
Visual question answering and
reasoning over vision and language.

Beyond the limits of statistical learning ?

Damien Teney
Idiap Research Institute, Martigny, Switzerland.

Australian Institute for Machine Learning, Adelaide, Australia.

MSR Seminar on Vision and Language

August 2021



Martigny, Switzerland
https://idiap.ch/jobs



Visual question answering (VQA) is exciting because it's a general, complex task.

What is the mustache made of ?

What is presented to the winner ?
Ground truth answer(s): bananas.

What is this person listening to ?
GT: banana.

What color is the gentleman's mustache ?
GT: gray, silver.

What is his mustache ?
GT: hair, fake, don't know, handlebar.

….especially in view of the relevant (?) training examples. (banana- and moustache-related samples from VQA v2)



VQA requires out-of-distribution (OOD) generalization.

=  Applying learned concepts & reasoning mechanisms beyond the training distribution.

Unsolved problem, even on toy data.

Empirical risk minimization (ERM) = learning by association, of any correlation between inputs/labels.

Training data OOD Test data

ImageNet-9
backgrounds challenge,
Madry lab. MIT.

“Sunny day and tree branches”
→ OOD Generalization is underspecified by this data !

Classical in-domain generalization

Means “filling the gaps” between training examples.

Generally useful inductive biases (smoothness, Occam’s razor).

More data helps (solved with infinite data).

Strong out-of-domain generalization

Means distinguishing “robust” vs “spurious” features.

Requires additional (task-specific) knowledge.

More (of the same, biased) data does NOT help !

Complex tasks like VQA require more than classical statistical learning & learning by association.

A ladder to the moon ?
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A statistical model learns correlations. “red = fast”
Reliable only if training/test data are from the same distribution.

A causal model encodes the effects of interventions.
Enables predictions in conditions unobserved during training (i.e. OOD).

What would happen 
to a re-painted car ? Faster ? No !

X causes Y ⇔ Intervening on Xaffects Y.

⇔ P(Y|do(X=x)) ≠ P(Y).

Example task:  predicting the top speed of a car from an image.

Training images annotated with speed

More (of the same) data does not improve the statistical model OOD !
More red Ferraris don’t help distinguishing spurious correlations from causal mechanisms.

Probability that a car of a 
certain color can go fast.

Probability that a car can go fast
after being re-painted in a certain color.

P(Speed | Color)

≠

P(Speed | do(Color))

Brand,
model

SpeedColor

Other
latent
var.

Why does causality matter ?

X Y



Real world Learned model

Back to VQA…



A set of mechanisms produce the observed (training) data.

Its causal structure defines which variables/features are correlated/robust/spurious.

Mechanisms guaranteed to transfer out-of-distribution.

I.i.d. training samples (observational data) are generally insufficient to recover the causal structure.

We need additional assumptions,  or task-specific knowledge about the causal structure,  or other types of data.
(e.g. as inductive biases like attention architectures)

We want to mirror some of the causal structure & mechanisms.

Why is it hard ?  Because this information is absent from typical datasets !

The data-generating process in VQA is a human annotator
who takes an Image and Question as input,

finds relevant Visual information,
and produces an Answer.

V

Q

A

I A bad VQA model that 
guesses answers without 

looking at the image.

Q

A

Q

A

IA VQA model with 
no attention 
mechanism.

P(I,Q,V,A) = P(A|V,Q) P(V|I,Q) P(Q|I) P(I)

Real world Learned models

Trained to mimic the real world. 

The inference also has a causal structure: inputs → … → predictions.
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A classical test set measures in-domain (ID) generalization (same distribution as the training set).

ID performance is necessary but not sufficient !

ID performance says nothing about OOD generalization and reliance on shortcut learning. Sky=bird, red=fast, question biases…

We've already made a lot of progress: VQA v2, VQA-CP, GQA-OOD, counterfactual examples, etc. These can be formalized with causal principles. 

Can the model answer arbitrary questions about novel unusual scenes ?

Good
models

ID

Good
models

OOD

Only a small subset !



Judea Pearl's causal hierarchy defines three types of queries of increasing difficulty we can make to a model.

Classical test set from the same distribution as the training data.
Cannot measure OOD generalization.
Examples: VQA v1, GQA.

Training/test sets with different distributions.
Produced by intervening on variable(s) in the data-generating process.
Examples: VQA-CP (intervention on question type & answer), GQA-OOD.

Pairs of counterfactual examples ≈  intervention at instance level.
Intuitively, we probe the model close to the desired decision boundary.
Examples: VQA v2 (balanced pairs), [Towards Causal VQA], [Evaluating NLP Models via Contrast Sets], 
[Automatic Generation of Contrast Sets from Scene Graphs].

An even harder idea: require the inverted model to generate plausible images for alternative answers.

[The Book of Why, Pearl & Mackenzie 2019]

3 How many giraffes ?   2 Yes Is there a dog ?       No

Training set                                        OOD Test data

ImageNet-9
backgrounds challenge,
Madry lab, MIT.

Most of ML capabilities today.



Training set                                        OOD Test data

ImageNet-9
backgrounds challenge.
(Madry lab, MIT)

Each level requires strictly more causal information.

3 How many giraffes ?   2 Yes Is there a dog ?       No

Training/test sets with different distributions.
Produced by intervening on variable(s) in the data-generating process.
Examples: VQA-CP (intervention on question type & answer), GQA-OOD.

