the fact that we’ve added no explicit reg-
ularization or latent space transition model to enforce this.
Finally, the model learns to extract useful motion inference
data from temporal history, and this is demonstrated quantita-
tively even in the very challenging evaluation of comparing
to unseen ground truth motion. In summary, we believe
that more important than accuracy is the question of ro-
bustness, and our results show that VAEs are a powerful
tool in the context of predicting robust and plausible human
motion, even from extremely limited input data.
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