

Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision

ALIGN (A Large-scale ImaGe and Noisy-text embedding)

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig

Google Research

Model & Dataset Scaling

- State-of-the-art models have large sizes and are trained on huge amounts of data!
- Unlike language models, the datasets for vision & multimodal learning are usually smaller, proprietary, or dependent on expensive models / annotators for cleaning

Dataset Name	Modality	Size	Generation
JFT	vision	300M - 3B	web + user + complex models + annotators
Conceptual Captions	vision + language	3M - 12M	web + complex models
C4	language	150B tokens	web + heuristics
Ours (ALIGN)	vision + language	1.8B	web + heuristics

Representative Datasets in training large-scale vision, language and vision+language models

Dataset

Raw image+alt-text data from web pages

Remove porn/too-small images

Minimal frequency-based text filtering

Remove Images

- pornographic images
- images that were too small (shorter dimension <= 200 pixels)
- images with irregular shape (aspect ratio >= 3)
- images associated with more than 1000 alt-texts

Dataset

Raw image+alt-text data from web pages

Remove porn/too-small images

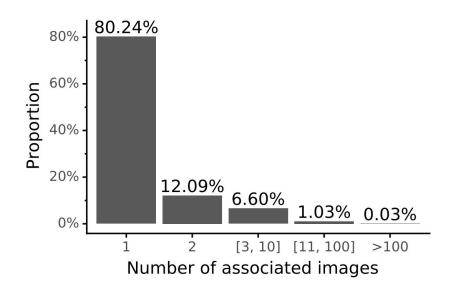
Minimal frequency-based text filtering

Remove Texts

- Associated with > 10 images (e.g., "1920x1080", "alt_img", "cristina")
- Out-of-vocab (top 100M unigrams & bigrams)
- Too short (<3 unigrams) or too long (>20 unigrams)

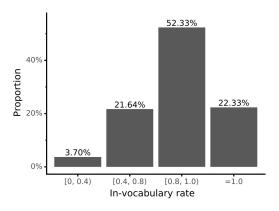
Text-based filtering – overly frequent alt-texts

- Alt-texts shared by more than 10 images were discarded
- Examples: "1920x1080", "alt img", "cristina", etc.



Text-based filtering – rare tokens

- Vocabulary: top 100M unigrams and bigrams
- Kept alt-texts with in-vocabulary rate == 1

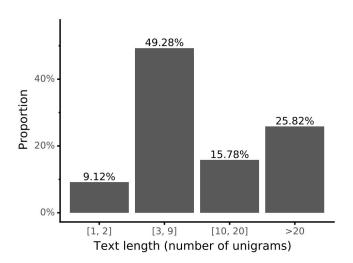


In-vocabulary rate	Example alt-text
== 1	senior gentleman reading a newspaper and leaning against a wall stock image
[0.8, 1)	special friends day always good for the soul being poolside is too kindercalmer racv summer breathe
[0.4, 0.8)	shoulder bags travelcomputerbag star luggageampbag
[0, 0.4)	image_tid 25&id mggqpuweqdpd&cache 0&lan_code 0

Text-based filtering – alt-text length

Exclude text that:

- 1. Too short (<3 unigrams)
- 2. too long (>20 unigrams)



Dataset

Final training data: 1.8B noisy image-text pairs

"motorcycle front wheel"

"thumbnail for version as of 21 57 29 june 2010"

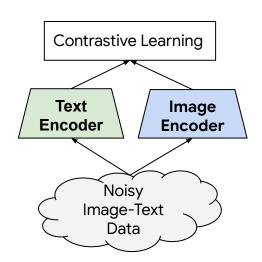
g" "moustache seamless wallpaper design"

"file frankfurt airport skyline 2017 05 jpg"

"st oswalds way and shops"

"file london barge race 2 jpg"

Contrastive Learning on Noisy Image-Text Data



- Data is noisy but can provide cross-modality supervision
- Contrastive learning is data-efficient and scales easily
- Text caption prediction has proven to be effective in learning vision models

