
Zeus: Locality-aware Distributed Transactions
Antonios Katsarakis†∗ , Yijun Ma‡, Zhaowei Tan§∗ , Andrew Bainbridge, Matthew Balkwill,

Aleksandar Dragojevic, Boris Grot†, Bozidar Radunovic, Yongguang Zhang
†University of Edinburgh, ‡Fudan University, §UCLA, Microsoft Research

Abstract
State-of-the-art distributed in-memory datastores (FaRM,
FaSST, DrTM) provide strongly-consistent distributed trans-
actions with high performance and availability. Transactions
in those systems are fully general; they can atomically manip-
ulate any set of objects in the store, regardless of their loca-
tion. To achieve this, these systems use complex distributed
transactional protocols. Meanwhile, many workloads have
a high degree of locality. For such workloads, distributed
transactions are an overkill as most operations only access
objects located on the same server – if sharded appropriately.

In this paper, we show that for these workloads, a single-
node transactional protocol combined with dynamic object
re-sharding and asynchronously pipelined replication can
provide the same level of generality with better performance,
simpler protocols, and lower developer effort. We present
Zeus, an in-memory distributed datastore that provides gen-
eral transactions by acquiring all objects involved in the
transaction to the same server and executing a single-node
transaction on them. Zeus is fault-tolerant and strongly-
consistent. At the heart of Zeus is a reliable dynamic object
sharding protocol that can move 250K objects per second per
server, allowing Zeus to process millions of transactions per
second and outperform more traditional distributed transac-
tions on a wide range of workloads that exhibit locality.

CCS Concepts: •Computer systems organization→ Re-
liability; Cloud computing; Availability.

Keywords: locality, transactions, dynamic sharding, replica-
tion, availability, strict serializability, pipelining

ACM Reference Format:
Antonios Katsarakis, YijunMa, Zhaowei Tan, AndrewBainbridge,Mat-
thew Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar Radunovic,
Yongguang Zhang. 2021. Zeus: Locality-aware Distributed Trans-
actions. In Sixteenth European Conference on Computer Systems
(EuroSys ’21), April 26–29, 2021, Online, United Kingdom. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3447786.3456234

EuroSys ’21, April 26–29, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Sixteenth European Conference on Computer Systems (EuroSys ’21), April 26–
29, 2021, Online, United Kingdom, https://doi.org/10.1145/3447786.3456234.

1 Introduction
Cloud applications over commodity infrastructure are be-
coming increasingly popular. They require distributed, fast
and reliable datastores. Recent in-memory datastores that
operate within a datacenter and leverage replication for fault-
tolerance (FaRM [20], FaSST [34], DrTM [71]) offer strongly-
consistent distributed transactions in the order of millions
per second. They do not make any assumptions about the
workloads and rely on highly-optimized remote access prim-
itives (e.g., RDMA) to enable a variety of use cases.

These datastores run OLTP workloads with transactions in-
volving a small number of objects. In addition, many applica-
tions have a high degree of locality. For example, many trans-
actions in a cellular control plane involve one user always ac-
cessing the same set of objects (e.g., the nearest base station,
or the same call forwarding number [49]). Many Internet
middle-boxes mostly access the same state for all packets of
a single flow (e.g., intrusion detection systems [72]). Bank
transactions often recur between the same parties [10, 69, 75].
As Stonebraker et al. report [27], a transactional concurrency
control scheme can derive significant benefit from leveraging
application specific characteristics such as locality.
Existing works [20, 34, 71] can exploit locality through

static sharding – iff all objects involved in each transaction
are stored on the same node1. Consequently, static sharding
only helps if the optimal placement is known a priori and
never changes. However, this is often not the case for two
main reasons. Firstly, the set of objects involved in a transac-
tion may change over time. For instance, as a mobile phone
user moves, her cellular handover transaction involves dif-
ferent base stations. Secondly, the popularity of each object
changes in time, be it a network service or a financial stock.
If several popular objects are located on the same server, the
server becomes a bottleneck, and the popular objects should
be spread across servers. In both cases, the rate of changes
in access locality is multiple orders of magnitude lower than
the rate of processed transactions (which is in millions per
second). We describe these cases in more detail in Section 2.
In contrast, dynamic sharding, where objects are moved

