
How Long Will it Take to Mitigate this Incident for
Online Service Systems?

Weĳing Wang†, Junjie Chen†, Lin Yang†, Hongyu Zhang‡, Pu Zhao§, Bo Qiao§, Yu Kang§, Qingwei Lin§
Saravanakumar Rajmohan¶, Feng GaoN, Zhangwei XuN, Yingnong DangN, Dongmei Zhang§

†College of Intelligence and Computing, Tianjin University, Tianjin, China
‡The University of Newcastle, Callaghan, Australia

§Microsoft Research, Beĳing, China; ¶Microsoft 365, Redmond, USA; NMicrosoft Azure, Redmond, USA
{wangweĳing, junjiechen, linyang}@tju.edu.cn; hongyu.zhang@newcastle.edu.au

{puzhao, boqiao, kay, qlin, saravar, fgao, zhangxu, yidang, dongmeiz}@microsoft.com

Abstract—Online service systems may encounter a large num-
ber of incidents, which should be mitigated as soon as possible
to minimize the service disruption time and ensure high service
availability. The ability to predict TTM (Time To Mitigation)
of incidents can help service teams better organize the mainte-
nance efforts. Although there are many traditional bug-fixing
time prediction methods, we find that there are not readily
available for incident-TTM prediction due to the characteristics
of incidents. To better understand how incidents are mitigated,
we conduct the first empirical study of incident TTM on 20
large-scale online service systems in Microsoft. We investigate
the time distribution in the main stages of the incident life
cycle and explore factors affecting TTM. Based on our empirical
findings, we propose TTMPred, a deep-learning-based approach
for incident-TTM prediction in a continuous triage scenario.
Our model designs a two-level attention-based bidirectional GRU
model to capture both the semantic information in text data
and the temporal information in incremental discussions. And
based on a novel continuous loss function, it builds a regression
model to achieve accurate TTM prediction as much as possible
at each time point of prediction. Our experiments on four large-
scale online service systems in Microsoft show that TTMPred is
effective and significantly outperforms the compared approaches.
For example, TTMPred improves the state-of-the-art regression-
based approach by 25.66% on average in terms of MAE (Mean
Absolute Error).

Index Terms—Incident Management, Online Service Systems,
Mitigation Time, Prediction

I. Introduction

In recent years, online service systems (such as Microsoft
Azure and Office 365) have become more and more popular
and millions of users around the world use such systems every
day. Although dedicated efforts have been devoted to ensuring
the quality of online service systems [1]–[8], incidents (i.e.,
unplanned interruptions and outages) are still inevitable in
practice. These incidents could cause serious consequences
and economic loss [9], [10]. For example, Facebook lost $89.6
million in revenue due to a service downtime that lasted for
at least 14 hours on March 13, 20191. Therefore, it is very

∗This work was done when Weĳing Wang was visiting Microsoft Research.
Qingwei Lin is the corresponding author for this work.

1https://www.ccn.com/facebooks-blackout-90-million-lost-revenue

important to assure the quality of online service systems and
manage incidents efficiently and effectively.
To minimize service disruption time and ensure high service

availability, incidents should be mitigated as soon as possible
once they occur. We refer to the time required to mitigate an
incident as incident TTM (Time To Mitigation). For a large and
complex online service system, the number of incidents could
be large and the root causes for the incidents could be different.
Meanwhile, the number of operators in a service team for
handling these incidents is limited. Therefore, it is challenging
for a service team to handle all the incidents timely.
The ability to predict incident TTM can help effectively

organize the service team’s maintenance efforts. If TTM can be
precisely estimated in advance, the incident-handling tasks can
be better scheduled and relevant resources can be efficiently
allocated. Although a number of bug-fixing time prediction
approaches have been proposed for traditional software [11]–
[17], they are not suitable for incident TTM. This is because
the information provided by incident reports is relatively
limited compared with those in bug reports. For example,
due to the distributed and complex nature of online service
systems, the initial incident reports do not have sufficient
information that describes the abnormal behavior of the entire
system. Operators need to understand more about the incidents
and the responsible team through continuous discussions with
the help of additional details provided by system monitors.
Also, incident reports do not record enough data that some
bug-fixing time prediction approaches require, such as the
activity data (including code modification, code review, etc.)
required by [12], [13] and the pre-defined bug category re-
quired by [11]. Therefore, existing bug-fixing time prediction
approaches fail to achieve accurate results when applied to
incident TTM prediction. Indeed, according to our experiment
(to be presented in Section IV), the state-of-the-art bug-
fixing time prediction approach, i.e., DeepLSTMPred [13],
achieves only 0.5945 in F-measure on average in incident TTM
prediction for four large-scale online service systems.
To better understand incident TTM, we conducted the first

empirical study based on 20 large-scale online service systems
in Microsoft. According to the study, we found that the time

spent on mitigating incidents after identifying the responsible
team ()3 defined in Section II) is still costly, compared with the
time period from incident reporting to initial triage ()1) and
the time period spent on incident reassignment ()2). It reveals
that predicting TTM at different time points (e.g., incident
reporting, initial triage, and final triage) is useful. Besides, we
identified several factors affecting TTM, which can be used as
features to facilitate the prediction of TTM.

Based on our empirical findings, in this paper, we propose
TTMPred, the first deep-learning-based approach for TTM
prediction. TTMPred considers three kinds of input data
from incidents: initial incident description data (i.e., the title
of an incident report), incremental discussion data (i.e., the
textual conversations among operators before the time point of
TTM prediction), and discrete data (such as incident severity
and some environment information). TTMPred then encodes
these input data to their feature representation by a two-level
attention-based bidirectional GRU model. Finally, TTMPred
builds a regression model to predict the specific incident TTM
by designing a continuous loss function, which aims to achieve
accurate prediction at each time point of TTM prediction.

To evaluate the effectiveness of TTMPred, we collected six-
month incident data of four large-scale, diverse online service
systems in Microsoft. The experimental results show that
TTMPred is indeed effective to predict the specific incident
TTM and significantly outperforms the compared approaches.
For example, TTMPred improves the state-of-the-art bug-
fixing time prediction approach [16] by 25.66% on average in
terms of MAE (Mean Absolute Error). Since most of existing
bug-fixing time prediction approaches just predict whether a
bug can be fixed quickly or slowly, we also applied TTMPred
to build a classification model by setting a threshold to
distinguish fast and slow mitigation. Our experimental results
show that TTMPred improves the state-of-the-art classification
approach [13] by 19.09%∼153.34% in terms of a weighted
average F-measure at each time point. These results further
demonstrate the effectiveness of TTMPred. Besides, our ex-
periments confirmed the contribution of each main component
in TTMPred and each kinds of input data used in TTMPred.

To sum up, this work makes the following contributions:
• We conduct the first empirical study on incident TTM
based on 20 large-scale online service systems in Mi-
crosoft and obtain a series of findings.

• We propose TTMPred, the first deep-learning approach
for TTM prediction at different time points.

• We conduct experiments on four large-scale online ser-
vice systems in Microsoft, and the results demonstrate
that TTMPred is effective and significantly outperforms
the compared approaches.

