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The ability to learn programs from few examples is a powerful technology with disruptive applications in

many domains, as it allows users to automate repetitive tasks in an intuitive way. Existing frameworks on

inductive synthesis only perform syntactic manipulations, where they rely on the syntactic structure of the

given examples and not their meaning. Any semantic manipulations, such as transforming dates, have to

be manually encoded by the designer of the inductive programming framework. Recent advances in large

language models have shown these models to be very adept at performing semantic transformations of its

input by simply providing a few examples of the task at hand. When it comes to syntactic transformations,

however, these models are limited in their expressive power. In this paper, we propose a novel framework

for integrating inductive synthesis with few-shot learning language models to combine the strength of these

two popular technologies. In particular, the inductive synthesis is tasked with breaking down the problem

in smaller subproblems, among which those that cannot be solved syntactically are passed to the language

model. We formalize three semantic operators that can be integrated with inductive synthesizers. To minimize

invoking expensive semantic operators during learning, we introduce a novel deferred query execution

algorithm that considers the operators to be oracles during learning. We evaluate our approach in the domain

of string transformations: the combination methodology can automate tasks that cannot be handled using

either technologies by themselves. Finally, we demonstrate the generality of our approach via a case study in

the domain of string profiling.
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1 INTRODUCTION
Teaching a machine to write programs that satisfy a given specification is widely regarded as

one of the fundamental problems in artificial intelligence. More specifically, the task of inductive
synthesis or programming by example, where the specification is given by (partial) examples of the

desired output on given input, allows for the automation of repetitive tasks in a variety of domains.

Examples of domains in which robust synthesizers have been rapidly adapted in industrial tools

are IntelliCode suggestions for code refactoring in Visual Studio [Gao et al. 2020; Miltner et al.

2019; Rolim et al. 2017], extracting tabular data in PowerQuery [Le and Gulwani 2014] and most

famously the FlashFill algorithm for performing string transformations in Excel [Gulwani 2011].
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dec december

nov november

oct octember
sep sepember

(a) Expanding month abbreviations.

After two examples, the emphasized

output is returned.

Q: dec
A: december
Q: nov
A: november
Q: oct
A:

(b) Example of a question-answer

style prompt. GPT-3 returns “octo-

ber” as most likely answer.

05 jan 2001 05/01/2001

15 mar 2020 15/03/2020

16 apr 1993

25 dec 1992

(c) A transformation problem that

requires a combination of syntactic

and semantic operators.

Fig. 1. Transformations on dates require a combination of syntactic processing and semantic knowledge.

Large, autoregressive language models can be taught to extract such knowledge in just a few examples.

Semanti

Current approaches in inductive synthesis are limited to writing programs that perform only

syntactic transformations of the input. All information required to perform such a syntactic transfor-

mation is either available from the specification or has to be explicitly encoded in the domain specific

language used by the synthesizer. A popular scenario that is often used to emphasize this limitation

in the context of FlashFill is shown in Figure 1a. Without explicitly encoding information about

months, the synthesizer makes a valiant attempt using only syntactic information—concatenating

the constant “ember” to the input—but fails miserably. Explicitly encoding such information works

for limited domains, such as dates, but quickly becomes infeasible as the number of domains

grows, or when support for multiple languages or natural language processing is required for more

complicated tasks.

Recent advances in transformer architectures for large, autoregressive language models have

shown that these models can perform few-shot learning without fine-tuning [Brown et al. 2020;

Radford et al. 2018]. Given a short prompt of text, the autoregressive model returns a distribution

of likely continuations of this snippet of text. By structuring the prompts in a specific format,

for example, the question answering format in Figure 1b, the model adapts to the given task at

inference time and effectively solves the given problem with just a few given examples.

A first key observation is that these models are trained on vast amounts of data and have been

shown to contain a lot of information about the world [Petroni et al. 2019] and that querying these

models for this information through prompts neatly integrates with the kind of specifications

that are used in program synthesis. The prompt describes a specification on the output of the

model by providing a few input and output examples in a designated format, just like an inductive

specification does the same for inductive synthesis.

A second observation is that language models use subword tokens to keep their vocabulary small

[Sennrich et al. 2016] and the output is generated token by token. This allows simple, syntactic

string transformation problems to be solved, but more complicated problems either require many

examples or are not solved at all. Substring extraction based on regular expressions is hard, while

operating on data structures other than strings is even harder. A simple task like extracting a

constant number of characters from each word in a list of words is impossible if there is no

combination of tokens that corresponds exactly to this substring.

Based on these two observations, we propose a novel integration of pre-trained, autoregressive

language models with inductive synthesis. These few-shot learners are used to introduce semantic

operators to the underlying domain-specific language, which the synthesizer can then use to solve

a new class of mixed syntactic and semantic problems, such as the one in Figure 1c.

More concretely, we introduce three new learnable semantic operators that map a string to

another string (for semantic lookup), to an integer (for indexing into the input string), or a to
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boolean (for conditional logics). They are learnable in the sense that their concrete executable

semantics depend on each problem instance and are determined during the inductive synthesis

process. However, during learning, the inductive synthesizer makes many calls to these operators.

Because making queries to the language model is slow, learning becomes unfeasible in practice. To

that end, we introduce a deferred querying algorithm, which assumes these operators to be oracles

during learning and uses the ranking step of inductive synthesis to pick the correct program.

We have implemented this integration in the task domain of string transformations using the

PROSE framework [Microsoft 2015] as FlashGPT3 and evaluate it on a collection of challenging

transformation problems. Using the deferred querying algorithm, FlashGPT3 learns most programs

in under 1s, with the most difficult problems taking less than 3s. On its own, GPT-3 solves fewer

problems and typically requires significantly more examples on the problems that it can solve.

Additionally, we demonstrate that semantic operators can be given descriptive names (for better

program readability) and how these named semantic operators can be integrated in the task domain

of string profiling.

1.1 Contributions
In summary, we make the following contributions.

• We propose a novel framework of integrating pre-trained language models with inductive

synthesis by augmenting the language over which programs are synthesized with semantic

operators that are powered by the language model.

• We present a deferred execution algorithm for quickly learning programs with these semantic

operators under the uncertainty of the language models.

• We implement and evaluate this integration in the domain of string transformation problems.

• We present a case study on integrating semantics with string profiling.

2 MOTIVATING EXAMPLES
We start by illustrating some repetitive task settings that have been disrupted by inductive synthesis

and that would further benefit from semantic components. The core idea behind these inductive

synthesis systems is to define an appropriate domain-specific language (DSL) that can succinctly

represent various tasks in an underlying domain, and to describe an appropriate learning algorithm

over the DSL [Gulwani et al. 2012]. In this section, we motivate the significance of extending such

DSLs with semantic components. In Sections 4 (language) and 5 (learning), we show how learning

can be performed over these semantic components.

2.1 String transformations
Transforming strings by example is one of the most commonly used benchmarks in inductive

synthesis. A major breakthrough in this domain was the FlashFill algorithm [Gulwani 2011].

Its ability to quickly and robustly learn string transformation programs from few examples has

helped shipping it in Microsoft Excel. FlashFill is widely recognized as one of the first commercial

applications of inductive program synthesis. FlashFill turned out to be a very popular feature in

Excel, not least because 99% of spreadsheet users do not know programming and struggle with

repetitive tasks.

Consider the task of formatting a phone number as shown in Table 2a. From the first four rows,

FlashFill is able to learn a program

"(" ◦ SubStr2(𝑣1, \d+, 1) ◦ ") " ◦ SubStr2(𝑣1, \d+, 1) ◦ " " ◦ SubStr2(𝑣1, \d+, 2)
that performs this transformation, where "quoted" strings are constants, ◦ denotes concatenation
such that 𝑎 ◦ 𝑏 ≡ Concat(𝑎, 𝑏) and SubStr2(𝑠, 𝑟, 𝑖) extracts the 𝑖th token that matches regular
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Input Output

323-708-7700 323-708-7700

(425)-706-7709 425-706-7709

510.220.5586 510-220-5586

425 235 7654 425-235-7654

425/745.8139 425-745-8139

(a) Formatting phone numbers [Gulwani 2011].

