Visual question answering and reasoning over vision and language. Beyond the limits of statistical learning?

Damien Teney

Idiap Research Institute, Martigny, Switzerland. Australian Institute for Machine Learning, Adelaide, Australia. MSR Seminar on Vision and Language August 2021 Martigny, Switzerland https://idiap.ch/jobs

1.71-2

Visual question answering (VQA) is exciting because it's a general, complex task.

What is the mustache made of ?

....especially in view of the relevant (?) training examples. (banana- and moustache-related samples from VQA v2)

What is presented to the winner ? Ground truth answer(s): bananas.

What is this person listening to ? GT: banana.

What color is the gentleman's mustache ? GT: gray, silver.

What is his mustache ? GT: hair, fake, don't know, handlebar.

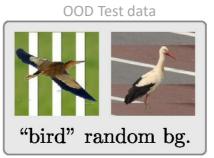
VQA requires out-of-distribution (OOD) generalization.

= Applying learned concepts & reasoning mechanisms beyond the training distribution.

Unsolved problem, even on toy data. 롣 🌂 🥌 🌜

Empirical risk minimization (ERM) = learning by association, of any correlation between inputs/labels.

"Sunny day and tree branches" \rightarrow OOD Generalization is underspecified by this data !



ImageNet-9 backgrounds challenge, Madry lab. MIT.

Classical in-domain generalization

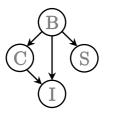
- > Means "filling the gaps" between training examples.
- > Generally useful inductive biases (smoothness, Occam's razor).
- > More data helps (solved with infinite data).

Strong out-of-domain generalization

- > Means distinguishing "robust" vs "spurious" features.
- > Requires additional (task-specific) knowledge.
- > More (of the same, biased) data does NOT help !

Complex tasks like VQA require more than classical statistical learning & learning by association.

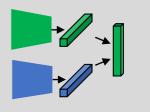
Some causal principles



Implications for evaluation

••

Implications for learning



Why does causality matter ?

X causes Y $(X \rightarrow Y) \Leftrightarrow$ Intervening on X affects Y. $\Leftrightarrow P(Y|do(X=x)) \neq P(Y).$

Example task: predicting the top speed of a car from an image.

Training images annotated with speed

A statistical model learns correlations. "red = fast" Reliable only if training/test data are from the same distribution.

A causal model encodes the effects of interventions.

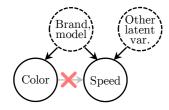
Enables predictions in conditions unobserved during training (i.e. OOD).

Probability that a car of a certain color can go fast. $P(Speed \mid Color)$ \neq $P(Speed \mid do(Color))$

Probability that a car can go fast after being re-painted in a certain color.

What would happen to a re-painted car ?

Faster? No !

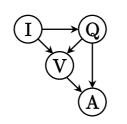


More (of the same) data does not improve the statistical model OOD !

More red Ferraris don't help distinguishing spurious correlations from causal mechanisms.

Back to VQA...

- > A set of mechanisms produce the observed (training) data.
- > Its causal structure defines which variables/features are correlated/robust/spurious.



The data-generating process in VQA is a human annotator who takes an Image and Question as input, finds relevant Visual information, and produces an Answer.

$P(I,Q,V,A) = \mathbf{P}(\mathbf{A}|\mathbf{V},\mathbf{Q}) \ \mathbf{P}(\mathbf{V}|\mathbf{I},\mathbf{Q}) \ P(Q|I) \ P(I)$

Mechanisms guaranteed to transfer out-of-distribution.

We want to mirror some of the causal structure & mechanisms. Why is it hard ? Because this information is absent from typical datasets !

I.i.d. training samples (observational data) are generally insufficient to recover the causal structure.

We need additional assumptions, or task-specific knowledge about the causal structure, or other types of data.

(e.g. as inductive biases like attention architectures)

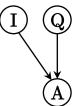
> Trained to mimic the real world.

A bad VQA model that

looking at the image.

guesses answers without

> The inference also has a causal structure: inputs $\rightarrow ... \rightarrow$ predictions.



Can the model answer arbitrary questions about novel unusual scenes ?

- > A classical test set measures in-domain (ID) generalization (same distribution as the training set).
- > ID performance is necessary but not sufficient !

> We've already made a lot of progress: VQA v2, VQA-CP, GQA-OOD, counterfactual examples, etc. These can be formalized with causal principles.