II. An Empirical Study on TTM
We conducted the first empirical study to facilitate the

understanding of incident TTM. In the study, we used four-year
(ranging from 2017 to 2020) incident data from 20 large-scale
online service systems in Microsoft. We only considered the
incidents that were assigned to operators for mitigation in this

study. Specifically, we first investigated the time distribution
in the main stages of the incident life cycle, and then explored
potential factors affecting TTM.

A. Time Distribution across Incident Life Cycle
As presented in the existing studies [2], [4], [18], the

life cycle of incidents includes four main stages, i.e., in-
cident reporting, incident triage (which refers to assigning
or reassigning an incident to the responsible team/operator),
incident mitigation (which refers to investigating what the
problem is and mitigating it to bring the service back to
normal), and incident resolution (which refers to identifying
and fixing the underlying root cause of the incident through
offline postmortem analysis). For a large-scale online service
system, resolving an incident could take quite some time,
which is unaffordable for the service, and thus minimizing
TTM becomes their pursuit [1], [2], [4], [19]. In this study,
we focus on the first three stages that are related to TTM.
Since incident triage tends to involve multiple reassignments
as reported in the existing studies [1], [4], we further split the
stage of incident triage into initial triage and reassignment.
Therefore, there are three time periods across the stages related
to TTM, and we denote them as)1 (the time period from
incident reporting to initial triage),)2 (the time period spent
on reassignment since the initial triage),)3 (the time period
from the final assignment to incident mitigation).
First of all, we investigated the overall TTM distribution

across all the study systems. We found that the distribution of
TTM follows a long tail distribution, i.e., most of the incidents
can be mitigated in a short time and others require much longer
mitigation time. For example, the TTM of over 80% incidents
is smaller than 7.55 time units and the TTM of the remaining
20% incidents ranges from 7.55 to around 802 time units2.
Different from incidents of online services, developers of tra-
ditional shrink-wrapped software may decide to fix the bugs in
the current release or defer it to a later release, which results in
a lengthy bug-fixing time. According to a study on ArgoUML
and PostgreSQL projects [20], the median resolution time of
bugs is about 200 days. In addition, the number of incidents
could be large since incidents are created as long as it triggers
the condition of system monitors. Sometimes, a root cause
may trigger many monitors and consequently a large number of
incident reports [1]. Therefore, incident mitigation is an urgent
and relatively short-lived task with large quantities. Clearly, for
achieving better incident management and resource allocation,
conducting accurate TTM prediction is important. In this way,
operators can schedule their efforts more effectively within a
short time period for better incident management.
Then, we analyzed the TTM distribution in terms of)1,)2,

and)3 on each studied system, in order to investigate which
time period is the most costly one. Figure 1 shows the results,
where x-axis represents the percentage occupied by)1,)2, and
)3 and y-axis represents different systems. From this figure,
)3 is the longest time period for all the studied systems, its

2Due to the company policy, we hide the actual time unit.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

s20
s19
s18
s17
s16
s15
s14
s13
s12
s11
s10
s9
s8
s7
s6
s5
s4
s3
s2
s1

T1 T2 T3

Fig. 1: Average percentage of)1,)2, and)3 by different
systems

0
1

2
3

0 1 2 3 4 5
time

4
se
ve
ri
ty

T1 T2 T3

Fig. 2: TTM distribution (in terms of multiples of time) across
different severity levels

percentage is ranging from 61.32% to 77.81%. The average
percentage of)1,)2, and)3 is 15.42%, 14.38%, and 70.20%,
respectively.

This result indicates that even though the responsible
team/operator for an incident is identified, mitigating the
incident is still costly, and thus predicting TTM at different
time points (including the time points of incident creation,
initial triage, and final triage) is meaningful. Specifically, as
time goes on (from incident creation to final triage), more
information can be obtained, which is helpful to achieve more
accurate TTM prediction. Here, all the time periods from these
time points to incident mitigation are collectively called TTM
for ease of presentation in this paper.

B. Influencing Factors for TTM
By carefully investigating incident reports and communi-

cating with operators, we identified several potential factors
affecting TTM, including the incident severity, the source of
reporting, and the number of times of incident triage.

Incident severity is measured by the number of potentially
impacted customers, which is estimated according to the
region/cluster where the incident occurred. Incident severity
includes five levels, i.e., 0∼4, where 0 is the highest severity
and 4 is the lowest severity. Figure 2 shows the TTM distribu-
tion across different severity levels. Due to the company policy,

mo
ni

to
r

cu
st

om
er

0 1 2 3 4 5 6
time

en
gi

ne
er

T1 T2 T3

Fig. 3: TTM distribution (in terms of multiples of time) across
different incident-reporting sources

0

1

2

3

4

5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

ti
me

team

Fig. 4: TTM distribution (in terms of multiples of time) across
different responsible teams

we hide the actual time unit. We found that the incidents with
higher severity levels (i.e., 0∼2) have shorter TTM than those
with lower severity levels (i.e., 3∼4), indicating that incident
severity is correlated to TTM to some degree. However, it
alone cannot completely determine the length of TTM since
the incidents with the highest severity level (i.e., 0) do not have
the shortest TTM i.e., they have longer TTM than the incidents
with the severity levels of 1 and 2 because of longer triage time
()2) and longer mitigate time ()3) as shown in Figure 2. We
suspect the reason may be that these very severe incidents tend
to be unusual compared with the historical incidents, so it is
not easy to identify their response team and take measures to
bring the problematic service back to normal based on past
experience.
There are three sources of incident reporting, including

monitor reporting, customer reporting, and engineer reporting.
Figure 3 shows the TTM distribution across different incident-
reporting sources. We found that the incidents reported by
customers have the longest TTM while those by monitors have
the shortest TTM. This is because monitors report incidents
based on predefined templates and have specific location and
time information, and thus they could be mitigated more
quickly. Regarding customer-reporting incidents, customers
tend to only describe their symptoms but not underlying
information due to lack of expertise, and thus operators have to
spend much time investigating these incidents. In particular, as
shown in Figure 3, identifying the responsible team/operator
is significantly costly compared with monitor-reporting and
engineering-reporting incidents. Therefore, incident-reporting
sources could be also correlated to TTM to some degree.
We also analyzed the TTM distribution across different times

of incident triage. Intuitively, the number of times of incident

triage (i.e., the assignment/reassignment of an incident report)
reflects the difficulty of diagnosing the incident and thus could
be correlated to TTM. According to our investigation, as
expected, the time spent on identifying the final responsible
team/operator ()2) increases obviously when the number of
times of incident triage is increasing. Regarding)3, it starts
to decrease with the times of incident triage increasing from
4, since extensive discussion during incident triage provides
clues for further incident mitigation. Moreover, we also found
that different responsible teams/operators have an influence
on TTM due to their different expertise and experience.
Figure 4 illustrates the top 20 teams that handled most of
the incidents. The result indicates that the TTM of incidents
handled by different responsible teams is different. Therefore,
both the number of times of incident triage and the responsible
teams/operators are correlated to TTM to some degree.
C. Summary

In summary, we obtained the following major findings
according to our empirical study:
• The TTM distribution on all the studied incidents has
a long tail, which shows that different incidents require
different TTM and a large portion of incidents have
relatively short TTM.