Input 𝑣1 Input 𝑣2 Output

235-7654 Taiwan (886) 235 7654

174.5539 Spain (34) 174 5539

(254) 9620 South Korea (82) 254 9620

618 4390 Panama (507) 618 4390

447/4350 Netherlands (31) 447 4350

(b) Formatting phone numbers by looking up the

country code from its name.

Fig. 2. Examples of repetitive transformation tasks.

Input 𝑣1 Output

Jasmine was a student. Jasmine ................ a student. (past)

We are friends. We ................ friends. (present)

I was hungry. I ................ hungry. (past)

(a) Generating exercises on completing present or past

simple forms.

Input 𝑣1 Output

He wanted to eat pizza. <u>He</u> wanted to eat pizza.

We talked for hours. <u>We</u> talked for hours.

It is her boat. It is <u>her</u> boat.

(b) Marking pronouns. Solutions can be generated

using markup style syntax.

Fig. 3. Examples of problems and solutions from worksheets on English grammar.

expression 𝑟 in string 𝑠 .1 This program is then applied to automate the intended transformation

for the remaining large number of entries, thereby saving users a lot of time and frustration. A

very similar problem is shown in Table 2b. This time, however, the required country codes need

to be derived from the name of the country. This is a semantic transformation, which FlashFill

is unable to do. Before being able to format the number, the user then first has to look up the

country code. Our proposed method is able to learn an anonymous, semantic string → string

function getCountryCode(𝑥) by exploiting the question answering (QA) capabilities of GPT-3. The

full program becomes

"(" ◦ getCountryCode(𝑣2) ◦ ") " ◦ SubStr2(𝑣1, \d+, 1) ◦ " " ◦ SubStr2(𝑣1, \d+, 2).

Another instance of string transformations that FlashFill struggles with is generating educational

material for language learning. Textbooks and worksheets often require students to fill in gaps in

sentences, to build sentences from abstract descriptions, to mark parts of sentences or to perform

other manipulations of given sentences and words. Some examples of exercises are shown in

Figure 3. The process of coming up with sentences, turning them into exercises and generating

solution sheets is a repetitive process. Natural language sentences do not contain syntactic clues

that FlashFill can use to determine positions for extracting substrings. Determining these positions

requires understanding of natural language, and generating exercises in a specific format, or

solutions with a specific markup, requires syntactic manipulations. Our method learns anonymous,

semantic string→ int operators such as positionLeftOfPredicate(𝑥) or positionRightOfSubject(𝑥)
that exploit the ability of GPT-3 to parse the grammatical structure of sentences and return positions

in the sentence that FlashFill can use. The full program that solves the task in Figure 3b is

SubStr(𝑣1, 0, pLeft) ◦ "<u>" ◦ SubStr(𝑣1, pLeft, pRight) ◦ "</u>" ◦ SubStr(𝑣1, pRight,−1)

where p
Left

= positionLeftOfPronoun(𝑣1), pRight = positionRightOfPronoun(𝑣1) and integers are

absolute positions in the string.

1
Please refer to [Gulwani 2011] and [Polozov and Gulwani 2015] for a detailed overview of the FlashFill syntax.
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def attrs(o): ...
def mul(x, y): ...
def exec(c): ...

def attrs(o, log): ...
def mul(x, y): ...
def exec(c): ...

def attrs(o, log): ...
def mul(x, y): ...
def exec(c): ...

def attrs(o, log): ...
def mul(x, y, log): ...
def exec(c, log): ...

1

2

3

(a) Adding a new logger (syntactic only).

def attrs(o): ...
def mul(x, y): ...
def exec(c): ...

def attributes(o): ...
def mul(x, y): ...
def exec(c): ...

def attributes(o): ...
def mul(x, y): ...
def exec(c): ...

def attributes(o): ...
def multiply(x, y): ...
def execute(c): ...

1

2

3

(b) Renaming methods to full words (semantic).

int w = 0.5;
int h = 0;
int a = w * h;

int w = 0.5; // width
int h = 0;
int a = w * h;

int w = 0.5; // width
int h = 0;
int a = w * h;

int w = 0.5; // width
int h = 0; // height
int a = w * h; // area

1 2 3

(c) Adding comments with descriptions (semantic).

Fig. 4. Example scenarios of (1) user making an edit and (2) the system suggesting another location to make

the same edit. The user is able to click on the light bulb to see the suggestion and accept it, after which it is

applied by the system (3). Today, Blue-Pencil can only do scenario (a). With our proposed integration, it is

able to do (b) and (c) as well.

2.2 Refactoring
When changing or refactoring code, developers often find themselves propagating an intended

change at multiple places in the codebase. The Blue-Pencil algorithm tackles the problem of

repetitive refactoring by making on the fly code suggestions [Miltner et al. 2019]. It looks at what

the developer is doing, identifies repetitive edits and makes real time suggestions, rather than

requiring the developer to explicitly provide the system with input-output examples. For instance,

consider a developer who needs to add a new logger argument to all functions in a project, as

shown in Figure 4a. Blue-Pencil sees the user making one edit, recognizes different locations

where a function is defined, suggests applying the same transformation at those locations and then

automatically applies the transformation if the user accepts the suggestion.

However, Blue-Pencil only supports syntactic transformations and fails at tasks that requires

semantic knowledge, such as the one in Figure 4b. In this task, a developer wishes to change naming

convention from abbreviated forms to full names. Given the ability to learn renaming programs

for symbols in the AST, this problem is very similar to learning semantic string transformation

programs. Adding semantic operators enables renaming with natural language understanding.

Another repetitive yet crucial task in programming that involves natural language is writing

documentation. By extending the transformation language to operate on full syntax trees, which
keep formatting and comments to guarantee lossless conversion between the syntax tree and source

code, these semantic operations become even more powerful. This functionality is illustrated in

Figure 4c, where descriptive comments are automatically suggested by synthesizer as it learned a

getDescription(𝑥) function.

2.3 Profiling
The goal of string profiling is to learn succinct regular expression patterns that describe a collection

of strings. These profiles are useful for a myriad of applications, from checking the quality of data,

computing the syntactic similarity between strings, tagging large datasets with column metadata

[Song and He 2021] and making string transformation synthesizers more robust by improving the

ranking of programs [Ellis and Gulwani 2017] or learning separate programs for examples with

different profiles [Padhi et al. 2018].
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1991/12/31
2005-11-14
October 12, 2005
December 10, 1980
September 25, 1970
1993-06-26

(a) Dates

iPhone 11 512GB - Red AT&T
iPhone 11 64GB - Red T-Mobile
iPhone 11 128GB - Red Verizon
iPhone 11 128GB - Midnight Green Verizon
iPhone 11 64GB - Silver T-Mobile
iPhone 11 512GB - Space Gray AT&T

(b) iPhone 11 data with colors and carrier

Fig. 5. Excerpts of candidate datasets for automatic string profiling.

The recent FlashProfile [Padhi et al. 2018] algorithm uses an inductive synthesis based approach

by representing these patterns as programs. Let an atom be a function 𝑓 : string→ int that returns

the length of the longest prefix that it matches of a given string. A program is simply a sequence

of atoms that matches a string if each atom matches the suffix of matching all preceding atoms.

FlashProfile supports syntactic atoms that match constant strings, regular expressions, character

classes and arbitrary functions.