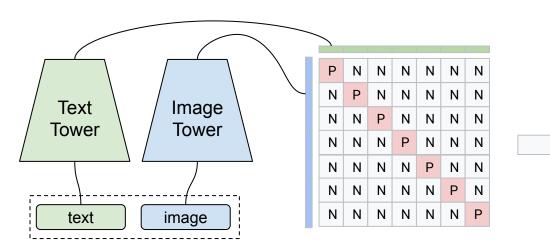
Applications

- Visual classification
- image-text matching/retrieval

Compared to concurrent work CLIP

- ALIGN data: minimal frequency-based filtering on raw web
- CLIP data: data balancing + controlled source blending (e.g. YFCC100M)

A Two-Tower Model

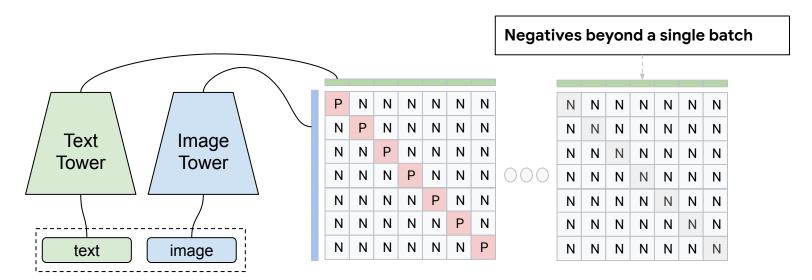


Positives: paired image-text data Negatives: all others in the same batch Contrastive loss higher similarity (dot product) for matched pairs and lower similarity for unmatched pairs

$$L_{i2t} = -rac{1}{N} \sum_{i}^{N} \log rac{\exp(x_i^ op y_i/\sigma)}{\sum_{j=1}^{N} \exp(x_i^ op y_j/\sigma)}$$

$$L_{t2i} = -rac{1}{N} \sum_{i}^{N} \log rac{\exp(y_i^ op x_i/\sigma)}{\sum_{j=1}^{N} \exp(y_i^ op x_j/\sigma)}$$

The Evolution of the Two-Tower Model



Positives: paired image-text data Negatives: all others in the same batch

• **Text Tower**: BERT transformer

• **Image Tower**: EfficientNet

• Other Key technicals:

- Optimizer
- Softmax temperature
- Embedding dims

The Evolution of the Two-Tower Model

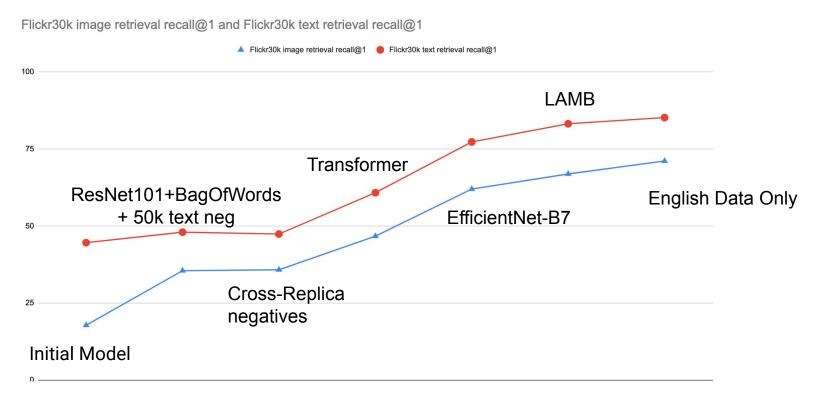
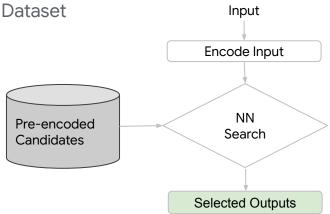


Image-Text Tasks

- Image-Text Retrieval Tasks from Image Captioning Dataset
 - MSCOCO
 - 5 captions per image
 - 112k training pairs, 5k test pairs
 - Flickr30k
 - 5 captions per image
 - 29k training pairs, 1k test pairs
 - Metrics
 - Recall@K
- CrissCrossed Captions (CxC)
 - Graded human judgments for MSCOCO caption-caption, image-caption and image-image pairs. Total ~270k pair
 - Metrics
 - Recall@K
 - Spearman's Correlation Coefficient



Configurations

- Pre-training
 - BERT-Large + EfficientNet-L2
 - 16384 effective batch size (on 1024 cloud TPUv3 cores)
 - LAMB optimizer with weight decay ratio 1e-5,
 - Trained 1.2M steps with learning rate 1e-3, 10k warm up, linear decay to 0
- Fine-tuning
 - 2048 effective batch size.
 - 1e-5 initial learning rate with linear decay.
 - o 3k/6k steps (MSCOCO, Flickr30k).