• The time spent on mitigating incidents after identifying
the responsible team/operator ()3) is still costly (com-
pared with)1 and)2), indicating that predicting TTM at
a different time (including the time of incident creation,
initial triage, and final triage) is meaningful.

• There are many factors affecting TTM, including incident
severity, incident source, times of incident triage, and
responsible teams/operators, which can all be used as
features to facilitate the prediction of TTM.

III. Approach

Motivated by our empirical study described in Section II,
we propose the first approach to predicting the TTM for each
incident. Specifically, there are several factors that have an
influence on TTM as demonstrated in the study, and thus we
design a deep-learning-based approach (called TTMPred) so
that these factors and text information (the core part in an
incident report) can be comprehensively leveraged for TTM
prediction. Since there are several kinds of input data (such as
some discrete data and text data) used in TTMPred, how to
effectively represent them is a major challenge in TTMPred. In
particular, as demonstrated in the above study, it is meaningful
to predict TTM at different time points. As time goes by, tex-
tual discussion information about the incident could be created
incrementally by operators, and more sufficient information
could be helpful to predict TTM. Hence, it is very necessary
to handle such temporal discussion relationship created before
each time point for TTM prediction, which further aggravates
the challenge of representing input data.
Figure 5 shows the overview of TTMPred. For different

kinds of input data (introduced in Section III-A), TTMPred
designs different feature representation methods (presented in

Section III-B). In particular, we design a two-level attention-
based bidirectional GRU model in TTMPred in order to
capture both the semantic information in text data (the first-
level model, also called sentence encoder) and the tempo-
ral relationships in incremental discussion (the second-level
model, also called discussion encoder). In this way, TTMPred
is able to predict TTM at different time points by effectively
leveraging all the input data existing at the corresponding
time point (especially the incrementally provided discussion
information). Based on the represented features, TTMPred
builds a regression model and a classification model to predict
TTM by designing a continuous loss function, which aims to
fit our scenario with incremental discussion information, so
that accurate prediction can be achieved as much as possible
at each time point (presented in Section III-C).

A. Input Data

Inspired by our empirical study and the existing work on
incidents [2], [4], [7], [19], TTMPred considers three kinds of
input data as follows:
Initial text data: The title is a textual description of an

incident provided when the incident report is submitted.
Incremental discussion data: After submitting an incident

report, operators start to discuss this incident in order to
identify what the problem is, determine which team or op-
erator should be responsible for it, and find the strategy of
mitigating it. Discussions among operators could run through
the whole mitigation process (including the process of initial
triage and reassignments). These discussion data are also text
data related to the incident, which are incrementally written
by operators like conversations. Intuitively, with discussions
increasing, more sufficient information about the incident
could be provided, which can further facilitate the prediction of
incident TTM. At each time point for incident TTM prediction,
TTMPred only considers the discussion data provided before
the corresponding time point.
Discrete data: As demonstrated in our empirical study,

several discrete data have an influence on TTM, and thus TTM-
Pred considers them (i.e., incident severity, incident source,
the times of incident triage, and the responsible teams and
operators) as well as some other discrete data (such as the
number of operators involved during the discussion process)
that are recommended by some operators through face-to-
face communication with them. Among these discrete data,
incident severity and incident source are provided when an
incident report is submitted, and the other discrete data are
obtained during the process of incident triage. In particular,
during the process of incident management, the severity and
the responsible teams and operators may be changed with the
understanding for the incident becoming deeper.

B. Feature Representation

For different kinds of input data, we design different feature
representation methods in TTMPred.

Fig. 5: Overview of TTMPred

1) Text Semantic Representation: For text data, extracting
their semantic information and relieving the long discussion
issue help to understand incidents better. To achieve this
goal, TTMPred regards the incident title and each item of
discussion as one long sentence and designs an attention-based
bidirectional GRU model (also called the first-level model in
this paper) as a Sentence Encoder (shown in Figure 5).

GRU [21] is a popular variant of RNN [22] and has been
demonstrated to be effective and efficient in many previous
studies [4], [23]. In a typical GRU, an update gate and a reset
gate work together to control how much information is updated
to the new state. Here, our Sentence Encoder takes a sequence
of words from one sentence (i.e., each discussion item or title)
as input. To obtain the vector of each word, TTMPred first
builds a word-level language model through FastText [24]. We
denote the vectors of a sequence of words from one sentence
as - = [G1, G2, . . . , G=], where GC is the vector of the CCℎ word
and also the input of the GRU at the CCℎ time step. Then,
according to the previous hidden state ℎC−1, the update gate IC
and reset gate AC are calculated by Formula 1:

IC = f(,I · [ℎC−1, GC])
AC = f(,A · [ℎC−1, GC])

(1)

where f is the logistic sigmoid function, ,I and ,A are
network parameters. Afterwards, it calculates the hidden state
ℎC at the CCℎ time step based on ℎC−1 and GC by Formula 2:

ℎ̃C = C0=ℎ(,ℎ · [AC � ℎC−1, GC])
ℎC = IC � ℎC−1 + (1 − IC) � ℎ̃C

(2)

where ,ℎ is also a network parameter and � is an element-
wise multiplication.

In particular, we design a bidirectional GRU model to learn
from both directions of the input sequence, in order to capture
semantic information in a complete sentence. Specifically, the

forward GRU and the backward GRU calculate a hidden state
at a time step respectively, and then we obtain an integrated
hidden state (denoted as �) by concatenating the two hidden
states from both directions.
In addition, not all the words in a sentence make the same

contribution to understand the semantics, and thus we incor-
porate an attention mechanism to identify important words
and then aggregate their representation to produce a sentence
vector. Here, we denote the attention-based sentence vector
integrated by �1, . . . , �= as (, which shows in Formula 3:

(=

=∑
8

U8 ∗ �8 (3)

where U8 is the learned weight of �8 and U8 is calculated by
the softmax function.
2) Temporal Discussion Representation: We then design

the second-level attention-based bidirectional GRU model in
order to capture the temporal relationships in incremental
discussion and then obtain temporal discussion representation
(as shown in Discussion Encoder in Figure 5). Due to the
noise in operators’ conversations, not all the discussion items
are equally important for TTM prediction. Here, we also
incorporate an attention mechanism to assign different weights
to these discussion items by measuring their importance. In
this way, TTMPred can predict TTM at different time points
by effectively leveraging incrementally provided discussion
information.
Specifically, as shown in Discussion Encoder in Figure 5,

� 9 ,: 9 represents the sequence of : 9 discussions items between
the (9 − 1)Cℎ triage and the 9 Cℎ triage. At the 9 Cℎ triage,
the input of Discussion Encoder is a sequence of discussion
vectors [(1, . . . , (<] (i.e., the outputs of Sentence Encoder
from �1,1 to � 9 ,: 9), while the output of Discussion Encoder is
the attention-based discussion vector � 9 . Here, our second-

level bidirectional GRU model can incorporate the context
information from neighbor discussion items into � ′, and the
attention mechanism can help assign relatively small weights
on noisy � ′. Unlike the attention mechanism in Sentence
Encoder, the weights are recalculated at each time point of
TTM prediction (e.g., each triage) since there are incremental
discussion items involved.