As an example, consider the dates in Figure 5a. Two profiles

Digit
4 ◦ Punct ◦ Digit2 ◦ Punct ◦ Digit2

TitleWord ◦ Space ◦ Digit2 ◦ ", " ◦ Digit4

are learned, where ◦ denotes the concatenation of atoms, "quoted" strings are constants and

Digit
𝑛
matches 𝑛 digits. By asking for an output example for each pattern, the number of examples

required to transform these dates into a standard format decreases.

Next, consider the strings in Figure 5b. Syntactic patterns struggle to (i) capture symbols in

strings and (ii) whether and how to group the words after the " - " or not. A semantic pattern

can distinguish the colors and carriers without falling victim to irregular characters. An example

pattern is

"iPhone 11 " ◦ Digit+ ◦ "GB - " ◦matchColor ◦matchCarrier

where matchX are anonymous semantic atoms. Our integration allows to learn exactly these kinds

of semantic atoms.

3 BACKGROUND
Our proposed integration builds on the idea of decomposing the inductive synthesis problem

into smaller subproblems and using the neural model to solve those subproblems that cannot be

solved syntactically. The FlashMeta framework performs this kind of synthesis decomposition

using deductive backpropagation [Polozov and Gulwani 2015]. In this section, we introduce the

FlashMeta framework, as well as the specific flavour of neural network that we can use to solve

those semantic problems that cannot be further decomposed using FlashMeta. In later sections, we

show how to integrate such neural networks in the FlashMeta architecture.

3.1 FlashMeta
All synthesizers that we described in the previous section are instantiations of the FlashMeta

framework. More specifically, they are implemented using the publicly available implementation

of this framework called PROSE. In the PROSE framework, developers can define a DSL (as a

context-free grammar) and provide an executable function for each operator in the DSL. Given

a specification of a program, typically as a set of input-output examples, the PROSE framework

then provides synthesis strategies to search for a program over this DSL that satisfies the given

specification.
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The main synthesis strategy is called deductive backpropagation, which recursively breaks down

a problem into smaller subproblems that, once solved, can be used by a specific operator to solve the

bigger problem. The logic of how a problem is to be broken down in subproblems is given by witness
functions for each argument of each operator in the DSL. Given an operator and a specification, the

witness function for a parameter of this operator should return specifications that the parameter

should satisfy in order for the operator to satisfy the given specification.

Example 3.1. Suppose we have an operator sum(a, b) that sums two integers and a specification
that says that the output of this operator on some input 𝜎 should be 5, which we write as 𝜎 ⇝ 5.
The witness function for the argument a of sum then needs to answer what the value of a can be, for
example, an integer ∈ [1, 4]. It returns a disjunctive specification 𝜎 ⇝ 1 ∨ 2 ∨ 3 ∨ 4 with all possible
values of a. Following the body of a rule with a as head in the grammar, the algorithm then continues
to look for a way to satisfy this specification—to make a be one of the allowed values.

Rather than a single program, PROSE returns a set of programs that satisfy the specification,

represented by a version space, and allows operations on these program sets. The intersection

between two program sets is an important operation, which allows to compute the set of programs

that satisfy multiple specifications. In the original FlashFill setting, this corresponds to learning a

program set for each individual row and then taking the intersection over these program sets to

find those programs that correctly transform all rows.

Finally, PROSE ranks the programs in the resulting program set, and allows custom scoring

functions to be specified for each operator. The final score is computed bottom-up, with scoring

functions for operators typically aggregating the scores obtained for their arguments.

Example 3.2. In the previous example, we can assign higher scores to lower constant numbers and
use the scoring function for sum(a, b) to assign calls in which a < b a higher score.

It is exactly this breaking down of a problem in smaller subproblems, intersection over different

examples and ranking that makes the PROSE framework an excellent candidate for integrating

semantic operators powered by few-shot learning neural networks. In order to do so, we need to (i)

define the operators with their semantics, (ii) define witness functions that specify how to learn

the arguments to these operators and (iii) describe how programs with semantic operators should

be ranked.

3.2 Generative Language Models
In language modelling, a common task is to predict the next token for a given set of input tokens.

Repeated application of this process allows large language models to effectively generate text

when given an initial sequence of context tokens. Such autoregressive language generation quickly

generated popularity with the impressive results obtained by the GPT models, which combine a

transformer architecture, unsupervised pre-training, and millions of parameters.

Recently, it was shown that such models are able to learn a task by encoding a few input and

output examples of this task in the context [Brown et al. 2020]. An example task was already shown

in Figure 1a, where the goal was to map the first three letters of a month to its full name. More

general examples of tasks are machine translation, question answering and determining which

word a pronoun refers to. This ability to detect the task is called in-context learning and doing it

from few examples is called few-shot learning.

3.2.1 Abilities. We observe three tasks that GPT-3 is able to learn—closed book question answering,

natural language understanding and text classification—and that can be used to create useful

semantic operators.
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Q: What does a manometer measure?

A: pressure

Q: A pickerel is a young what?

A: pike

(a) Closed book QA.

Q: What does a manometer measure?

A: measure

Q: A pickerel is a young what?

A: is

(b) POS tagging through QA.

Lebron James => True

Lionel Messi => False

Christiano Ronaldo => False

Kobe Bryant => True

(c) Text classification.

Fig. 6. Tasks performed using GPT-3. Emphasized text is the (expected) response.

Closed book question answering. In closed book question answering, the goal is to answer a

question about factual knowledge without access to a document that contains evidence [Roberts

et al. 2020]. An example question from the TriviaQA dataset [Joshi et al. 2017] is “What does a

manometer measure?” and the expected answer is “pressure”. It was shown that large language

models are able to store a lot of such knowledge in their parameters, with GPT-3 beating fine-tuned

models that have explicit access to Wikipedia [Brown et al. 2020]. Figure 6a shows a query for

one-shot QA using GPT-3. We exploit this knowledge to learn semantic mappings, such as mapping

countries to their language code in the getCountryCode(𝑥) function or expanding abbreviated

month names in the getFullName(𝑥) function.

Natural language understanding. We consider natural language understanding to encompass

concrete tasks like part-of-speech tagging, role labeling and cloze tests. As GPT-3 is a generative

model, these tasks are also framed as a QA prompt, but a different skill is required to solve it.

Figure 6b shows an example of such prompt, where the goal is to tag the predicate of a question.

We exploit this ability to recognize parts of sentences for extracting semantic locations in the input,

for example, in the getPositionLeftOfPronoun(𝑥) function.

Classification. Finally, GPT-3 is able to perform text classification in a similar fashion. An example

of classifying whether an athlete is a basketball player or a soccer player is shown in Figure 6c. We

exploit the ability to semantically classify text to learn semantic matching functions, such as the

matchColor() atom.

3.2.2 Prompts as functions. We consider the GPT-3 model as a functionM : string→ string that

takes a prompt and returns the most likely continuation of the prompt. All tasks that we defined use

this function in a very similar way. A few input-output examples are encoded in a question-answer

format, an input example is appended as a question and the output is conditioned on the allowed

tokens. We can consider this as a function QA : string
2 [] × string→ string that combines its first

two arguments in a single string and then calls M to obtain its result.

The template that is used for generating the prompt—a function that takes one input-output

example and returns a string—is a hyperparameter. For a fixed set of input-output examples, the only

free variable is a new input example and we have obtained a semantic string→ string function.