on-demand across nodes, helps both when the set of objects
involved in a transaction changes or when object popularity
shifts. In the first case, dynamic sharding ensures that all
objects involved in a transaction are colocated, thus reduc-
ing expensive remote accesses. In the second case, dynamic
sharding allows to quickly spread out the heavy-hitters,
∗Part of this work was done when the author was in Microsoft Research.
1Throughout the paper we use the terms node and server interchangeably.

https://doi.org/10.1145/3447786.3456234
https://doi.org/10.1145/3447786.3456234

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

thus alleviating the bottlenecks. However, state-of-the-art
works [20, 34, 71] do not support dynamic object sharding.
Once the existing sharding is no longer optimal, they revert
to remote transactions that are inherently slower. Remote
transactions are slow because they impose the overhead of
several round-trips both to execute a transaction via remote
accesses and to atomically commit it. The source of the latter
is the complexity of distributed atomic commit for conflict
resolution under the uncertainty of faults.
Several systems propose application-level load balancer

designs that let applications make a fine-grained decision
regarding which node each transaction should be routed
to [3, 5, 7, 8]. However, most of these systems rely on custom
datastores that either do not provide strong consistency or
are not as fast as the state-of-the-art datastores [20, 34, 71].
As argued by Adya et al. [2], there is a need for a general
distributed protocol that would provide strongly-consistent
transactions and better exploit dynamic locality.

In this paper, we address the problem of high-performance
dynamic sharding for transactional workloads by presenting
a novel distributed datastore called Zeus. The key insight be-
hind Zeus is that, for many workloads, the benefits of local
execution outweigh the cost of (relatively infrequent) re-
sharding. Zeus capitalizes on this insight through two novel
reliable protocols designed from the ground-up to exploit
locality in transactional workloads. One protocol is responsi-
ble for reliable (atomic and fault-tolerant) object ownership
migration requiring at most 1.5 round-trips during common
operation. Using this protocol, while executing a transaction,
Zeus moves all objects to the server executing it and ensures
exclusive write access. Once that is done, and unless the ac-
cess pattern changes, all subsequent transactions to this set
of objects will be executed entirely locally and eschew the
need for a costly distributed conflict resolution. The second
protocol is a fast reliable commit protocol for the replication
of localized transactions. By combining these two protocols,
Zeus achieves performance and simplicity of single-node
transactions with generality of distributed transactions. To
further exploit locality, Zeus’ reliable commit enables local
yet consistent read-only transactions from all replicas.
Zeus design provides an extra benefit in that it allows

easy portability of existing applications. Since most Zeus
transactions are local, Zeus can pipeline executions without
compromising correctness. A subsequent transaction does
not need to wait for the replication of the current one. This
is in contrast to the existing in-memory distributed trans-
actional datastores [20, 34, 71], in which each transaction
blocks until the replication is finished. To mitigate the ef-
fects of blocking, these datastores use custom user-mode
threading that requires substantial effort to port existing
applications onto. In contrast, Zeus transaction pipelining
allows easy porting of legacy applications onto it, making
them distributed and reliable while reaping the performance
benefits of locality with minimal developer effort.

We implement Zeus and evaluate it on several relevant
benchmarks: Smallbank [10], Voter [19], TATP [49]. We also
introduce and implement a new benchmark which models
handovers in a cellular network based on observed human
mobility patterns. To demonstrate the ease of porting exist-
ing applications to Zeus, we port several networking appli-
cations that exhibit locality: cellular packet gateway [53],
Nginx [50] and SCTP transport protocol [59].
In brief, the main contributions of this work are as follows:
• Proposes Zeus, a reliable locality-aware transactional
datastore (§3) that replicates data in-memory for avail-
ability. Unlike state-of-the-art strongly-consistent trans-
actional datastores, Zeus transactions are fast by virtue
of exploiting dynamic sharding and locality that exists in
certain transactional workloads (as demonstrated in §8).