3) Discrete Feature Embedding: Regarding each type of
discrete data, we embed it into a fixed-dimension vector and
keep tuning the vector as model parameters. We denote the
feature vector of the : Cℎ type of discrete data as � (:) =

4:1, 4:2, ..., 4:B, where B means the pre-defined dimensions
for the : Cℎ type of discrete data. Then, we concatenate all
the feature vectors of discrete data into a vector � , where
� = � (1) ⊕ � (2) ⊕ � (3) ⊕ ... ⊕ � (A) , where A is the number
of types of discrete data and ⊕ refers to the concatenation
operator. Since some types of discrete data may change during
the triage process, we define the concatenated vector at the 9 Cℎ
time point of TTM prediction as � 9 .

C. Model Building
To represent the incident at the 9 Cℎ time point of TTM

prediction, TTMPred concatenates the title representation) ,
the temporal discussion representation � 9 , and the discrete
data representation � 9 as [) ;� 9 ; � 9]. Then, TTMPred adopts
a Multi-Layer-Perception (MLP) model to build the prediction
model.

Since we aim to achieve accurate prediction as much as
possible at each time point of TTM prediction, TTMPred
calculates the average loss at various time points inspired by
the continuous loss function proposed in the existing work [4].
As shown in Formula 4, the cumulative prediction results at
each time point can be optimized when computing the gradient
of the cost function during the back propagation,

;>BB =

∑=
:=1

[∑C:
9=1 ;>BB:, 9

]
∑:=1
= C:

(4)

where = is the number of incidents in the training set, C: refers
to the number of time points for the : Cℎ incident, and ;>BB:, 9
means the loss value at the 9 Cℎ time point for the : Cℎ incident.
To predict the specific incident TTM, we propose to use���:, 9 − �:, 9 �� as ;>BB:, 9 to build a regression model, where

�:, 9 is the actual mitigation time from the 9 Cℎ time point
to the final mitigation, while the �:, 9 is the corresponding
predicted time. In addition, to compare TTMPred with existing
classification-based bug-fixing time prediction approaches, we
utilize the cross entropy loss as ;>BB:, 9 to build a classification
model.

IV. Evaluation
In the study, we aim to address four research questions:

• RQ1: How does TTMPred perform in predicting incident
TTM?

• RQ2: Does each main component contribute to TTMPred?
• RQ3: Does each type of input data contribute to TTMPred?
• RQ4: What is the influence of main parameters in TTM-
Pred?

A. Subjects
In the study, we used four large-scale, diverse online service

systems in Microsoft as subjects, which belong to different
application areas and are developed by different groups. We
collected six-month incident data for each subject, and the
amount of data varies largely. Since TTMPred is designed for
predicting the specific time of incident mitigation, we filtered
out the incidents that have not been resolved and those that
were mitigated automatically. For each subject, we used the
incidents from the former four months as the training set, those
from the fifth month as the validation set, and the remaining
one-month incidents as the testing set. In total, there are over
5GB of incident data involving 1,225 teams.

B. Compared Approaches
TTMPred is the first approach to predicting incident TTM,

and thus we do not have direct compared approaches. To
validate the effectiveness of existing bug-fixing time prediction
approaches on TTM prediction, we adapted them to fit the
incident mitigation scenario for comparison. In traditional
bug-fixing time prediction, most approaches treated it as a
classification problem, i.e., quick or slow fixing [11]–[13].
A few approaches [16], [25], [26] were proposed to predict
specific bug-fixing time by building a regression model. Since
our work aims to predict specific incident TTM, we mainly
compared TTMPred with the state-of-the-art regression ap-
proach [16]. Furthermore, TTMPred is a deep-learning-based
approach (including a two-level attention-based bidirectional
GRU model for text semantic representation and MLP for
prediction), and thus we also constructed some baselines based
on traditional TF-IDF for text processing and machine learning
for prediction to more sufficiently evaluate the effectiveness of
TTMPred. In addition, to further investigate whether TTMPred
can outperform existing classification approaches, we applied
TTMPred as a classification approach by setting a threshold
to distinguish quick/slow mitigation. In the following, we
introduce these compared approaches in detail.
Regression. The state-of-the-art regression approach for

predicting specific bug-fixing time was proposed by Ardimento
et al. [16]. It first extracts important features from bug reports
through Principal Component Analysis (PCA) [27], and then
applies Support Vector Machine and Random Forests to build
a regression model, respectively. We call them SVR and RFR.
Regarding our constructed traditional machine-learning

based baselines, based on the same input data as TTMPred,
we first adopted TF-IDF to represent text data (i.e., title and
discussion) and then applied Linear Regression [28] (LR),
Decision Tree Regression [29] (DTR), and XGBoost [30]
(XGB) for regression respectively, instead of deep learning
used in TTMPred.
Classification. We adapted three typical classification ap-

proaches in the field of traditional bug-fixing time prediction
for incident TTM prediction (i.e., predicting whether an inci-
dent will be mitigated quickly or slowly):
1) Zhang et al. [11] proposed a KNN-based classification

approach. It first extracts features (e.g., title and severity)

from each bug report, then applies the KNN algorithm
to obtain K nearest neighbors of an incoming bug report,
finally, predict whether it will be fixed quickly or slowly.
We call it KNN in this paper.

2) Habayeb et al. [12] proposed a classification approach
based on Hidden Markov Models. We call it HMM in
this paper. HMM first extracts all the activities (e.g., bug
triage, code changes, and severity changes) and states
(e.g., “new”, “assigned”, “reopen”, and “unconfirmed”)
associated with a bug. Then, it builds two Hidden Markov
Models to learn the state changes based on various activ-
ities for quickly-fixed and slowly-fixed bugs, respectively.
Finally, it determines whether a bug is fixed quickly or
slowly by comparing the outputs of the two models.

3) Sepahvand et al. [13] proposed DeepLSTMPred, which
first learns activity representation by the CBOW algo-
rithm [31], then encodes an activity sequence using a
LSTM model [32], finally builds a binary classifier by a
fully-connected layer.

Please note that not all the features (such as activities related
to code changes) used in these approaches are available in the
scenario of incident TTM prediction, and thus we mapped
features between the two scenarios as much as possible in
order to obtain the best results of these traditional bug-fixing
time prediction approaches in TTM prediction.

C. Variants of TTMPred

To answer RQ2, we constructed several variants of TTM-
Pred to investigate the contributions of three main components
in TTMPred, including the bidirectional GRU model, the
attention mechanism, and the continuous loss function. The
details of these variants are presented as follows.

• TTMPredcnn and TTMPredtfidf replace the first-
level bidirectional GRU model in TTMPred with the
TextCNN [33] model and the TF-IDF [34] algorithm,
respectively. Specifically, in the TextCNN model we ap-
plied three sets of convolution kernels (i.e., 2,3,4), where
each set has 100 kernels. As for the TF-IDF algorithm,
we calculated the weight of each word (denoted as F)
by)� × ��� and aggregated all the word vectors in a
sentence by (=

∑#
8=1 F8 ·G8 , where G8 denotes the vector of

the 8Cℎ word obtained from FastText (same as TTMPred).
• TTMPred,

=>�CC
and TTMPred(

=>�CC
remove the attention

mechanism in each level of attention-based bidirectional
GRU model, respectively.