Example 3.3. When given some input-output examples 𝐵𝐺 = {("France", "=C"), ("Japan", "¥")},
the unary function getCurrencySymbol(𝑥) ≡ QA(𝐵𝐺, 𝑥) extracts the currency symbol of a country.
Given a new string "USA", we get

getCurrencySymbol("USA") = M

©«
"France => =C
Japan => ¥
USA =>"

ª®¬ ≃ "$"

where ≃ indicates the expected answer.
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Algorithm 1 Build query from examples

Require: list of tuples 𝑄

Require: template T : string × string→ string

function BuildPrompt(𝑄 , T)

𝑄 ← Map(𝜆(𝑞, 𝑎) ⇒ T(𝑞, 𝑎), 𝑄)
return Join(𝑄 , "\n")

Algorithm 2 Semantic function through QA

Require: list of examples 𝐸 and new input 𝑥

Require: list of allowed output tokens 𝐿

function QAT(𝐸, 𝑥 , 𝐿)

prompt← BuildPrompt(𝐸 + (𝑥, 𝜖), T)
return M(prompt, 𝐿)

language FlashFill;
using FlashgGPT3;

@output string 𝑠𝑡𝑎𝑟𝑡 := 𝑒 | std.ITE(𝑐𝑜𝑛𝑑, 𝑒, 𝑠𝑡𝑎𝑟𝑡);

string 𝑒 := 𝑓 | Concat(𝑓 , 𝑒);
string 𝑓 := ConstStr(𝑤) | SubStr(𝑣𝑖, 𝑝𝑝) | SemMap(𝑣𝑖, 𝑄);

Tuple<int, int> 𝑝𝑝 := std.Pair(𝑝𝑜𝑠, 𝑝𝑜𝑠);
int 𝑝𝑜𝑠 := AbsPos(𝑥, 𝑘) | RegPos(𝑥, 𝑟𝑟 𝑘) | SemPos(𝑥, 𝑄, 𝑚);
Tuple<Regex, Regex> 𝑟𝑟 := std.Pair(𝑟, 𝑟);

bool 𝑐𝑜𝑛𝑑 := Match(𝑣𝑖, 𝑟, 𝑘) | SemMatch(𝑣𝑖, 𝑃, 𝑁);

@input string[] 𝑣𝑠; string 𝑤; int 𝑘; Regex 𝑟;
Tuple<string, string>[] 𝑄; string[] 𝑃, 𝑁; string 𝑚;

Fig. 7. DSL LSF for FlashFill with semantic operators. Changes with respect to the original LFF are printed

in bold. We use F(𝑣𝑖 ,−) as shorthand notation for let 𝑠 = std.Kth(𝑣𝑠, 𝑖) in F(𝑠,−).

4 SEMANTIC OPERATORS
We introduce three generic semantic operators that each exploit one of the identified abilities of

GPT-3. Each of these operators builds a prompt, performs a query and parses the result. The data

used to construct the prompt is made an argument of the operators. Learning a specific operator,

such as extracting country codes, then corresponds to learning the argument.

As FlashMeta is designed to support operator reuse, these operators can be easily integrated into

another DSL. Throughout this section, we use integration with the FlashFill DSL [Gulwani 2011;

Polozov and Gulwani 2015] to illustrate the new operators. The augmented DSL is shown in Figure 7.

We use the following syntactic sugar for readability purposes; top-level conditionals are omitted

when not applicable, the shorthand notation F(𝑣𝑖 ,−) is used over let 𝑠 = std.Kth(𝑣𝑠, 𝑖) in F(𝑠,−)
and a list of tuples of strings is simply called a Query.

4.1 Maps
The semantic map operator SemMap(𝑣,𝑄) is used to look up semantic properties of the input.

Listing 1 show its executable semantics, which simply calls GPT-3 using 𝑄 as examples and 𝑣 as

the new question. Semantic map requires no additional logic on top of the QA function.

Example 4.1. Let us revisit the example of country codes from Figure 1c. The getCountryCode(𝑥)
function can be easily represented as a semantic map by building an appropriate set of input-output
examples 𝑄 . The full program becomes:
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string SemMap(string v, Query Q) {
return QA(Q, v);

}

Listing 1. Executable semantics of the semantic mapping function.

int SemPos(string x, Tuple<string, string>[] Q, string d) {
string answer = QA(Q, x);
MatchCollection ms = x.Matches(new Regex(answer))[0];
if ms.Count() != 1:

return null;
return (d == "L") ? ms[0].Index : ms[0].Index + x.Length;

}

Listing 2. Executable semantics of the semantic position logic. The AllWordsIn function extracts all words

from the given list of strings, which are used to constrain the output to return only words in x.

ConstStr("(") ◦ SemMap(𝑣2, Q) ◦ ConstStr(") ") ◦ SubStr2(𝑣1, NumTok, 1)

◦ ConstStr(" ") ◦ SubStr2(𝑣1, NumTok, 2)

Q = [("Taiwan", "886"), ("Spain", "34"), ("South Korea", "82")]

Example 4.2. In textbooks and course notes on grammar, examples of irregular forms are often
provided. For grammatical constructs with many irregular forms, such as plurals or tenses, generating
and formatting these examples is a very repetitive task. We can use the power of language models to
easily generate formatted examples. Consider, for example, a table of comparative and superlative
adjectives.

Input 𝑣1 Output

good good – better – best
old old – older – oldest
many many – more – most

Using the power of lookup, such tables can be easily generated from just the base adjective with the
following transformation program:

𝑣1 ◦ ConstStr(" - ") ◦ SemMap(𝑣1, Q1)

◦ ConstStr(" - ") ◦ SemMap(𝑣1, Q2)

Q1 = [("good", "better"), ("old", "older"), ("many", "more")]

Q2 = [("good", "best"), ("old", "oldest"), ("many", "most")]

4.2 Position logic
Position logic is used to determine interesting locations in the input, which is useful in tasks that

involve formatting and extraction. Semantic positions are similar to regular expression positions.

We use the model to select a substring from the input and return either the left or right position

of that substring. The output is constrained to be a substring of the input. Listing 2 shows the

executable semantics of position logic.

Example 4.3. Consider exercises in which a specific part of a sentence has to be underlined or
emphasized. Mapping the sentence to the correct word is not sufficient, the position of the word is
required to build the correct output string.
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bool SemanticMatch(string x, string[] P, string[] N) {
p = Map(𝜆p => new Tuple<string, string>(p, "True"), P);
n = Map(𝜆n => new Tuple<string, string>(n, "False"), N);
string answer = QA(p + n, x);
return answer == "1";

}

Listing 3. Executable semantics of the semantic condition function.

𝑣1 𝑂𝑢𝑡𝑝𝑢𝑡

Dogs are great. Dogs \emph{are} great.
I love dogs. I \emph{love} dogs.
The dog barked really loud. The dog \emph{barked} really loud.

The following transformation program uses the semantic positioning logic to build the output from
five parts. Four different SemPos invocations are used, but they only require one call to the semantic
model by caching the results. In the query, we denote the string in row 𝑖 and column 𝑣1 by Ii.

SubStr(𝑣1, std.Pair(AbsPos(0), SemPos(𝑣1, Q, "L")))

◦ ConstStr(" \emph{")

◦ SubStr(𝑣1, std.Pair(SemPos(𝑣1, Q, "L"), SemPos(𝑣1, Q, "R")))

◦ ConstStr("}")

◦ SubStr(𝑣1, std.Pair(SemPos(𝑣1, Q, "R"), AbsPos(-1)))

Q = [(I1, "are"), (I2, "love"), (I3, "barked")]

Example 4.4. Conversely, we can also start from a sentence and generate exercises. This requires
both semantic positions and mapping.

Input 𝑣1 Output 𝑜

A bird is smaller than a dog. A bird is (smaller/smallest) than a dog.
He had the worst cold ever. He had the (worse/worst) cold ever.
Jogging is faster than walking. Jogging is (faster/fastest) than walking.

The following program uses semantic position logic on the adjective to allow the output to be composed
from parts of the input and interjecting constants, and a semantic map to obtain the comparative and
superlative forms of the adjective.