Image-Text Retrieval Results

			test set) R@1	MS-COCO (5K test set) R@1		
		image → text	text → image	image → text	text → image	
	<u>ImageBERT</u>	70.7	54.3	44.0	32.3	
Zero-shot	UNITER	83.6	68.7	-	-	
Zero-snot	CLIP	88.0	68.7	58.4	37.8	
	ALIGN	88.6	<i>75.7</i>	58.6	45.6	
	<u>GPO</u>	88.7	76.1	68.1	52.7	
	UNITER	87.3	75.6	65.7	52.9	
Fine tuned	ERNIE-ViL	88.1	76.7	-	-	
Fine-tuned	<u>VILLA</u>	87.9	76.3	-	-	
	Oscar	-	-	73.5	57.5	
	ALIGN	95.3	84.9	77.0	59.9	

Image-text retrieval results (recall@1) on Flickr30K and MS-COCO datasets (both zero-shot and fine-tuned).

ALIGN significantly outperforms existing methods including the cross-modality attention models that are too expensive for large-scale retrieval applications.

CxC Results

Retrieval Eval R@1							
	image->	text->	text->	image->			
	text	image	text	image			
VSE++	43.1	32.5	38.7	36.4			
VSRN	52.4	40.1	41	44.2			
DE _{I2T}	53.9	39.8	26	38.3			
DE _{I2T+T2T}	55.9	41.7	42.4	38.5			
ALIGN	78.1	61.8	45.4	49.4			
	Cor	relation l	Eval				
	STS	SIS	SITS	Mean Avg			
VSE++	74.4±0.4	73.3±0.9	55.2±1.5	67.7			
VSRN	73.0±0.4	70.1±1.0	60.4±1.3	67.8			
DE _{I2T}	50.9±0.6	81.3±0.7	61.6±1.4	64.6			
DE _{I2T+T2T}	74.2±0.2	74.5±0.9	61.9±1.3	70.2			
ALIGN	72.9±0.4	77.2±0.8	67.6±1.2	72.6			

Retrieval:

ALIGN is better across the board. More than
+20% R@1 on i->t and t->i.

Correlation:

- Training objective is aligned with the image-text correlation (SITS).Intermodal performance is stronger.
- Intramodal performance (STS, SIS) is relatively lower.

"Van Gogh Starry Night ..."

Multimodal Retrieval

Text -> Image

"in black and white"

"Lombard street ..."

"view from bottom"

"view from top"

"bird's eye view"

"in heavy rain"

"seagull in front of ..."

"Golden Gate Bridge"

"London Tower Bridge"

"Sydney Harbour Bridge"

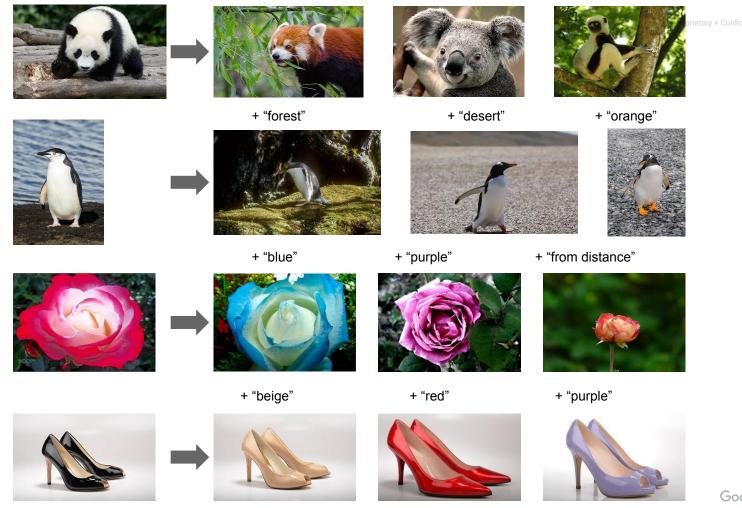
"Rialto Bridge"

Candidates pool: 160M CC-BY licensed images that are separate from our

training set.