• TTMPred>A8;>BB directly calculates the loss at the final
time step instead of the continuous loss function used
in TTMPred.

To answer RQ3, we investigated the contribution of each
type of input data, including initial text data, incremen-
tal discussion data, and discrete data. Specifically, we con-
structed three variants i.e., TTMPred)=>, TTMPred�=>, and
TTMPred�=> by removing each type of input data from TTM-
Pred, respectively.

D. Implementations and Configurations
We implemented TTMPred based on Python 3.8 and Py-

torch 1.5. Through grid search, we set the word-embedding
size to 200, the size of GRU hidden states to 100, the number
of GRU layers to 1, learning rate to 0.002, and epoch to 10.

Since the implementations of compared approaches are not
available, we carefully re-implemented them following the
descriptions in the corresponding papers. Regarding the set-
tings of parameters in the compared approaches, we set them
following the corresponding papers. If some parameter settings
are not provided, we also conducted a grid search on validation
sets to identify the best settings. For HMM [12], we used
the hmmlearn [35] library to implement the Hidden Markov
Models. For XGB, we used the implementation provided in
the XGBoost python module [30]. For other machine learning
methods, we adopted the implementations provided in the
scikit-learn library [36].
We conducted all the experiments on Ubuntu 18.04.5 LTS

with Intel(R) Xeon(R) CPU (2.60GHz), 64-bit operating sys-
tem, and an NVIDIA Tesla P100 GRU accelerator.
E. Evaluation Metrics

In the study, we used Mean Absolute Error (MAE) to
measure the effectiveness of regression approaches [37], which
measures the mean of the absolute differences between the
actual and predicted results by MAE = 1

<

∑<
8=1 |�8 − �8 | (�8

and �8 refer to the actual and predicted result for the 8th

incident, respectively). The smaller MAE indicates the better
regression effectiveness.
Regarding classification approaches, we used the weighted

average F-measure (F) to measure their effectiveness. The F-
measure for each class 28 is calculated by Formula 5,

F28 =
2 · (Precision28 · Recall28)
Precision28 + Recall28

(5)

and then their average � is weighted by the number of
instances in each class as shown in Formula 6,

F =

∑
28
(#28 · F28)∑
28
#28

(6)

where #28 denotes that the total number of instances whose
labels are 28 . The value of F is between 0 and 1, and the larger
F value indicates the better classification accuracy.
F. Results and Analysis
1) RQ1: Effectiveness of TTMPred:
Regression: Table I shows the effectiveness of TTMPred

compared with five baselines (i.e., the existing bug-fixing time
prediction approaches SVR and RFR, and our constructed
machine-learning based baselines LR, DTR and XGB) on
four real-world online service systems (i.e., S1 to S4). We
calculated the MAE results at different time points for TTM
prediction, i.e., incident reporting (i.e., "A), initial triage (i.e.,
"8), and final triage (i.e., " 5), respectively. Due to the long-
tail distribution, it is hard to predict TTM for the incidents
mitigated slowly. Therefore, we further divided the testing data
into two groups (i.e., incidents mitigated quickly and incidents

TABLE I: Experiment results of regression approaches on four online service systems

Approach Mr Mfast
r Mslow

r Mi Mfast
i Mslow

i Mf Mfast
f Mslow

f

S1

TTMPred 1.9864 0.5129 2.5715 1.7022 0.4176 2.3311 1.6303 0.4336 2.2639
SVR 2.6324 0.5124 3.4741 2.4144 0.4138 3.3938 2.3395 0.4303 3.3505
RFR 2.1002 1.0561 2.5147 1.9042 1.1981 2.2499 1.8690 1.2172 2.2142
LR 2.2785 1.2920 2.6703 2.2067 1.2127 2.6933 2.1557 1.2037 2.6597
DTR 2.3772 1.0659 2.8978 2.1643 1.2290 2.6222 2.1304 1.2870 2.5771
XGB 2.0032 1.1169 2.3551 1.8589 1.2822 2.1412 1.8341 1.3191 2.1068

S2

TTMPred 2.1160 0.5310 2.6556 1.9323 0.3090 2.5626 1.9014 0.3175 2.5739
SVR 4.0691 0.6258 5.2475 3.6669 0.4883 4.9081 3.6113 0.5060 4.9340
RFR 2.8197 1.2894 3.3435 2.7223 0.9527 3.4133 2.6960 0.9723 3.4302
LR 3.5371 1.5641 4.2124 3.3192 1.4796 4.0374 3.2813 1.4363 4.0671
DTR 2.9471 1.5904 3.4114 2.9012 0.9355 3.6687 2.8623 0.9486 3.6775
XGB 2.7075 1.1798 3.2303 2.9025 0.9231 3.6754 2.8648 0.9395 3.6849

S3

TTMPred 1.3175 0.4904 1.9424 1.1460 0.3897 2.0471 1.0882 0.3855 2.0000
SVR 1.3572 0.2953 2.1595 1.2616 0.4890 2.1823 1.2154 0.4989 2.1454
RFR 1.5391 0.9187 2.0078 1.5495 1.1371 2.0408 1.5157 1.1341 2.0111
LR 1.5563 1.0867 1.9111 1.3653 0.8963 1.9241 1.3251 0.9174 1.8543
DTR 1.7494 0.8976 2.3930 1.8687 1.2152 2.6474 1.8150 1.2232 2.5831
XGB 1.4937 1.0097 1.8594 1.4962 0.9954 2.0930 1.4898 1.0134 2.1079

S4

TTMPred 1.1621 0.4267 1.8103 1.0380 0.5073 1.6614 1.0160 0.5172 1.6229
SVR 1.3368 0.2611 2.2848 1.0743 0.2611 2.0297 1.0466 0.2608 2.0026
RFR 1.4088 0.8531 1.8986 1.2895 0.9942 1.6364 1.2733 1.0215 1.5797
LR 1.5740 1.3463 1.7746 1.3596 1.1362 1.6221 1.3519 1.1514 1.5959
DTR 1.4320 0.9599 1.8481 1.3348 0.8103 1.9510 1.3151 0.8208 1.9163
XGB 1.4320 0.9599 1.8481 1.3348 0.8103 1.9510 1.3151 0.8208 1.9163

Avg.