SubStr(𝑣1, std.Pair(AbsPos(0), SemPos(𝑣1, Q1, "L")))

◦ ConstStr("(")

◦ SubStr(𝑣1, std.Pair(SemPos(𝑣1, Q1, "L"), SemPos(𝑣1, Q1, "R")))

◦ ConstStr("/") ◦ SemanticMap(𝑣1, Q2) ◦ ConstStr(")")

◦ SubStr(𝑣1, std.Pair(SemPos(𝑣1, Q1, "R"), AbsPos(-1)))

Q1 = [(I1, "smaller"), (I2, "worse"), (I3, "faster")]

Q2 = [(I1, "smallest"), (I2, "worst"), (I3, "fastest")]

4.3 Conditions
The top-level statement decides which expression to use for constructing the output. Classically,

this was done by learning a pattern based on regular expressions that some column must satisfy.

Given a set of positive and negative examples, we use GPT-3 to learn how to classify them by

mapping them to "True" or "False". The semantics are shown in Listing 3.
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Example 4.5. Consider a dataset of athletes and game scores, but the sport itself was lost. We need
to distinguish whether a player makes goals or points by deciding their sport. Rather than explicitly
mapping an athlete to a sport, GPT-3 implicitly learns to make the distinction.

𝑣1 𝑣2 Output

Christiano Ronaldo 1026 1026 goals
Lebron James 34852 34852 points
Lionel Messi 711 711 goals

The following transformation program uses the semantic conditional to distinguish whether the
" goals" or " points" constant should be used.

std.ITE(SemanticMatch(𝑣1, P, Q),

𝑣2 ◦ ConstStr(" goals"), 𝑣2 ◦ ConstStr(" points"))

P = ["Christiano Ronaldo", "Lionel Messi"]

N = ["Lebron James"]

Example 4.6. In this classical example, the goal is to extract the month from dates. Depending on
localization, however, the month is in a different location. The third format can be distinguished using
only syntax, but the first two rows require a semantic condition to decide whether to use the American
standard or not.

𝑣1 𝑣2 Output

Chicago 01/02/1990 01
Brussels 01/02/1991 02
Beijing 1992-03-02 03

std.ITE(SemanticMatch(𝑣1, P, N),

SubStr(𝑣2, std.Pair(AbsPos(0), AbsPos(2))),

std.ITE(Match(𝑣2, "-", 1),

SubStr(𝑣2, std.Pair(AbsPos(5), AbsPos(7))),

SubStr(𝑣2, std.Pair(AbsPos(3), AbsPos(5)))))

P = ["Chicago"]

N = ["Brussels", "Beijing"]

5 LEARNING SEMANTIC OPERATORS
Learning semantic operators boils down to selecting the right data to build the prompt, which is

done by implementing their witness functions. Recall that witness functions are used to determine

a specification on the parameters of an operator, given a specification of the operator. In other

words, if an operator 𝑓 (𝑥1, 𝑥2) must satisfy a specification 𝜑 , the witness functions𝑤1 and𝑤2 for

the arguments 𝑥1 and 𝑥2 must determine new specifications 𝜑1 and 𝜑2 that the arguments must

satisfy for this to be true. The deductive backpropagation algorithm uses these witness functions

to recursively break down a synthesis problem into smaller synthesis problems.

The intuition behind our integration is using the semantic model to solve these subproblems

that cannot be solved in any other way. There are two main challenges; given the specification,

the witness function is unable to determine (i) whether syntactic operators are able to solve this

specification or not, and (ii) whether GPT-3 is able to solve any given problem without performing

a lot of queries, as performing queries is both slow and expensive.

In order to solve both challenges, we consider the model to be an oracle that always gives the

correct answer during training. Ranking is used to select programs that perform few different calls
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to the model and in which the smallest number of output characters is obtained through semantic

operators. We refer this technique as deferred query execution.
All semantic operators have an argument 𝑥 that corresponds to the input that should be mapped.

For example, in a spreadsheet context, it is one of the input columns. Witness functions are

conditional on the selected input, which is taken care of by the DSL in which the operator is

integrated. For example, in the spreadsheet context and LFF, the let statement selects a column

and the witness function is given only this column. When there are multiple inputs, selecting the

(most likely) correct input can be done through ranking.

In the following sections, all specs are a conjunction of 𝑥 ⇝ 𝑉 with 𝑥 the input string and

𝑉 = {𝑣1, . . . , 𝑣𝑛} the atoms in a disjunction, all of the return type of the operator. For example, in

an outer specification for SemMap, 𝑉 is a set of strings. As all semantic operators are terminal,

their witness functions return a list of possible values for the argument that they witness, instead

of a mapping from states to values—these values should hold for all states.

5.1 Learning maps
In order to learn a semantic map, we need to learn the query given a set of disjunctive specifications

over strings. When each disjunction consists of a single element, the witness function is trivial—

simply map the input to each of these strings. When multiple options are possible, however, it

becomes more challenging. In order to keep the witness function complete, all combinations of

queries obtained by picking one option from each disjunction have to be considered.

If the semantic map is required closer to the root of the target program, other operators depend

on the exact query to build the rest of the output. For instance, if the semantic map is required in

the first argument of a Concat statement, for each possible query, a new branch is started, which

can again contain semantic maps.

Example 5.1. Consider this spec obtained from the witness of the first argument of Concat in LSF.

Japan⇝ "¥" ∨ "¥ " ∨ "¥ 10"

France⇝ "=C" ∨ "=C " ∨ "=C 20"

Three out of nine possible queries are

[("Japan", "¥"), ("France", "=C")]

[("Japan", "¥ 10"), ("France", "=C")]

[("Japan", "¥"), ("France", "=C ")]

and it is impossible to know which one is correct. If this semantic map is the first argument of a Concat
statement and the second query is chosen, the spec sent to the second argument is

𝜎1 ⇝ "" ∧ 𝜎2 ⇝ " 20"

and in a similar way, nine branches are started for the second argument.

In order to minimize the number of possible queries and make the learning tractable, we sacrifice

completeness for speed and perform greedy clustering over the possibilities from each disjunctive

spec. Each cluster contains exactly one string from every disjunct. The spec with highest number

𝑘 of possibilities is taken as a reference and used to initialise 𝑘 clusters. From all other specs, 𝑘

possibilities are greedily assigned to each cluster using a similarity function between two strings.

The greedy clustering algorithm and witness function are shown in Algorithm 3.

Example 5.2. In the running example, using syntactic similarity based on occurrence of tokens, we
get three clusters {{"¥", "=C"}, {"¥ ", "=C "} and {"¥ 10", "=C 20"}.
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Algorithm 3 Learning the semantic mapping query.

Require: Similarity function S : string × string→ R
1: function GreedyCluster(Y)
2: reference← longest in Y
3: C← {[𝑒] | 𝑒 ∈ reference} ⊲ Initialize clusters with reference

4: for 𝑌 ≠ reference ∈ Y do
5: C′← C ⊲ Make shallow copy of clusters

6: while C′ ≠ ∅ do
7: e

∗,C∗ ← argmax𝑒∈𝑌,𝐶∈C′ S(𝑒,𝐶 [0]) ⊲ Unassigned element closest to reference

8: append 𝑒∗ to 𝐶∗

9: remove 𝐶∗ from C′

10: return C
11: function WitnessMapQ(𝜑)

12: options← {𝑌 | 𝑥 ⇝ 𝑌 ∈ 𝜑}
13: clusters← GreedyCluster(Y)
14: return MakeQueries(clusters, 𝜑) ⊲ Map states to elements from clusters

5.2 Learning position logics
Learning the query to extract a position starts from a set of disjunctions over the positions to

extract. The direction (left or right) is given. Let 𝑝 be a position and 𝑠 the string. Depending on

direction, we generate strings 𝑠 [𝑝 : 𝑝 + 𝑗] or 𝑠 [𝑝 − 𝑗 : 𝑝] for increasing 𝑗 as candidates values for

the query. Instead of all 𝑗 , we only select interesting candidates for 𝑗 by tokenizing the string 𝑠 [𝑝 :]
or 𝑠 [: 𝑝] with a tokenizer that extracts interesting positions, for example, on word boundaries.

