

Zero-Shot Detection via Vision and Language Knowledge Distillation

ViLD: Vision and Language Knowledge Distillation

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, <u>Yin Cui</u> Google Research

MSR V+L Summer Talk Series, July 28, 2021

Zero-shot open vocabulary detection

Motivation

Dataset collection for large vocabulary detection

Dataset	# images	# boxes	# categories
Pascal VOC	11.5k	27k	20
0000	159k	896k	80
Objects 365	1800k	29,000k	365
LVIS v1.0	159k	1,514k	1203

Long-tailed distribution Zipf's Law

- Natural object categories follow a long-tailed distribution.
- Exponentially more data is needed for rare categories.
- Expensive to scale up dataset vocabularies.
- Alternatives?

Open vocabulary detection can be a new direction for large vocabulary detection

Recent zero-shot classification models

- CLIP (OpenAI) 1. Contrastive pre-training
- 400M image-text pairs

Recent zero-shot classification models

2. Create dataset classifier from label text

- CLIP (OpenAl)
- 76.2% Top-1 Acc on ImageNet

Recent zero-shot classification models

• ALIGN (Google)

Borrowing the knowledge from zero-shot classification model for zero-shot detection

Method

Settings for zero-shot detection

- **Base categories** the model can be trained on.
- **Novel categories** that are never seen during training.
- **Goal**: achieve good performance on novel categories while maintaining performance on base categories.

Note: Our method is zero-shot w.r.t. the detection dataset. Our method does not learn from detection annotations of novel categories.

However, similar concepts of novel categories could be seen in the pre-trained zero-shot classification models (e.g., CLIP)

Object proposals for novel categories

- Two-stage object detector (e.g., Mask R-CNN).
- Class-agnostic bbox regression and mask prediction.

A straightforward approach: Zero-shot detection with cropped regions

- Ensemble 1x and 1.5x crops (to include context).
- Similar to R-CNN.
- Slow!
- Not utilizing annotations from base categories.

Leveraging pre-trained zero-shot classification model

• CLIP

ViLD-text

- Text prompts: e.g., "a photo of a {category} in the scene".
- **Category text embeddings**: feed the text prompts into the pre-trained text encoder.
 - Ensemble 63 text prompts, with synonyms if available.
- Learnable "background" embedding: for proposals do not match any labeled categories.
- Classify with text embeddings:

 $L_{CE}(softmax(1/T * cosine_similarity(region embedding,$

```
text/background embeddings)))
```

ViLD-image

Vanilla detector

ViLD overview

Model ensembling to mitigate conflicting objectives

- 1) ViLD-text + CLIP:
 - CLIP is the teacher model for ViLD-image.
 - Slow!
- 2) ViLD-ensemble: Two separate heads for ViLD-text and ViLD-image objectives, respectively.
 - **Weighted average**: For base categories, weigh the predictions of ViLD-text more; vice versa for novel categories.

Results

Benchmark settings

- Main dataset: LVIS v1.0 (1203 categories)
 - Frequent (f: 405 classes, 100-1977 images per class) and common (c: 461 classes, 10-100 images per

class) categories as base categories

- Rare (r: 337 classes, <10 images per class) categories as novel categories
- Metrics: Average Precision (AP), **AP**_r, AP_c, AP_f

Object proposals for novel categories

RPN's Average Recall (AR) for novel categories

Supervision	$AR_r@100$	$AR_r@300$	$AR_{r}@1000$
base	39.3	48.3	55.6
base + novel	41.1	50.9	57.0

• RPN trained on base categories generalizes to novel categories, yielding higher scores for unseen categories

compared with background.

Classifying proposals with CLIP

Method	AP_r	AP_c	AP_f	AP
Supervised (base class only)	0.0	22.6	32.4	22.5
CLIP on cropped regions	13.0	10.6	6.0	9.2
Supervised (base + novel)	4.1	23.5	33.2	23.9
Supervised-RFS (base + novel)	12.3	24.3	32.4	25.4

- Supervised-RFS: a better supervised baseline with Repeat Factor Sampling to upsample rare classes.
- AP_r is on par with supervised learning approaches.
- Overall performance is behind.

A strong baseline (large-scale jittering + longer training)

- Formally introduced in our Copy-Paste data augmentation paper [1] and recently adopted by Detectron2
- Recent FB AI Blog: <u>Advancing computer vision research with new Detectron2 Mask R-CNN baselines</u>

Recent work in the field, such as <u>Simple Copy-Paste Data Augmentation</u>, has shown substantial improvements in accuracy (measured by average precision, or AP) for two core tasks, creating a bounding box around an object and drawing a detailed mask over different objects. The paper's highest-reported Mask R-CNN ResNet-50-FPN baseline is 47.2 Box AP and 41.8 Mask AP, which exceeds Detectron2's highest reported <u>baseline</u> of 41.0 Box AP and 37.2 Mask AP. This difference is significant because most research papers publish improvements in the order of 1 percent to 3 percent.