TTMPred 1.6455 0.4903 2.2450 1.4546 0.4059 2.1506 1.4090 0.4135 2.1152
SVR 2.3489 0.4237 3.2915 2.1043 0.4131 3.1285 2.0532 0.4240 3.1081
RFR 1.9670 1.0293 2.4412 1.8664 1.0705 2.3351 1.8385 1.0863 2.3088
LR 2.2365 1.3223 2.6421 2.0627 1.1812 2.5692 2.0285 1.1772 2.5443
DTR 2.1264 1.1285 2.6376 2.0673 1.0475 2.7223 2.0307 1.0699 2.6885
XGB 1.9091 1.0666 2.3232 1.8981 1.0028 2.4652 1.8760 1.0232 2.4540

TABLE II: Average experiment results of classification approaches on four online service systems

Approach 0.25 ×median 0.5 ×median 1 ×median 2 ×median
Fr Fi Ff Fr Fi Ff Fr Fi Ff Fr Fi Ff

TTMPred 0.81 0.78 0.77 0.79 0.76 0.76 0.78 0.76 0.75 0.77 0.76 0.76
DeepLSTMPred 0.68 0.31 0.33 0.58 0.39 0.41 0.51 0.37 0.39 0.42 0.42 0.42
HMM 0.09 0.53 0.53 0.21 0.40 0.40 0.37 0.46 0.46 0.29 0.38 0.39
KNN 0.70 0.63 0.61 0.60 0.58 0.56 0.51 0.62 0.62 0.39 0.61 0.61

mitigated slowly) according to the median TTM on the training
set, and then calculated the MAE results at different time
points respectively, denoted as "

fast
A , "slow

A , " fast
8

, "slow
8

,
"

fast
5

, and "slow
5

. In particular, the bold value for each metric
represents the best result among all the compared approaches
under the corresponding metric.

From Table I, TTMPred performs the best in terms of
MAE at all the three studied time points (i.e., "A , "8 , and
" 5) for TTM prediction among all the compared approaches.
The average improvement of TTMPred over SVR, RFR, LR,
DTR and XGB across all the systems is 29.95%, 16.34%,
26.42%, 22.62% and 13.81% in terms of "A , 30.87%, 22.06%,
29.48%, 29.63% and 23.36% in terms of "8 , and 31.38%,
23.36%, 30.54%, 30.62%, 24.89% in terms of " 5 . The results
demonstrate that TTMPred is effective and stable. Besides,
we found that TTMPred becomes better as the time goes by
(i.e., from the time point of incident reporting to the time of
final triage). This is as expected since 1) more information
(especially the incremental discussion information) will be

leveraged by TTMPred for incident TTM prediction, and 2)
the goal of our continuous loss function is to achieve accurate
TTM prediction as much as possible at each time point.
In addition, TTMPred sometimes performs slightly worse

than some compared regression approaches in terms of " fast

or "slow, but actually, when these approaches perform slightly
better than TTMPred in one metric, the former perform much
worse than the latter in another metric. For example, SVR
outperforms TTMPred by 13.58% in terms of "

fast
A , but

performs much worse than the latter by 46.61% in terms of
"slow
A . The results demonstrate the overall effectiveness of

TTMPred.
Classification: Table II presents the average classification

results of the four studied systems under different time thresh-
olds (i.e., 0.25, 0.5, 1 and 2 times of the median TTM).
We calculated the weighted average F-measure of incidents
at different time points, i.e., incident reporting (i.e., �A),
initial triage (i.e., �8), and final triage (i.e., � 5) as shown
in the header. We compared TTMPred with three existing

TABLE III: Average regression results among TTMPred and
its variants for RQ2 on four studied systems

Approach Mr Mi Mf

TTMPred 1.6455 1.4546 1.4090
TTMPredcnn 2.1009 1.4770 1.4335
TTMPredtfidf 2.1583 1.5303 1.4849
TTMPredW

noAtt 1.7104 1.5663 1.5178
TTMPredS

noAtt — 1.4785 1.4331
TTMPredori

loss 2.1826 1.5038 1.4610

classification-based bug-fix time prediction approaches (i.e.,
DeepLSTMPred, HMM and KNN). Please note that the bold
value for each metric represents the best result among all the
compared approaches.

The results from Table II demonstrate that TTMPred
achieves effective and stable classification results at different
time points. For example, in TTMPred, all the results in terms
of �A , �8 and � 5 are larger than 0.75, and the largest difference
between � 5 and �A is only 0.04. However, all the results of
compared approaches at different time points do not exceed
0.70, and the results are unstable, which reflect that existing
bug-fixing time prediction approaches are not suitable for
incident TTM prediction.

We further analyzed the reasons for these compared ap-
proaches. Regarding DeepLSTMPred and HMM, they rely on
the sequences of activities and states, but these information
provided by incident reports is very limited as presented in
Section I. Therefore, it is difficult for them to learn useful
information from the limited activities and states for incidents.
Regarding KNN, one of the most important features used by
it is the pre-defined bug category, which cannot be found in
incident data, and thus the effectiveness of KNN is poor in the
scenario of incident TTM prediction.

2) RQ2: Contribution of each main component: To in-
vestigate the contribution of each main component (i.e., the
bidirectional GRU model, the attention mechanism, and the
continuous loss function) in TTMPred, we compared TTM-
Pred with its corresponding variants in terms of MAE at the
three time points for TTM prediction. Table III shows the
comparison results. By comparing TTMPred with TTMPredcnn
and TTMPredtfidf, we found that the former improves the latter
two by 21.68% and 23.76% in terms of "A , 1.51% and 4.94%
in terms of "8 , and 1.71% and 5.11% in terms of " 5 , re-
spectively. The results demonstrate that our bidirectional GRU
model is more effective to learn text semantic information for
TTM prediction than TextCNN and TF-IDF.

In addition, by comparing TTMPred with TTMPred,noAtt and
TTMPred(noAtt, we found that TTMPred outperforms the latter
with the average improvement of 3.79% in terms of "A (since
there is no discussion information at the time point of incident
report, the second-level model does not start to contribute to
TTMPred, and thus we did not evaluate TTMPred(noAtt at this
time point), 7.13% and 1.61% in terms of "8 , and 7.17% and
1.69% in terms of " 5 , respectively. The results confirm the
contribution of the attention mechanism in each level, which
is indeed able to handle noise in text data well.

TABLE IV: Average regression results among TTMPred and
its variants for RQ3 on four studied systems

Approach Mr Mi Mf

TTMPred 1.6455 1.4546 1.4090
TTMPredT

no 2.1875 1.4241 1.3774
TTMPredD

no 1.6530 1.4728 1.4304
TTMPredE

no 1.6627 1.5233 1.4811

Mr Mi Mf
1.3

1.5

1.7

1.9
1 2 3

(a) Number of GRU Layers

Mr Mi Mf
1.3

1.5

1.7

1.9
100 200 300

(b) Size of GRU Hidden States

Fig. 6: The MAE of various TTMPred configurations among
four studied systems

By comparing TTMPred and TTMPred>A8
;>BB

, we found that
the former performs better than the latter with the average
improvement of 24.61% in terms of "A , 3.27% in terms of
"8 , and 3.56% in terms of " 5 , respectively, confirming the
contribution of our continuous loss function. In particular,
TTMPred (i.e., 1.6455) largely outperforms TTMPred>A8

;>BB
(i.e.,

2.1826) in terms of "A . This is because the loss function in
TTMPred>A8

;>BB
only focus on the loss at the final time step,

leading to worse effectiveness at the beginning.