Example 5.3. Given the spec "He wanted to eat pizza." ⇝ 3 and direction left, the string
"wanted to eat pizza." is tokenized into ["wanted", "to", "eat", "pizza"] and possible 𝑗 are {6,
9, 13, 20}. Three candidate values for the query are "wanted", "wanted to" and "wanted to eat".

Even with low values of 𝑗 , the number of different queries quickly increases. The same greedy

clustering approach used to learn maps is also used to select a subset of promising queries. The

witness function for learning a left position is shown in Algorithm 4. Learning a right position

is almost identical, with line 2 selecting sides 𝑥 [: 𝑝] and line 3 using a function that extracts

interesting right positions.

Algorithm 4 Learning a position query for left direction.

Require: tokenizing function LeftPositions : string→ int[]
1: functionWitnessPosQueryLeft(𝜑)

2: sides← {𝑥 → {𝑥 [𝑝 :] | 𝑝 ∈ 𝑉 } | 𝑥 ⇝ 𝑉 ∈ 𝜑}
3: tokens← {𝑥 → {LeftPositions(𝑠) | 𝑠 ∈ 𝑆} | (𝑥 → 𝑆) ∈ sides}
4: candidates← {𝑥 → ∑

𝑡 [: 𝑗] | (𝑥 → 𝑇 ) ∈ tokens, 𝑡 ∈ 𝑇, 𝑗 ∈ [1, |𝑡 |]}
5: clusters← GreedyCluster(candidates)
6: return MakeQueries(clusters, 𝜑)

5.3 Learning conditions
The witness for learning conditions is given a conjunction of 𝜎 ⇝ B specs. All inputs mapped to

true correspond to positive examples and vice versa. In learning conditions, the main challenge
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is knowing when to learn a different program. The FlashFill paper [Gulwani 2011] describes a

procedure based a partitioning of the input with (i) each partition having a program that is consistent

with the specification for that partition and (ii) having the fewest number of partitions. Because of

deferred querying and SemMap acting like an oracle during learning, it will always yield a program

that is consistent with any partitioning of the input. We assume that semantic conditions are only

used to distinguish otherwise syntactic programs. Both examples shown in Section 4.3 satisfy this

assumption.

5.4 Ranking
After learning programs, we rank them with respect to the following criteria; (i) rely as much as

possible on syntactic operators and (ii) having as few distinct queries to the model as possible.

Because semantic operators are considered oracles during learning, the synthesizer can use them

to solve any subproblems with the appropriate type, but we only want to use them for subproblems

that cannot be solved syntactically.

Example 5.4. Consider a problem "Dogs are great." → "Dogs \emph{are} great." that
requires extracting the predicate. We need to learn two semantic positions (5 and 8) that are used in
three substring operators. When learning the first semantic position, given the left direction, two possible
outputs for queries are "are" and "are great". Similarly, for the second position and given right
direction, two options are "Dogs are" and "are". For all combinations of queries, a valid program
will be learned, but only by selecting "are" will the query perform exactly the desired task (first
criterion). Note that the constant "\emph{" and other parts of the output can also be the result of a
semantic map, hence the goal to rely as much as possible on syntactic operators (second criterion).

To support easily integrating semantic operators, we want the ranking to be as independent as

possible from the ranking of other operators. This independence is achieved by assigning semantic

operators a score of 1 during the hierarchical ranking, with the goal of having a minimal influence

in both additive and multiplicative aggregation of ranks. After ranking, programs are re-ranked

based on semantic operators.

Map queries are punished based on the number of characters that they are expected to output.

Let 𝑄 be the list of input-output examples and #𝑐 =
∑
(𝑖,𝑜) ∈𝑄 |𝑜 | the number of characters obtained

through this query. We add a bonus score for not requiring characters through semantics maps

𝑆𝑚/#𝑐 to the original score.

Position and condition queries are punished based on the number of distinct position queries. For

example, extracting the left and right side of the same word only requires a single query. A second

bonus score 𝑆𝑞/#𝑞 is added to the final score, with #𝑞 the number of distinct queries required by

semantic position and condition operators.

6 EVALUATION
We perform experiments to answer the following questions.

Q1 Is a combination of syntactic and semantic parsing required?

Q2 Do we need deferred execution of queries and greedy clustering to quickly learn programs?

Q3 Case study: can we generate descriptive names for semantic operators?

Q4 Case study: can we easily use semantic operators in other domains?

6.1 Environment
6.1.1 Implementation. Starting from a string transformation DSL on the PROSE website, we added

the position and map operators in a prototype implementation called FlashGPT3. A syntactic

similarity measure was used in the greedy clustering for possible queries. We compute the number
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of occurrences of tokens to generate a feature vector and compute a similarity as the cosine

similarity between these vectors. Tokens are lowercase words, uppercase words, camel case words,

numbers and a list of specific symbols.
2

6.1.2 Benchmark Suite. Three types of benchmark problems are collected. The first are head
cases used to evaluate basic capabilities that we believe a semantic transformation synthesizer

should offer. This type of head cases was also used to evaluate TDE [He et al. 2018]. The second are

examples related to the language learning domain and take inspiration from course notes on English

grammar and websites with worksheets.
3456

Together, these make up a collection of 30 diverse and

challenging problems that require a combination of syntactic and semantic parsing. Finally, we use

a subset of 30 of the internal FlashFill benchmark to evaluate the syntactic capabilities of GPT-3.

6.1.3 Model and hyperparameters. We use the largest davinci model with 175 billion parameters

and set the temperature parameter, which roughly determines the level of creativity of the generated

output, to 0.
7
All experiments were performed on a laptop.

6.1.4 Inference time. The run-time of FlashGPT3 programs on new inputs is heavily dominated by

calls to the GPT-3 API. Across all experiments an average, we have reported an average query time

of 462± 271 ms. Asynchronous execution speeds this process up for multiple rows, as the overhead

is largely caused by network overhead. We have found that performing more than four concurrent

invocations is met with rate limiting. This limitation stems from the fact that a single endpoint

is responsible for serving all GPT-3 calls in the world. Commercially shipping FlashGPT3 is then

possible through a dedicated endpoint that does not limit concurrent requests.

6.2 Combining syntactic and semantic operators
As GPT-3 is able to perform syntactic manipulations, we start by evaluating whether it is required

to combine it with syntactic inductive programming or not, and argue why such an integration is

relevant regardless of GPT-3 being able to solve some problems on its own.

6.2.1 Experimental Setup. Our evaluation takes the first 𝑛 examples to learn programs, and uses

the top-ranked program to try solving all remaining examples. Once a program is obtained that

solves all remaining cases, execution is stopped. Experiments with only GPT-3 are performed by a

DSL that only contains the SemMap operator. We use the version of FlashFill shipped with the

PROSE SDK [Microsoft 2015].

6.2.2 Results. Figure 8a shows the number of examples that FlashFill and GPT-3 require on the

syntactic benchmarks. When the number of examples equals the total number of examples, GPT-3

fails. The result indicates that GPT-3 is able to solve some problems, but requires significantly more

examples. Its main weaknesses are tokenization and complex substring extraction logic. A problem

as simple as extracting the first 4 letters of a word ("Alakazam"→ "Alak") is not solved after 7

examples. Similarly, extracting the penultimate word from a path specification ("path/to/file"
→ "to") proves hard for the language model.