Pairs of counterfactual examples ≈  intervention at instance level.
Intuitively, we probe the model close to the desired decision boundary.
Examples: VQA v2 (balanced pairs), [Towards Causal VQA], [Evaluating NLP Models via Contrast Sets], 
[Automatic Generation of Contrast Sets from Scene Graphs].

An even harder idea: require the inverted model to generate plausible images for alternative answers.

Classical test set from the same distribution as the training data.
Cannot measure OOD generalization.
Examples: VQA v1, GQA.
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A model capable of level i requires assumptions/knowledge/data relevant to level j ≥ i .  

⇒ Levels strictly increase in difficulty.

⇒ We cannot learn to reason about interventions from observational data alone.

[On Pearl’s hierarchy and the foundations of causal inference, Bareinboim et al. 2020]

Typical dataset of i.i.d. examples.What we really care about.

Interventional data
E.g. multiple training distributions.

Counterfactual data
E.g. pairs of counter factual examples.

Observational data
E.g. standard dataset of i.i.d. samples from the joint distribution.



We can explain successful techniques from a causal perspective.



Data augmentation simulates interventions. 

Hard-coded transformations (x, y) → (x’, y’) into additional training examples.

Images contain spurious and reliable features, both correlated with labels Y because of hidden confounders C.

We want a model robust OOD i.e. robust against changes in P(C).

This cannot be learned from samples from the joint P(X,Y) but it could be learned by observing interventions (level-2 information).

Data augmentation simulates interventions by editing (spurious) factors in variation encoded in S.

Augmenting images with geometric transformations  =  intervening on camera extrinsic parameters.     Samples from P(X,Y | do(S)).

Augmenting VQA questions with rephrasings =  intervening on annotators’ writing style.            Carry info about causal mechanisms.

What did we learn ?

The root source of improvement =  specification of invariances over (X,Y) that are valid for the (task-specific) data-generating process. 

Can also help select effective augmentations:  Selecting Data Augmentation for Simulating Interventions, Ilse et al. ICML 2021.

Confounder
C

Label
Y

Image
X

Reliable
R

Spurious
S

No universal augmentation !

}



Unshuffling data recovers non-i.i.d. subsets of training data                           [Unshuffling Data for Improved Generalization in VQA, Teney et al. ICCV 2021]

Existing work. Domain generalization, data collected in multiple conditions.

Various methods can learn a predictor robust across environments. [ICP, IRM, ...]

The causal perspective: we have more information than the aggregated (i.i.d.) data.

With each cluster, we observe an intervention on a variable Z    Y, spuriously correlated with labels Y but not a direct causal parent.

We make the spurious correlations vary across clusters. We know that the causal mechanisms (to learn) stay invariant.  [Principle of independent mechanisms, Peters 2017]

Data from environment 1: (x,y) ~ P1(X,Y) = P(Y|X) P(X|do(Z = z1))

Data from environment 2: (x,y) ~ P2(X,Y) = P(Y|X) P(X|do(Z = z2)) …

Root source of improvement =  the well-chosen (task-specific) clustering condition.

X YZ

Clustering VQA-CP by question type/answer.

Our method. Cluster non-i.i.d. subsets, using task knowledge & side annotations.

PACS Dataset.

No free lunch !



Counterfactual training examples provide level-3 information.         [Learning What Makes a Difference from Counterfactual Examples, Teney et al. ECCV 2020]

Pairs of similar examples with a different label. 

Produced by annotators

Each pair shows which features are relevant to flip the label (= causal parents) ⇒ They improve generalization more than the same amount of standard i.i.d. data.

The causal perspective: the level-3 causal information is in the relation across each pair.

We can do better than treating them as individual examples !

We designed a loss to exploit the relation.   ① Compute vector differences (in feature space) across a pair.

② Align the classifier’s gradient (and decision boundary) with it.

We get additional improvements in generalization across datasets in VQA, image tagging, textual entailment, sentiment analysis.

…or generated using (task-specific !) heuristics and side annotations.

Inpainting/masking
of relevant regions
using human attention.

[Towards Causal VQA,
Agarwal et al. 2020;
MUTANT, Gokhale et al. 2020]

Minimal edits of
movie reviews.

[Learning the diff,
Kaushik et al. 2019]



Takeaways



The road ahead.
[Towards Causal Representation Learning, Scholkopf et al. 2021]

[Inductive Biases for Deep Learning of Higher-Level Cognition, Goyal and Bengio 2021]

There are fundamental limits to what can be learned from i.i.d. training examples, no matter how many.
Causal principles set hard limits on which properties of the world can be learned in given training conditions.

[On Pearl's Hierarchy and the Foundations of Causal Inference, Bareinboim et al. 2021]

You would like to learn a causally-accurate model, even if you don't know it.

It ensures generalization to arbitrary (covariate) distribution shifts.

Causal principles may not directly inform the design of learning algorithms… but they point at sources for finding the missing information.

VQA

Statistical
model ?

Fixed training sets
(iid samples from a joint dist.)

Training environments
- Data collected in multiple conditions
- Meta annotations e.g. annotator identity
- Non-stationary data
- Interventional data
- Counterfactual examples    Etc.

GOFAI Deep learning

Classical

causal inference

(Predefined, observable

discrete variables)

Causal

representation learning

(Jointly discover latent variables & 

causal structure)

(…)

Now