New baselines using Large-Scale Jitter and Longer Training Schedule

The following baselines of COCO Instance Segmentation with Mask R-CNN are generated using a longer training schedule and large-scale jitter as described in Google's Simple Copy-Paste Data Augmentation paper. These models are trained from scratch using random initialization. These baselines exceed the previous Mask R-CNN baselines.

In the following table, one epoch consists of training on 118000 COCO images.

Name	epochs	train time (s/im)	inference time (s/im)	box AP	mask AP	model id	download
R50-FPN	100	0.376	0.069	44.6	40.3	42047764	model metrics
R50-FPN	200	0.376	0.069	46.3	41.7	42047638	model metrics
R50-FPN	400	0.376	0.069	47.4	42.5	42019571	model metrics
R101-FPN	100	0.518	0.073	46.4	41.6	42025812	model metrics
R101-FPN	200	0.518	0.073	48.0	43.1	42131867	model metrics
R101-FPN	400	0.518	0.073	48.9	43.7	42073830	model metrics

https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md

Backbone: Mask R-CNN R50-FPN

Method	AP_r	AP_c	AP_f	AP
CLIP on cropped regions	13.0	10.6	6.0	9.2
GloVe baseline	3.0	20.1	30.4	21.2
ViLD-text	10.1	23.9	32.5	24.9

- Outperforms GloVe baseline:
 - text embeddings jointly trained with visual data.
- Outperforms CLIP on cropped regions:
 - trained with annotations from base categories.

Supervised-RFS (base + novel) 12.3 24.3 32.4 25.4

Backbone: Mask R-CNN R50-FPN

Method	AP_r	AP_c	AP_f	AP
CLIP on cropped regions	13.0	10.6	6.0	9.2
GloVe baseline	3.0	20.1	30.4	21.2
ViLD-text	10.1	23.9	32.5	24.9
ViLD-image	9.6	8.5	7.8	8.4

• Only trained with L1 distillation loss, no cross entropy loss.

• Ideally, similar performance as CLIP on cropped regions.

• A small performance gap.

Supervised-RFS (base + novel) 12.3 24.3 32.4 25.4

ViLD

Backbone:	Mask	R-CNN	R50-FPN	

Method	AP_r	AP_c	AP_f	AP
CLIP on cropped regions	13.0	10.6	6.0	9.2
GloVe baseline	3.0	20.1	30.4	21.2
ViLD-text	10.1	23.9	32.5	24.9
ViLD-image	9.6	8.5	7.8	8.4
ViLD ($w = 0.5$)	16.1	20.0	28.3	22.5

Supervised-RFS (base + novel) 12.3 24.3 32.4 25.4

- Outperforms supervised counterpart on novel categories!
- AP, improved over ViLD-text or ViLD-image.

ViLD

Distill loss	Distill weight w	AP_r	AP_c	AP_f	AP
No distill	0.0	10.4	22.9	31.3	24.0
	0.5	13.7	21.7	31.2	24.0
\mathcal{L}_2 loss	1.0	12.4	22.7	31.4	24.3
	2.0	13.4	22.0	30.9	24.0
	0.05	12.9	22.4	31.7	24.4
	0.1	14.0	20.9	31.2	23.8
\mathcal{L}_1 loss	0.5	16.3	19.2	27.3	21.9
	1.0	17.3	18.2	25.1	20.7

Hyperparameter sweep

- L1 loss is better than L2 loss.
- Trend: as *w* increases, APr ↑, APf and APc ↓ →
 A competition between ViLD-text and ViLD-image.
- We later mitigate the competition by ensembling.

Model ensembling

Backbone: Mask R-CNN R50-FPN

Method	AP_r	AP_c	AP_f	AP
CLIP on cropped regions	13.0	10.6	6.0	9.2
GloVe baseline	3.0	20.1	30.4	21.2
ViLD-text	10.1	23.9	32.5	24.9
ViLD-image	9.6	8.5	7.8	8.4
ViLD ($w = 0.5$)	16.1	20.0	28.3	22.5
ViLD-ensemble ($w = 0.5$)	16.6	24.6	30.3	25.5
ViLD-text + CLIP [†]	22.6	24.8	29.2	26.1
Supervised-RFS (base + novel)	12.3	24.3	32.4	25.4

- ViLD-text + CLIP attains the best AP_r and good overall AP.
 - 630x slower.
- ViLD-ensemble improves AP_c and AP_f over ViLD.

Results with Mask R-CNN R152-FPN backbone

Backbone: Mask R-CNN R152-FPN

Method	AP_r	AP_c	AP_f	AP
ViLD-text	11.7	25.8	34.4	26.7
ViLD-image	10.8	10.0	8.7	9.6
ViLD ($w = 1.0$)	18.7	21.1	28.4	23.6
ViLD-ensemble ($w = 2.0$)	18.7	24.9	30.6	26.0
Supervised-RFS (base + novel)	14.4	26.8	34.2	27.6

- AP_r further improves with stronger backbones.
- Same trend as R50.

Transfer to other detection datasets

- Replace with category text embeddings of a new dataset.
- A finetuning-free transfer!
- Small gaps compared with finetuning (start from ViLD, finetune the linear classifier).