Figure 8b shows the number of examples that FlashGPT-3 and GPT-3 require on the semantic

benchmarks. FlashGPT3 consistently outperforms GPT-3 on problems that require more complex

2,.;’+*_!()"/\‘ ?%@#$[]{}<>=
3
www.perfect-english-grammar.com/grammar-exercises.html

4
www.agendaweb.org/grammar-exercises.html

5
www.englisch-hilfen.de/en/exercises_list/alle_grammar.htm

6
www.english-4u.de/grammar_exercises.htm

7
As used in the demonstration on QA on the OpenAI website (https://beta.openai.com/examples/default-qa).
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(a) Solving FlashFill benchmarks with GPT-3. Eight problems (26%) were not solved by GPT-3. Those problems

that are solved by GPT-3 require significantly more examples than FlashFill. It is clear that a strong, syntactic

synthesizer is required to automate repetitive transformation tasks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Solved by GPT-3

0
1
2
3
4
5
6
7
8
9

Re
qu

ire
d 

#e
xa

m
pl

es

FlashGPT3 GPT3

25 26 27 28 29 30
Not solved by GPT-3

0
1
2
3
4
5
6
7
8
9

Re
qu

ire
d 

#e
xa

m
pl

es

(b) Results on the mixed syntactic and semantic benchmark problems. Six problems (20%) were not solved

by GPT-3. On half of those, FlashGPT3 requires barely two examples. On others, the bottleneck is GPT-3

requiring more examples to solve the semantic subproblems.

Fig. 8. Results on syntactic and mixed benchmarks.

syntactic parsing. Aside from taking care of the syntactic part, deductive backpropagation has

the advantage of generating smaller, more targeted problems for GPT-3. For instance, explicitly

obtaining the infinitive of a verb ("were"→ "be") is easier than requiring this transformation as

part of a larger problem ("were"→ "data/be.mp3").
Whereas generally a blessing, in some cases, these smaller subproblems sometimes lack enough

context for GPT-3 to learn the task. For instance, consider the problem of converting 24-hour

to 12-hour notation ("22:00"→ "10:00 PM"). FlashGPT3 breaks this down into two semantic

subproblems "22:00"→ "10" and "22:00"→ "PM" as the space is considered a constant. The

context of this task is important, as it takes FlashGPT3 one more example to solve the first of these

problems as opposed to the whole problem at once (6 versus 5). Note that the program using only a

single map is also discovered during synthesis. Cross-validating programs during ranking allows

to trade off performing more queries for requiring fewer examples.
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(a) Total time taken to learn a program (in seconds). Evaluation time is not counted. Problems in the right

figure timed out without clustering. Clustering is clearly required for learning problems in reasonable time.
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(b) Semantic operator calls during learning, spread out over two plots for clarity. Problems on the left side did

not time out before finding the correct program without clustering, those on the right did.

Fig. 9. The effect of clustering on the number of calls (not) made and the time taken to learn a program.

Each data point is the sum over invocations with increasing number of examples until a solution is found.

Even with clustering, the number of calls is far too high for practical purposes. Deferred querying brings the

number of calls down to zero.

During evaluation, the syntactic guarantees of learning a program with FlashGPT3 allowed us to

correct syntactic mistakes in the benchmark, such as trailing or missing spaces. Despite showing

decent performance on some syntactic problems, these kind of syntactic guarantees are unavailable

when relying only on GPT-3.

6.3 Deferred execution and clustering
After recursively solving the disjunctive specs from the witness functions of an operator, deductive

backpropagation performs a soundness check on these arguments by executing the operator on

these arguments, before witness functions dependent on the result of this operator are invoked.

We evaluate whether deferring the execution of queries until after ranking and clustering queries

is required to quickly learn programs or not.
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Describe the relation between the following items.

Belgium | Brussels => capital
Pizza is delicious. | Pizza => subject
Lionel messi | football => sport
China | Asia => continent
Like a Prayer | Madonna => artist
𝑥 | 𝑦 =>

Listing 4. Prompt to extract the name of a relation, where 𝑥 and 𝑦 are placeholders to be substituted with

the input and output of an example from a query.

6.3.1 Experimental setup. We run all experiments with greedy clustering replaced by the Cartesian

product over all possible queries. Learning is timed out after five minutes. During learning, we

count how often a query would have been made by the synthesizer.

6.3.2 Results. Figure 9a shows the total time taken to learn the correct program. Bars that do not

fit on the plot are instances where learning timed out. Without clustering, that happens for 11

problems. With clustering, most programs are learned in less than a second. Only a few problems,

involving long sentences and requiring more examples to be learned, take slightly longer, but are

still learned in less than three seconds. Using cheap language models to improve the clustering

step on these instances can still improve performance.

Figure 9b shows the number of times the semantic operators were invoked during learning, both

with and without clustering. In other words, this plot shows the number of calls not made to the

model by having these operators act as oracles during learning. They are divided over two plots for

clarity, based on whether learning without clustering timed out or not.

Without clustering, the number of calls is prohibitively high. Even with clustering, however,

the number of calls quickly grows to tens of thousands for complex programs that require more

examples. Such calls are both slow and expensive, and learning will still be slow for all but the

smallest problems. Using deferred query execution, the number of calls drops to zero and programs

are learned quickly.

6.4 Case study: renaming semantic operators
Running examples in this paper use descriptive names for semantic operators, but the actual

operators are anonymous and represented by a query. In this case study, we explore using GPT-3

to rename semantic operators with descriptive names based on the examples in these queries.

Example 6.1. A transformation SemMap(𝑥, [("UK", "£"), ("Japan", "¥")]) is not very
readable. Using GPT-3, we can rename this to getCurrency(𝑥).

Listing 4 shows a prompt in which each examples describe the name of a relation between two

concepts. If the two placeholders 𝑥 and 𝑦 are replaced with one of the input-output example in a

query, it hopefully returns a descriptive name for the operator of that query. Rather than only the

best completion, we ask for the top-𝑘 completions and rank them by how often they occur. The

temperature is set to 0.8 to obtain a greater variety of possible names.

Example 6.2. Setting 𝑥 = "UK" and 𝑦 = "£", the top-10 results are currency, currency, currency,
currency, currency, currency, currency, currency, currency and country.

Table 1 shows the names obtained using this method for some of the examples in our evaluation,

for queries performed by FlashGPT3 and GPT-3. Names on the more specific FlashGPT3 queries are

more accurate when compared to using GPT-3, which attempts to solve the whole problem at once.
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Table 1. Using GPT-3 to generate names for semantic operators. We write · · · for parts of sentences that are
omitted for brevity. Because it generates concrete subproblems, names for FlashGPT3 are more accurate.

Input FlashGPT3 GPT-3

Output Name Output Name

were be infinitive data/be.mp3 to be

May 2, 1953 mai month 29 mai 1953 date

How many mice does your cat catch? mouse subject · · · ____ · · · (mouse) subject-verb

Guernica Picasso painter Picasso’s Guernica artwork

1984 Orwell writer Orwell’s 1984 book

PRG Prague airport Departure from Prague (PRG) airport code

6.5 Case study: String profiling
This section presents a case study where we use our semantic operators to perform semantic

string profiling. Recall that for the profiling task in Figure 5b (Section 2.3), we wanted to learn the

following semantic profile

"iPhone 11 " ◦ Digit+ ◦ "GB - " ◦matchColor ◦matchCarrier

that represents a concatenation of atoms. We extend FlashProfile with a SemPos atom that finds

the next ending position of a semantic concept.

Example 6.3. The matchColor atom can be represented by SemPos(𝑥,𝑄, "R") with

𝑄 = [("Red AT&T", "Red"), ("Space Gray AT&T", "Space Gray")].