Multimodal Retrieval

Image + Text -> Image



+ "Australia"

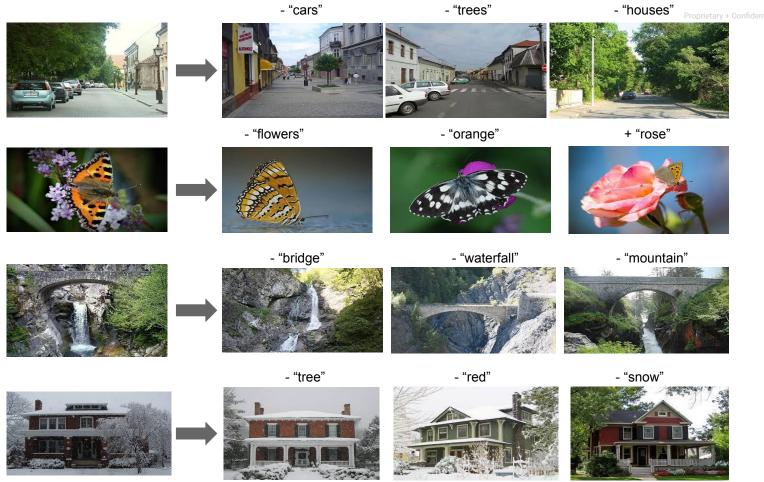
+ "Madagascar"

+ "red"

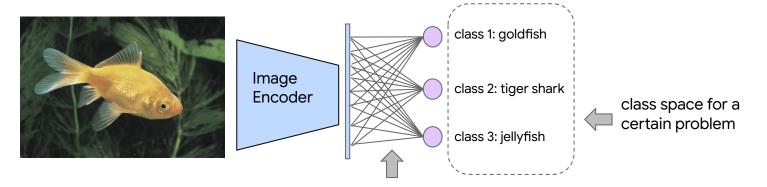
Google

Multimodal Retrieval

Image - Text -> Image



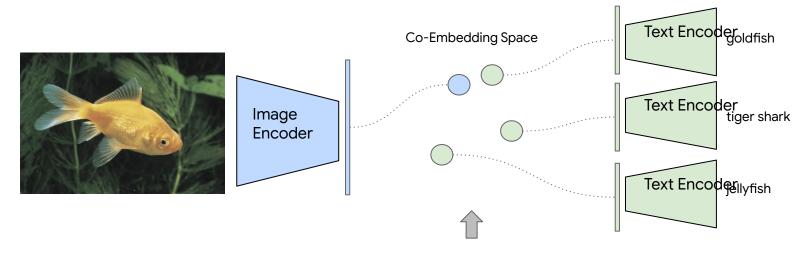
Visual Classification



Classification layers trained with a set of training data (could be expensive to obtain)

Supervised visual classification with an image representation model

Visual Classification -- Zero-shot



A image-to-text retrieval problem with the pre-trained image & text encoders

ALIGN data covers almost all visual concepts -- No additional training data is needed.

Visual Classification -- Zero-shot

Same text prompt ensembling as in CLIP: averaging embedding of templates like "A photo of a {classname}". +2.9% ImageNet top-1 accuracy

	<u>ImageNet</u>	ImageNet-R	ImageNet-A	ImageNet-V2
CLIP	76.2	88.9	77.2	70.1
ALIGN	76.4	92.2	75.8	70.1

"banana"

"killer whale"

"a photo of banana"

"a photo of killer whale"

Visual Classification -- Supervised learning

- Train classification head → Fine-tune all variables
- InceptionNet cropping + FixRes
- SGD w/ momentum = 0.9

ImageNet

Methods	Frozen feature	Top-1	Top-5
Instagram (ResNext-101 32x4d)	83.6	85.4	97.6
CLIP (ViT-L/14)	85.4	n/a	n/a
BiT (ResNet152x4)	n/a	87.54	98.46
Vision Transformer (ViT-H/14)	n/a	88.4	98.7
Noisy Student (EfficientNet-L2)	n/a	88.44	98.7
Meta Pseudo Labels (EfficientNet-L2)	n/a	90.2	98.8
ALIGN (EfficientNet-L2)	85.5	88.64	98.67