Mathad	PASCA	$L \text{ VOC}^{\dagger}$	COCO					Objects365						
Method	AP ₅₀	AP ₇₅	AP	AP_{50}	AP ₇₅	AP_s	AP_m	AP_l	AP	AP_{50}	AP ₇₅	AP_s	AP_m	AP_l
ViLD-text	40.5	31.6	28.8	43.4	31.4	11.8	35.5	52.0	10.4	15.8	11.1	4.5	11.4	20.4
ViLD	72.2	56.7	36.6	55.6	39.8	20.7	39.2	52.6	11.8	18.2	12.6	5.5	13.5	21.2
Finetuning	78.9	60.3	39.1	59.8	42.4	21.0	41.7	55.0	15.2	23.9	16.2	7.3	17.2	26.1
Supervised	78.5	49.0	46.5	67.6	50.9	27.1	67.6	77.7	25.6	38.6	28.0	16.0	28.1	36.7

Qualitative examples

Google

On-the-fly interactive detection

• After detecting pre-defined categories, use *on-the-fly free-form* text embeddings to recognize more details.

The bird has black head and black body The bird has yellow head and black body The bird has black head and yellow body The bird has yellow head and yellow body

Systematic expansion of dataset vocabulary

- Dataset vocabulary: $\mathbf{v} = \{v_1, ..., v_p\}.$
- Attributes set: $\mathbf{a} = \{a_1, ..., a_q\}.$
- Given region embedding e_{r} ,
 - $Pr(v_i, a_j | e_r) = Pr(v_i | e_r) * Pr(a_j | e_r).$
- Expand p vocabularies into p * q vocabularies.

Systematic expansion of dataset vocabulary

• Detect fruit with color attributes (expand LVIS vocabulary with 11 colors).

Original dataset vocabulary

Expanded with color attributes

Systematic expansion of dataset vocabulary

• 200 Fine-grained bird species from CUB-200-2011 (expanded from LVIS vocabulary).

Failure cases

• red: groundtruth of failed

detections for novel objects

(a) Missed

(b) Misclassified

Compare w/ existing zero-shot detection methods on COCO

- An issue of zero-shot detention on COCO: people are using different splits of COCO dataset
- ViLD-text alone outperforms the most recent SOTA under the same setting (65/15 split, IoU=0.5), especially Recall

Method	Unseen (mAP/Recall@100)	Seen (mAP/Recall@100)	
Rahman <i>et al</i> .	12.40 / 37.16	34.07 / 36.38	
ViLD-text	14.71 / 47.69	43.62 / 85.55	

An improved version with ALIGN

• ViLD-ensemble on LVIS v1.0 with a pre-trained ALIGN model

Method	Image Model for Distillation	Detector Backbone	APr (novel)	APc (base)	APf (base)
ViLD-ensemble	CLIP (VIT-B/32)	ResNet-152	18.7	24.9	30.6
ViLD-ensemble	ALIGN (EfficientNet-B7)	EfficientNet-B7	26.3	27.2	32.9
Supervised Baseline	-	EfficientNet-B7	15.4 (- 10.9)	27.8 (+0.6)	34.3 (+1.4)

An improved version with ALIGN - qualitative example

Input texts

{1: {'id': 1, 'name': 'black flipflop'}, 2: {'id': 2, 'name': 'white flipflop'}, 3: {'id': 3, 'name': 'street sign'}, 4: {'id': 4, 'name': 'bracelet'}, 5: {'id': 5, 'name': 'necklace'}, 6: {'id': 6, 'name': 'shorts'}, 7: {'id': 7, 'name': 'flowery top'}, 8: {'id': 8, 'name': 'blue dress'}, 9: {'id': 9, 'name': 'orange shirt'}, 10: {'id': 10, 'name': 'purple dress'}, 11: {'id': 11, 'name': 'yellow tshirt'}, 12: {'id': 12, 'name': 'green umbrella'}, 13: {'id': 13, 'name': 'pink striped umbrella'}, 14: {'id': 14, 'name': 'plain white umbrella'}, 15: {'id': 15, 'name': 'plain pink umbrella'}, 16: {'id': 16, 'name': 'blue patterned umbrella'}, 17: {'id': 17, 'name': 'koala'}}

rpn score: 0.9994

ron score: 0.9992

black flipflop							
white flipflop							
street sign ·							
bracelet ·							
necklace ·							
shorts -							
flowery top							
blue dress							
orange shirt							
purple dress							
yellow tshirt							
green umbrella							
pink striped umbrella							
plain white umbrella							
plain pink umbrella							
blue patterned umbrella							
koala ·							
0	0	0.2	0.4	0.6	0.8 1		
	probability						

rpn score: 0.9974

mask

mask

Conclusion

- ViLD: an open-vocabulary detection method by distilling knowledge from a zero-shot image classification model.
- Achieves 18.7 AP, on LVIS (R152-FPN), surpassing supervised counterpart at the same inference speed.
- Append new classes without re-training of the detector.
- Transfers to other datasets without fine-tuning.
- Enables free-form text detection.
- An alternative for detecting long-tailed classes, rather than scaling up detection datasets by collecting exponentially

more images to cover long-tail classes.

Thank You