Only a small subset

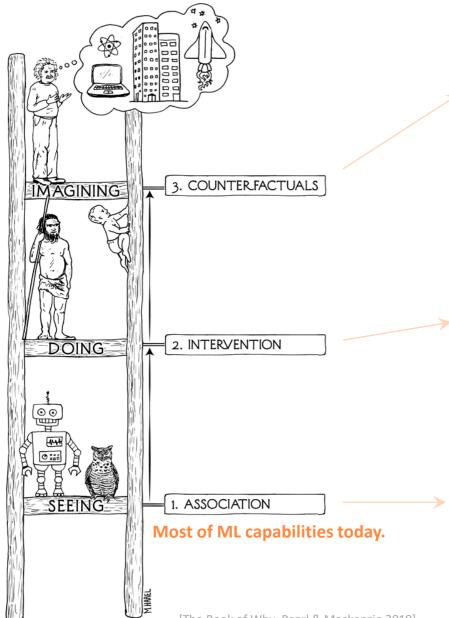
Good

models

ID

models

Judea Pearl's causal hierarchy defines three types of queries of increasing difficulty we can make to a model.



Pairs of counterfactual examples \approx intervention at instance level. Intuitively, we probe the model close to the desired decision boundary.

Examples: VQA v2 (balanced pairs), [Towards Causal VQA], [Evaluating NLP Models via Contrast Sets], [Automatic Generation of Contrast Sets from Scene Graphs].

An even harder idea: require the inverted model to generate plausible images for alternative answers.

Training/test sets with different distributions.

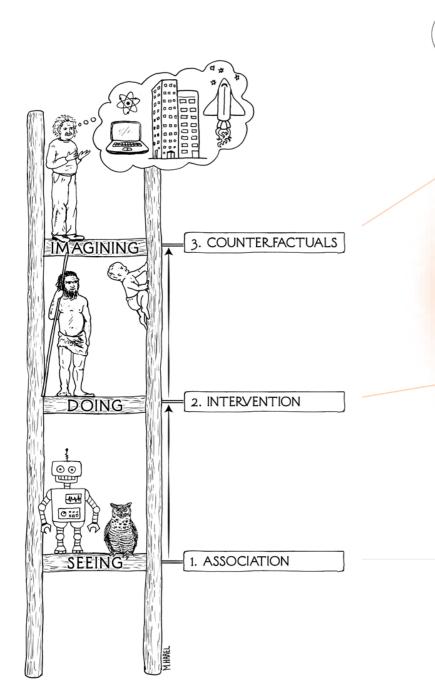
Produced by intervening on variable(s) in the data-generating process.

Examples: VQA-CP (intervention on question type & answer), GQA-OOD.

ackgrounds challenge.

Classical test set from the same distribution as the training data. Cannot measure OOD generalization.

Examples: VQA v1, GQA.



Each level requires strictly more causal information.

Pairs of counterfactual examples \approx intervention at instance level. Intuitively, we probe the model close to the desired decision boundary.

Examples: VQA v2 (balanced pairs), [Towards Causal VQA], [Evaluating NLP Models via Contrast Sets], [Automatic Generation of Contrast Sets from Scene Graphs].

Yes Is there a dog ? No

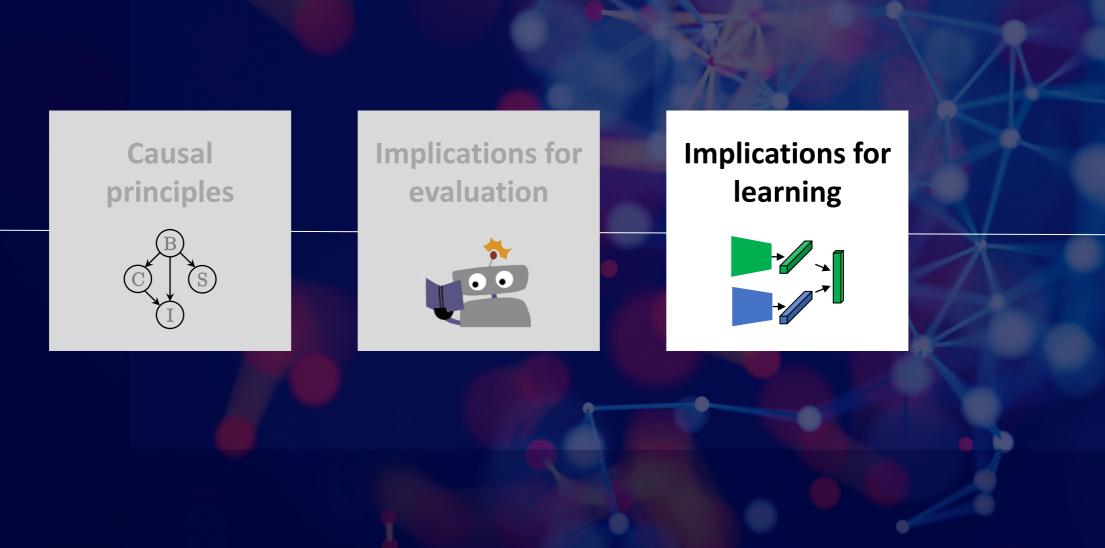
An even harder idea: require the inverted model to generate plausible images for alternative answers.