Fine-grained tasks

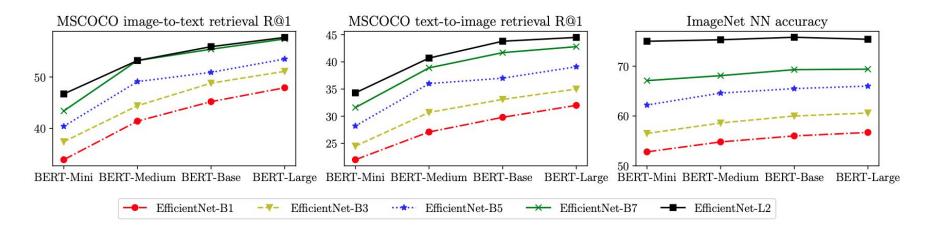
Methods	Oxford Flowers	Oxford Pets	Stanford Cars	Food 101
BiT-L (ResNet-152 x4)	99.63	96.62	n/a	n/a
SAM-baseline (EfficientNet-L2)	99.60	96.92	95.07	96.03
SAM-final (EfficientNet-L2)	99.65	97.10	95.96	96.18
ALIGN (EfficientNet-L2)	99.65	96.19	96.13	95.88

Visual Classification -- VTAB

- 19 Tasks w/ three groups
 - Natural: Caltech101, CIFAR-100, etc.
 - Specialized: Resisc45, Diabetic Retinopathy, etc.
 - Structured: Clevr, dSprites, etc.
- Few shot: Fine-tuned on 1000 samples
- Hyper-param sweep for each task for 50 trials (800 train + 200 val)

	All tasks	Natural	Specialized	Structured
BiT-L	78.72	-	-	-
ALIGN	79.99 ±0.15	83.38	87.56	73.25

Ablation Study -- Modal Capacity



- Image encoder quality relies more on image encoder capacity (not surprising)
- Vision Transformer backbone? (on-going work)
 - ViT-H outperforms EfficientNet-L2 (model quality is not saturated yet)
 - More robust to optimizer choices: Adam / Adafactor works well

Ablation Study -- Dataset Size

Model + Data	MSCOCO			ImangeNet KNN
Model + Data	127	ΓR@1	T2I R@1	R@1
B7 + BERT-base				
+ ALIGN full data		55.4	41.7	69.3
+ ALIGN 10% data		52.0	39.2	68.8
+ CC-3M data		18.9	15.5	48.7
B3 + BERT-mini				
+ ALIGN full data		37.4	24.5	56.5
+ ALIGN 10% data		36.7	24.4	55.8
+ CC-3M data		22.1	17.3	48.9

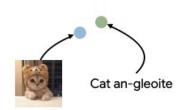
Large models can overfit on small datasets

When dataset is sufficiently large, large models scale better

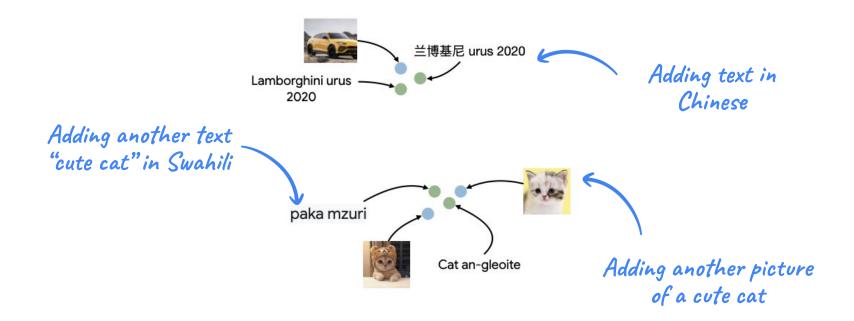
Madal - Data	MSC	ОСО	ImangeNet KNN
Model + Data	I2T R@1	T2I R@1	R@1
B7 + BERT-base			
+ ALIGN 12M data	23.8	17.5	51.4
+ ALIGN 6M data	15.8	11.9	47.9
+ ALIGN 3M data	8.1	6.3	41.3
+ CC-3M data	18.9	15.5	48.7

4x noisy data (12M ALIGN samples) outperforms clean data (3M Conceptual Captions)

Multilingual



Multilingual



Multilingual Dataset

- Flickr30K
 - One of the earliest; Images from Flickr
 - Multi30K (Translations/Human Generations in cs, de, fr)
- MS-COCO
 - STAIR (Human generations in ja)
- XTD
 - Test set for 7 well-resourced languages in es, it, ko, pl, ru, tr, zh
- WIT: Wikipedia-based Image-Text Dataset
 - Combines scale of Wikipedia with Human annotations
 - First time ever in 108 languages