3) RQ3: Contribution of each type of input data: We
compared TTMPred with its corresponding three variants,
whose results are shown in Table IV. By comparing TTMPred
and TTMPred)=>, we found that the former largely outperforms
the latter with the average improvement of 24.78% in terms
of "A , but performs slightly worse than the latter in terms
of "8 and " 5 . This is because, at the beginning, incident
title is the only text data and thus it makes very important
contribution to TTMPred. With the discussion information
accumulating, more accurate text data are obtained, and thus
the title information may become limited, even misleading.
By comparing TTMPred with TTMPred�=> and TTMPred�=>,
we found that the former outperforms the latter two with
the average improvement of 0.45% and 1.03% in terms of
"A , 1.23% and 4.51% in terms of "8 , and 1.50% and
4.87% in terms of " 5 , respectively. The results confirm the
contributions of discussion data and discrete data to TTMPred.

4) RQ4: Influence of main parameters in TTMPred: We
investigated the influence of some main parameters (i.e., the
number of GRU layers and the size of GRU hidden states) in
TTMPred, whose results are shown in Figure 6. In this figure,
the x-axis represents three time points for TTM prediction
while the y-axis represents the average MAE values on the
four studied systems. We found that TTMPred is insensitive
to these parameters within certain ranges.

V. Threats to Validity

The internal threat to validity mainly lies in the imple-
mentations of our approach and compared approaches. All
the compared approaches are not open-source, thus we reim-
plemented them strictly following the description about them
in the corresponding papers. To avoid implementation errors,
we employed mature and widely-used frameworks and toolkit
as presented in Section IV-D. In addition, there are many
duplicate/linked incidents that have the same root cause. The
relationships among incidents are marked during the incident
investigation. The discussion items will only be recorded in the
parent incident report, thus TTMPred may not perform well on
the child incidents since they do not have complete discussion
information. In the future, we will consider the linkage of
incidents [3] during TTM prediction.

The external threat to validity mainly refers to the gener-
alizability of our approach. First of all, the data we used in
the empirical study and evaluation are from real-world online
service systems in different application areas and developed
by different product groups, which ensures the diversity of
these systems. Even so, these systems may not represent
online service systems in other companies. Due to the general
framework of our approach, as long as there exists incident
data with title, rich discussion, and discrete data at each time
point of TTM prediction, it is easy to apply TTMPred on
such datasets. In the future, we will perform a larger-scale
evaluation on the systems from different companies, even
on traditional software systems. Secondly, the evolution of
systems may bring influence, since the knowledge learned from
historical incidents may become invalid or misleading.

VI. Related Work

A. Incident management

Our work is related to incident management since predicting
incident TTM at each time point can help effectively orga-
nize the service team’s maintenance efforts. There are many
studies on how to effectively solve the challenges posed by
the incidents [1]–[4], [7], [8], [19], [38], [39]. Some studies
focus on incident identification [3], [38]. For example, Lim et
al. [38] proposed a Hidden Markov Random Field (HMRF)
based approach to identify recurrent and unknown incidents.
Furthermore, due to the complexity of online service systems,
incidents could be widely propagated and cause a large num-
ber of alarms. Hence, Chen et al. [3] proposed LiDAR to
identify linked incidents based on the relationships between
components of the systems. Besides, Chen et al. [1], [4]
conducted in-depth studies of incident triage in Microsoft In-
cident Management system, and proposed the first continuous
incident triage approach DeepCT. Furthermore, some studies
focus on accelerating the incident mitigation process from
different aspects. For example, Jiang et al. [2] proposed an
automated Trouble Shooting Guide recommendation approach
DeepRmd to help operators speed up the investigation process
of incidents. Chen et al. [19] prioritized incidents by predicting

the probabilities of incidents being incidental to optimize
incident mitigation efforts.
Different from these work, our work is the first one to predict

incident TTM in incident management.

B. Bug-fixing time prediction
Our work is related to bug-fixing time prediction. Exist-

ing bug-fixing time prediction approaches can be classified
into three categories: attribute-based, activity-based and text-
based approaches. To construct a prediction model, researchers
usually use simple partial discrete attributes (such as bug
reporter, bug assignee and operating system) to construct
representations of bug reports [17], [25], [40]–[45]. How-
ever, relying on discrete attributes alone does not always
achieve good results. [26], [46] confirmed that some widely-
used attributes do not always correlate with bug-fixing time.
Besides, temporal sequences of engineers’ bug-fixing activities
are recorded clearly in traditional bug-fixing process, thus
some approaches proposed sequential models to capture the
transition information of activities, such as HMM [12] and
LSTM [13]. Moreover, to extract more useful information,
many studies have been devoted to explore textual description
such as bug title and bug summary [11], [14]–[17], [47].
Different from the above work, our work aims at predicting

the specific incident TTM value in real-word continuous triage
scenario based on information that may be updated (i.e., incre-
mental discussion and some types of discrete data), rather than
predicting bug fixing-time according to the given activities
sequence or the initial bug reports (i.e., without incremental
discussion and updated discrete data).

VII. Conclusion
The ability to predict incident TTM (Time to Mitigation)

can better schedule the mitigation efforts for better incident
management. In this paper, we present the first empirical
study on incident TTM based on 20 large-scale online ser-
vice systems in Microsoft. During the empirical study, we
investigate the time distribution in the main stages of the
incident life cycle and explore potential factors affecting TTM.
Based on our empirical findings, we propose TTMPred, a
deep-learning-based approach for continuous TTM prediction.
Our model designs a two-level attention-based bidirectional
GRU model to capture text semantic information in text data
and temporal information in incremental discussions. And
it builds a regression model to predict the specific incident
TTM by designing a continuous loss function, which aims
to achieve accurate prediction as much as possible at each
time point of TTM prediction. Our experiments on four large-
scale diverse online service systems in Microsoft show that
our TTMPred is effective and significantly outperforms the
compared approaches.

Acknowledgment
This work was supported by the National Natural Science

Foundation of China (Grant No. 62002256) and the Australian
Research Council (ARC) Discovery Project (DP200102940).

References
[1] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu,

Y. Dang, and D. Zhang, “An empirical investigation of incident triage
for online service systems,” in ICSE (SEIP). IEEE / ACM, 2019, pp.
111–120.

[2] J. Jiang, W. Lu, J. Chen, Q. Lin, P. Zhao, Y. Kang, H. Zhang, Y. Xiong,
F. Gao, Z. Xu, Y. Dang, and D. Zhang, “How to mitigate the incident?
an effective troubleshooting guide recommendation technique for online
service systems,” in ESEC/SIGSOFT FSE. ACM, 2020, pp. 1410–1420.

[3] Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao,
Y. Kang, F. Gao, Z. Xu, and D. Zhang, “Identifying linked incidents
in large-scale online service systems,” in ESEC/SIGSOFT FSE. ACM,
2020, pp. 304–314.

[4] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “Continuous incident triage for large-scale online service
systems,” in ASE. IEEE, 2019, pp. 364–375.

[5] J. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie, “Software analytics
for incident management of online services: An experience report,” in
ASE. IEEE, 2013, pp. 475–485.

[6] ——, “Experience report on applying software analytics in incident
management of online service,” Autom. Softw. Eng., vol. 24, no. 4, pp.
905–941, 2017.