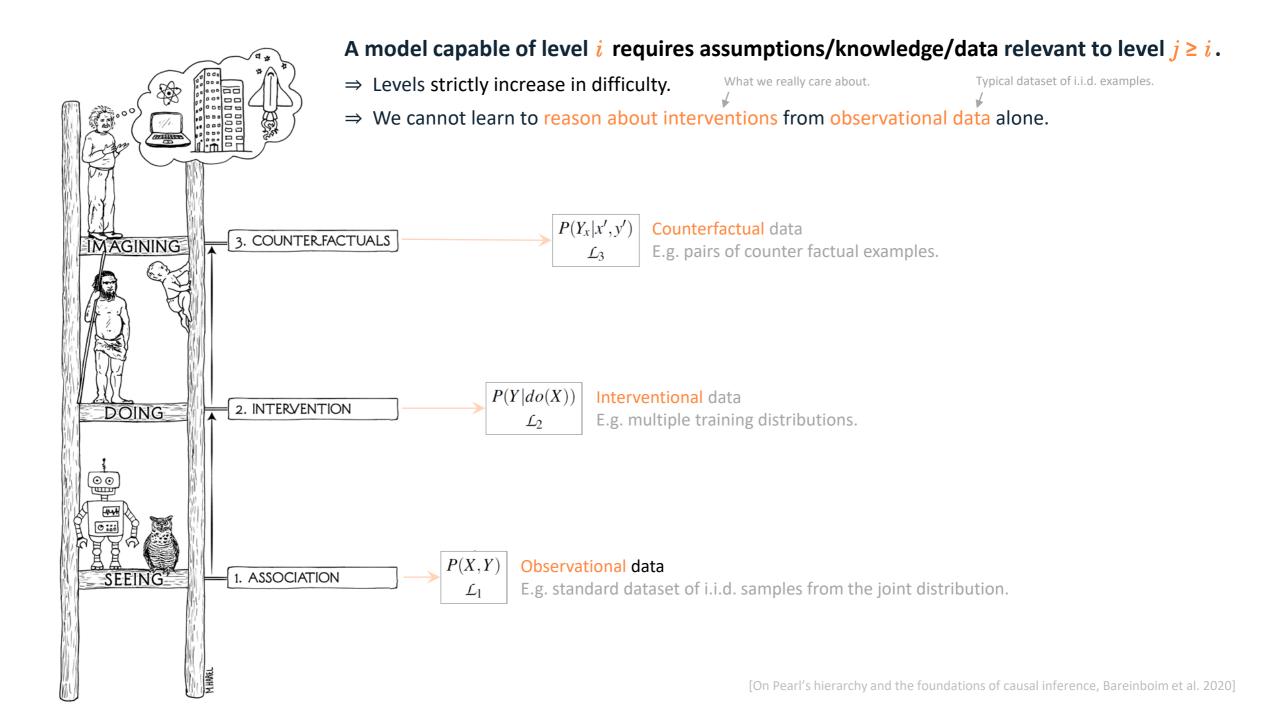
Training/test sets with different distributions. Produced by intervening on variable(s) in the data-generating process.

Examples: VQA-CP (intervention on question type & answer), GQA-OOD.

bg. (Madry lab, MIT)

Classical test set from the same distribution as the training data. Cannot measure OOD generalization. Examples: VQA v1, GQA.





We can explain successful techniques from a causal perspective.

Data augmentation simulates interventions.

What did we learn ?

>

> Hard-coded transformations $(x, y) \rightarrow (x', y')$ into additional training examples.

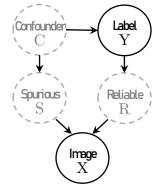
Images contain spurious and reliable features, both correlated with labels Y because of hidden confounders C.
 We want a model robust OOD i.e. robust against changes in P(C).