Multilingual Dataset

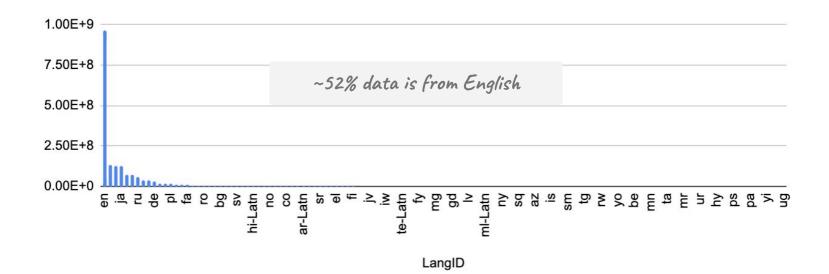
Name	Train-I	Train-T	Dev-I	Dev-T	Test-I	Test-T	#Langs
Multi30k	29k	145k	1k	5k	1k	5k	4
MS-COCO	82k	410k	5k	25k	5k	25k	1
STAIR	82k	410k	5k	25k	5k	25k	1
WIT	11.4m	16m	5/3/1k	5/3/1k	5/3/1k	5/3/1k	108
XTD		-	-	-	1k	1k	7

Multilingual Model

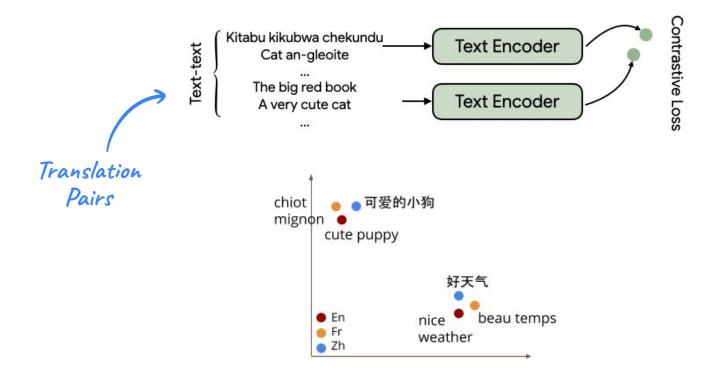
- Lift language constraint and match the size of English training data
- Same architecture and training params as EN model (Vocab size: $100K \rightarrow 250K$)
- Evaluated on Multi30K dataset
 - mean Recall: avg R@1, R@5, R@10 on img-to-txt & txt-to-img retrieval)

	EN	DE	FR	cs			
zero-shot							
M ³ P	57.9	36.8	27.1	20.4			
ALIGN _{EN}	92.2						
ALIGN _{mling}	90.2	84.1	84.9	63.2			
	,	with fine-tuning	J				
M ³ P	87.7	82.7	73.9	72.2			
UC2	88.2	84.5	83.9	81.2			

Multilingual ALIGN Data

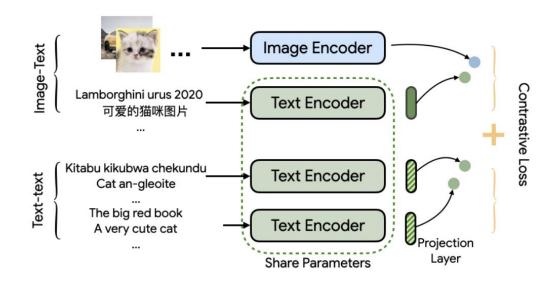


LaBSE – Learning Multilingual From Text



LaBSE: Language-agnostic BERT Sentence Embedding: https://arxiv.org/abs/2007.01852

Combining the best of two worlds



- Added balanced text-text paired data.
- Shared Text encoder between two tasks (image-text and text-text)
- Task-specific Projection layer on Text encoder

Data:

- 1.8 Billion ALIGN data
- 6 Billion translation pairs

Summary and Future Work

Summary

- Large-scale image-text data from the web with minimal frequency-based filtering.
- Scale up model sizes with simple dual-encoder & contrastive learning
- SOTA results on visual classification and image-text retrieval

Future work

- Responsible Al: harmful data and unfair bias in multimodal models
- Quality improvement on low-resourced languages
- Limitations on model scaling with contrastive learning (negative sample size)