To add an atom to FlashProfile, we need a function that takes a set of strings S and returns a set

of compatible atoms with the prefixes of those strings. This is achieved by creating a disjunctive

spec that maps each string to all possible locations and then uses the witness for SemPos with a

semantic similarity measure, for example, cosine similarity between embeddings [Mikolov et al.

2013]. Finally, we select only the cluster with the highest inter-cluster similarity.

Example 6.4. For the leading example on profiling, we generate the following specs.

"Red AT&T"⇝ 3 ∨ 6 ∨ 8
"Midnight Green Verizon"⇝ 8 ∨ 14 ∨ 22

"Space Gray Unlocked"⇝ 5 ∨ 10 ∨ 19

If we compute the similarity between strings as the cosine similarity between their average word
embedding, the following clusters are obtained with the GreedyCluster algorithm.

{"Red", "Midnight Green", "Space Gray"}
{"Red AT", "Midnight Green", "Space Gray"}
{"Red AT&T", "Midnight Green", "Space Gray"}

The first cluster achieves the highest inter-cluster similarity and is selected to build the atom.

After we find the pattern for the colors, we can perform a similar step for the carriers. Notice

that these SemPos atoms are generic, however, and in order to be useful to users, they are ideally

given a descriptive name. Using the query from Section 6.4, our system is able to do exactly that.
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(a) Classical integration of neural networks with

program synthesis. The NN is used to bias either

the search or the DSL.

Search P

𝜙

DSL

NN

(b) Our proposed integration of neural networks

with program synthesis. The DSL uses a neural

model that allows few-shot learning to perform

semantic operations.

Fig. 10. Integrating neural networks with inductive synthesis where the goal is to learn a program 𝑃 over a

given DSL that satisfies a specification 𝜙 .

7 RELATEDWORK
Inductive program synthesis. Learning to write programs from demonstrations has been a popular

research area for a long time [Cypher and Halbert 1993]. After the success of FlashFill, learning

string transformation programs has become one of the most popular domains in this area [Gulwani

2011]. Later, partial examples were shown sufficient to learn extraction programs by FlashExtract

[Le and Gulwani 2014]. The FlashMeta framework generalizes the deductive backpropagation

algorithm behind FlashFill and FlashExtract to a unified framework that significantly reduces the

effort required to develop industrial synthesizers [Polozov and Gulwani 2015]. Other successful

applications of this technology are predictive synthesis, in which no output is given at all, for text

splitting [Raza and Gulwani 2017] and modeless synthesis, in which the system watches a user and

generates its own examples, for suggesting refactoring operations [Miltner et al. 2019].

Neural program synthesis. In earlier approaches to neuro-symbolic program synthesis, neural

networks were used to guide [Balog et al. 2019; Ellis et al. 2021] or replace [Devlin et al. 2017;

Parisotto et al. 2016] the search over a given DSL. There, the goal is to allow longer programs to be

learned over possibly noisy inputs, but the scope of problems that can be solved remains limited to

purely syntactic ones. A limited level of semantic capabilities was achieved by leveraging APIs to

transform data and using a neural guided search for navigating the large branching factor caused

by this integration [Bhupatiraju et al. 2017]. Our integration, on the other hand, extends the DSL

with neural operators that are able to learn a required task from few examples, which allows for

a fast, enumerative search using deductive backpropagation and is more flexible in the scope of

semantic tasks that it performs. Figure 10 compares both ways of integrating neural networks with

inductive synthesis.

Language modelling. The ability to learn vector representations of words without supervision

[Mikolov et al. 2013] did not only drastically improve the downstream performance of a plethora of

natural language processing (NLP) tasks, it also significantly lowered the bar for adding semantics
to different applications. The challenging task of estimating the semantic similarity between words

was reduced to computing a similarity between their vector representation, pre-trained versions of

which are readily available to download. Ever since, language modelling has shifted towards training

a general model on large amounts of unlabelled data and fine-tuning this model towards a specific

task on smaller amounts of labeled data [Devlin et al. 2019]. One way of training such a general

model, called generative or autoregressive pre-training, involves predicting the next token when
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given a short piece of text. With the ever increasing size of these models, from 117M parameters in

the original GPT model [Radford et al. 2018], to 1.5B parameters in GPT-2 [Radford et al. 2019], to

175B parameters in GPT-3 [Brown et al. 2020], the question has arisen of how much knowledge is

stored in these parameters [Petroni et al. 2019].

Prompt engineering. It has been shown that the prompt format used to extract information from

GPT-3 has a significant influence on the performance [Zhao et al. 2021]. This task of constructing

good prompts is called prompt engineering. Recent research has focused on determining what

constitutes good examples for question answering [Liu et al. 2021a] and how to rewrite prompts to

be better for natural language understanding [Liu et al. 2021b].

Semantics in program synthesis. With the increasing availability of large code bases and corpora

of web tables, it was only a matter of time until these would be integrated with inductive synthesis.

InfoGather [Yakout et al. 2012] and the first DataXFormer [Abedjan et al. 2016] extract and match

information contained in web tables for data augmentation and transformation. Later versions of

DataXFormer complement web table data with information from knowledge graphs and web forms.

The data transformations are limited to lookup in tables, without PBE component, and it therefore

requires both input and output to be explicitly present in the tables. Transform-data-by-example

(TDE) uses functions from code bases and web forms to allow semantic operations in inductive

synthesis [He et al. 2018]. As opposed to our framework, the synthesis algorithm has to be highly

tailored towards using these external sources and is limited to string→ string transformations.

Correctness in program synthesis. Examples are an under-specified format of user intent in

program synthesis [Gulwani et al. 2017] and PBE systems are typically not able to guarantee

correctness. As opposed to neural networks, which also rarely provide guarantees on their output,

synthesized programs can still be validated by users. In this regard, our approach is slightly better

than raw neural networks, as the output program conforms to a DSL, but worse than traditional

PBE systems, because the program may contain black-box neural operators. This may not matter

in practise, however, as real-world synthesizers such as FlashFill [Gulwani 2011] and Blue-Pencil

[Miltner et al. 2019] do not expose learned programs to the users, as they can be complex and

written in a DSL that a user might not be familiar with. Instead, the output is presented to the user

for validation. If the number of non-exemplar rows is too large to be validated manually, we can

use the technique proposed in [Mayer et al. 2015], where users only need to focus on rows where

the outputs of top-rank programs are different.

8 CONCLUDING REMARKS
This paper introduces a novel integration two popular technologies: inductive program synthesis

and autoregressive language models with few-shot learning capabilities. We formalize three seman-

tic operators, powered by the language model, that enable tasks involving language understanding

and general knowledge, and describe procedures for learning them using deductive backpropagation.

These operators can be easily integrated in DSLs for different tasks, such as string transformations

and profiling. We show that a combination of syntactic string processing and semantic operators

allows the automation of repetitive tasks that involve lookup and natural language understanding

from a few examples. In this evaluation, we show that having these operators act as oracles during

learning and pruning the set of candidate operators is required to learn these programs quickly.

Additionally, we show that the operator semantics and learning can be easily integrated in existing

DSLs with a case study on string profiling.

The ideas introduced in this paper suggest several interesting directions for future work. Cheaper

language models may be used to improve witness functions and ranking. Specifically, models that
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allow semantic similarity computations may remove syntactic limitations that stem from clustering.

PBE systems are generally sensitive to noise, as they have to learn an exact program from very

few examples. In the presence of noise, when a syntactic program is not found, FlashGPT3 will

default to semantic operators, which might be resilient to some levels of noise. Finally, we plan to

extend this integration to different domains. Most notably, advances in the domains of semantic

refactoring and data extraction may quickly lead to commercial adaptation.
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