- This cannot be learned from samples from the joint P(X,Y) but it could be learned by observing interventions (level-2 information).
 Data augmentation simulates interventions by editing (spurious) factors in variation encoded in S.
 - > Augmenting images with geometric transformations = intervening on camera extrinsic parameters.
 - > Augmenting VQA questions with rephrasings = intervening on a
- = intervening on annotators' writing style.

Samples from $P(X,Y \mid do(S))$. Carry info about causal mechanisms.

The root source of improvement = specification of invariances over (X,Y) that are valid for the (task-specific) data-generating process. Can also help select effective augmentations: Selecting Data Augmentation for Simulating Interventions, Ilse et al. ICML 2021.

No universal augmentation !



Unshuffling data recovers non-i.i.d. subsets of training data

Existing work. Domain generalization, data collected in multiple conditions. Various methods can learn a predictor robust across environments. [ICP, IRM, ...]

Our method. Cluster non-i.i.d. subsets, using task knowledge & side annotations.

Clustering VQA-CP by question type/answer.

> The causal perspective: we have more information than the aggregated (i.i.d.) data.

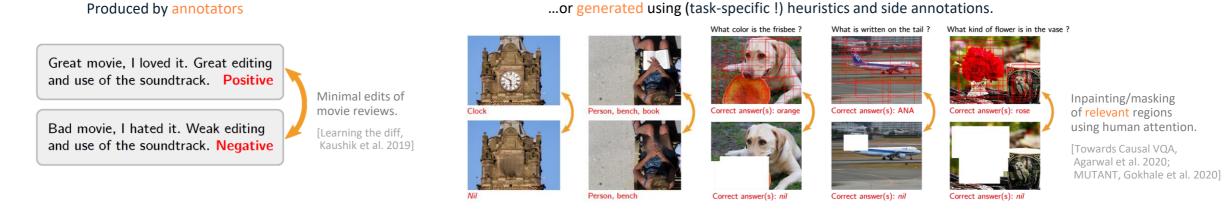
> Data from environment 1: $(x,y) \sim P_1(X,Y) = P(Y|X) P(X|do(Z = z_1))$ Data from environment 2: $(x,y) \sim P_2(X,Y) = P(Y|X) P(X|do(Z = z_2)) \dots$

> Root source of improvement = the well-chosen (task-specific) clustering condition.

No free lunch !

Counterfactual training examples provide level-3 information.

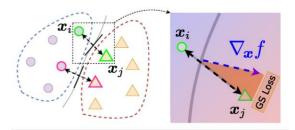
> Pairs of similar examples with a different label.



Each pair shows which features are relevant to flip the label (= causal parents) \Rightarrow They improve generalization more than the same amount of standard i.i.d. data.

> The causal perspective: the level-3 causal information is in the relation across each pair.

We can do better than treating them as individual examples ! We designed a loss to exploit the relation. ① Compute vector differences (in feature space) across a pair. ② Align the classifier's gradient (and decision boundary) with it.



> We get additional improvements in generalization across datasets in VQA, image tagging, textual entailment, sentiment analysis.

Takeaways

There are fundamental limits to what can be learned from i.i.d. training examples, no matter how many.

> Causal principles set hard limits on which properties of the world can be learned in given training conditions.

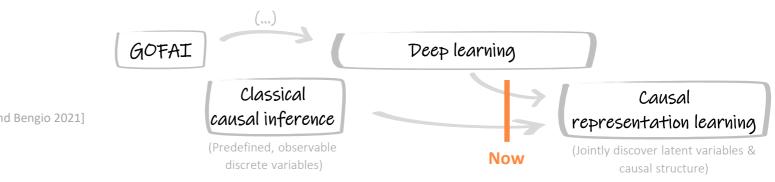
[On Pearl's Hierarchy and the Foundations of Causal Inference, Bareinboim et al. 2021]

You would like to learn a causally-accurate model, even if you don't know it.

- > It ensures generalization to arbitrary (covariate) distribution shifts.
- > Causal principles may not directly inform the design of learning algorithms... but they point at sources for finding the missing information.

Training environments

- Data collected in multiple conditions
- Meta annotations e.g. annotator identity
- Non-stationary data
- Interventional data
- Counterfactual examples Etc.



The road ahead.

[Towards Causal Representation Learning, Scholkopf et al. 2021] [Inductive Biases for Deep Learning of Higher-Level Cognition, Goyal and Bengio 2021]