[7] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu, F. Zhou, Z. Feng,
X. Nie, W. Zhang, K. Sui, and D. Pei, “Real-time incident prediction
for online service systems,” in ESEC/SIGSOFT FSE. ACM, 2020, pp.
315–326.

[8] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang, Z. Chen,
X. Zheng, X. Nie, G. Wang, Y. Wu, F. Zhou, W. Zhang, K. Sui,
and D. Pei, “Understanding and handling alert storm for online service
systems,” in ICSE (SEIP). ACM, 2020, pp. 162–171.

[9] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and
R. Ranjan, “Emergent failures: Rethinking cloud reliability at scale,”
IEEE Cloud Computing, vol. 5, no. 5, pp. 12–21, 2018.

[10] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
“How bad can a bug get? an empirical analysis of software failures
in the openstack cloud computing platform,” in ESEC/SIGSOFT FSE.
ACM, 2019, pp. 200–211.

[11] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: an
empirical study of commercial software projects,” in ICSE. IEEE
Computer Society, 2013, pp. 1042–1051.

[12] M. Habayeb, S. S. Murtaza, A. V. Miranskyy, and A. B. Bener, “On
the use of hidden markov model to predict the time to fix bugs,” IEEE
Trans. Software Eng., vol. 44, no. 12, pp. 1224–1244, 2018.

[13] R. Sepahvand, R. Akbari, and S. Hashemi, “Predicting the bug fixing
time using word embedding and deep long short term memories,” IET
Softw., vol. 14, no. 3, pp. 203–212, 2020.

[14] P. Ardimento and A. Dinapoli, “Knowledge extraction from on-line
open source bug tracking systems to predict bug-fixing time,” in WIMS.
ACM, 2017, pp. 7:1–7:9.

[15] P. Ardimento, M. Bilancia, and S. Monopoli, “Predicting bug-fix time:
Using standard versus topic-based text categorization techniques,” in DS,
ser. Lecture Notes in Computer Science, vol. 9956, 2016, pp. 167–182.

[16] P. Ardimento, N. Boffoli, and C. Mele, “A text-based regression approach
to predict bug-fix time,” in Complex Pattern Mining, ser. Studies in
Computational Intelligence. Springer, 2020, vol. 880, pp. 63–83.

[17] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it
take to fix this bug?” in MSR. IEEE Computer Society, 2007, p. 1.

[18] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu, Y. Dang, F. Gao, P. Zhao, B. Qiao, Q. Lin, D. Zhang, and
M. R. Lyu, “Towards intelligent incident management: why we need it
and how we make it,” in ESEC/SIGSOFT FSE. ACM, 2020, pp. 1487–
1497.

[19] J. Chen, S. Zhang, X. He, Q. Lin, H. Zhang, D. Hao, Y. Kang, F. Gao,
Z. Xu, Y. Dang, and D. Zhang, “How incidental are the incidents?
characterizing and prioritizing incidents for large-scale online service
systems,” in ASE. IEEE, 2020, pp. 373–384.

[20] S. Kim and E. J. W. Jr., “How long did it take to fix bugs?” in MSR.
ACM, 2006, pp. 173–174.

[21] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014.

[22] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
in SSST@EMNLP. Association for Computational Linguistics, 2014,
pp. 103–111.

[23] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in ICSE. IEEE, 2021, pp. 1448–1460.

[24] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, 2017.

[25] S. Puranik, P. Deshpande, and K. Chandrasekaran, “A novel machine
learning approach for bug prediction,” Procedia Computer Science,
vol. 93, pp. 924–930, 2016.

[26] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: can
we do better?” in Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011, pp. 207–210.

[27] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[28] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley &
Sons, 2012, vol. 329.

[29] K. Osei-Bryson, “Evaluation of decision trees: a multi-criteria ap-
proach,” Comput. Oper. Res., vol. 31, no. 11, pp. 1933–1945, 2004.

[30] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in KDD. ACM, 2016, pp. 785–794.

[31] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” CoRR,
vol. abs/1310.4546, 2013.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[33] C. N. dos Santos and M. Gatti, “Deep convolutional neural networks for
sentiment analysis of short texts,” in COLING. ACL, 2014, pp. 69–78.

[34] G. Salton and C. Buckley, “Term-weighting approaches in automatic text
retrieval,” Inf. Process. Manag., vol. 24, no. 5, pp. 513–523, 1988.

[35] S. Lebedev, “hmmlearn,” GitHub.(https://github.com/hmmlearn/hmmlearn),
2016.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, 2011.

[37] C. Willmott, S. Ackleson, R. Davis, J. Feddema, K. Klink, D. Legates,
J. O’donnell, and C. Rowe, “Statistics for the evaluation of model
performance,” J. Geophys. Res, vol. 90, no. C5, pp. 8995–9005, 1985.

[38] M. Lim, J. Lou, H. Zhang, Q. Fu, A. B. J. Teoh, Q. Lin, R. Ding, and
D. Zhang, “Identifying recurrent and unknown performance issues,” in
ICDM. IEEE Computer Society, 2014, pp. 320–329.

[39] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang,
H. Dong, Y. Xu, H. Li, and Y. Kang, “Outage prediction and diagnosis
for cloud service systems,” in WWW. ACM, 2019, pp. 2659–2665.

[40] E. Giger, M. Pinzger, and H. C. Gall, “Predicting the fix time of bugs,”
in RSSE@ICSE. ACM, 2010, pp. 52–56.

[41] M. Sharma, M. Kumari, and V. B. Singh, “Multi-attribute dependent
bug severity and fix time prediction modeling,” Int. J. Syst. Assur. Eng.
Manag., vol. 10, no. 5, pp. 1328–1352, 2019.

[42] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: an empirical study of microsoft
windows,” in ICSE (1). ACM, 2010, pp. 495–504.

[43] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in SIGSOFT FSE. ACM,
2008, pp. 308–318.

[44] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study on
factors impacting bug fixing time,” in WCRE. IEEE Computer Society,
2012, pp. 225–234.

[45] L. D. Panjer, “Predicting eclipse bug lifetimes,” in MSR. IEEE
Computer Society, 2007, p. 29.

[46] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs in
large open source projects,” in PROMISE. ACM, 2011, p. 11.

[47] R. Sawarkar, N. K. Nagwani, and S. Kumar, “Predicting bug estimation
time for newly reported bug using machine learning algorithms,” in
2019 IEEE 5th International Conference for Convergence in Technology
(I2CT). IEEE, 2019, pp. 1–4.

	Introduction
	An Empirical Study on TTM
	Time Distribution across Incident Life Cycle
	Influencing Factors for TTM
	Summary

	Approach
	Input Data
	Feature Representation
	Text Semantic Representation
	Temporal Discussion Representation
	Discrete Feature Embedding

	Model Building

	Evaluation
	Subjects
	Compared Approaches
	Variants of TTMPred
	Implementations and Configurations
	Evaluation Metrics
	Results and Analysis
	RQ1: Effectiveness of TTMPred
	RQ2: Contribution of each main component
	RQ3: Contribution of each type of input data
	RQ4: Influence of main parameters in TTMPred

	Threats to Validity
	Related Work
	Incident management
	Bug-fixing time prediction

	Conclusion
	References