• Introduces two reliable protocols (§4, 5). An ownership
protocol for dynamic sharding that quickly alters object
placement and access levels across replicas; and a transac-
tional protocol for fast pipelined reliable commit and local
read-only transactions from all replicas. Both protocols,
which ensure the strongest consistency under concurrency
and faults, are formally verified in TLA+.

• Implements and evaluates Zeus (§7, 8) over DPDK on
a six node cluster, using three standard OLTP benchmarks
and a new cellular handover benchmark. For workloads
with high access locality, Zeus achieves up to 2× the perfor-
mance of state-of-the-art RDMA-optimized systems, while
using less network bandwidth and without relying on
RDMA. On the handovers benchmark Zeus performance
with dynamic sharding is just 4% to 9% from the ideal of
all local accesses. It also shows the ease of portability by
porting three legacy applications showing scalability and
reliability with little or no performance drop.

2 Objectives and motivation
We first describe high-level objectives that a data center
operator and an application developer desire in a datastore.
We next discuss the opportunities that arise with local access
patterns and why they have not been explored fully before.

2.1 Datastore design objectives
Our goal is to design an intra-datacenter shared-nothing
transactional database for OLTP workloads that allows pro-
grammers to deploy their software on top of a distributed
infrastructure without needing to re-architect the applica-
tion. More specifically, we want to provide the following:
Performance and reliability. Our target is to have a re-
liable datastore that can process millions of operations per
second. Furthermore, to remain available despite node fail-
ures, each state update must be replicated across nodes.
Transactions. A single operation may arbitrarily access or
modify multiple objects. A notion of transaction guarantees
that either all modifications are committed, or none. This is

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

in contrast to many widely used in-memory key-value stores
(e.g., [56]) that essentially provide only single-object atomic
abstractions and some generalizations as an afterthought.
Strong consistency. Wewant to provide a simple program-
ming model where a programmer has the intuitive notion of
a single-copy of state, despite the state being replicated for re-
liability. This model requires strongly-consistent distributed
transactions guaranteeing strict serializability [62]. Infor-
mally, with strict serializability all transactions appear as if
they are atomically performed at a single point in real-time
to all replicas in-between their invocation and response.
Support for legacy applications. State-of-the-art in-mem-
ory datastores [20, 34, 71] meet the above criteria. However,
when executing remote transactions, they block the associ-
ated threads. To mask the performance cost of blocking, they
rely on transaction multiplexing and user-mode threads [34].
However, this makes porting existing applications on top of
these frameworks difficult. Our goal is to provide a datastore
that allows legacy applications to run on top of it without
mandating modifications to the existing architecture.

2.2 A case for access locality
As noted in Section 1, many real-world applications exhibit
transactional access patterns with a high degree of locality.
In these cases, data is usually sharded for efficiency. However,
the optimal sharding may change in time for two reasons.
One is due to changes in object popularity and the other one
due to changes in access locality. We use the term locality to
refer to the temporal reuse of transactions between (spatially
related) objects that reside on the same node.

Let us consider changes in locality via an example of call
handovers in a cellular network. Every time a phone wakes
up to process data traffic (a service request) or goes to sleep (a
release request), the cellular control plane updates various ob-
jects related to the phone and to the base station this phone is
attached to. This is an example of data access locality, where
each consecutive operation on the same phone accesses the
same two objects (the phone and the base station contexts).
However, the access locality may slowly and gradually

change in time due to mobility. Every time a cellular user
moves from one base station to another, her phone performs
a handover operation. This is a transaction that involves
three entities, the phone, the old base station the user is
leaving, and the new base station the user is connecting
to. As the user travels (e.g. during a daily commute), her
phone will perform many such transactions, each involving
one object that stays the same (the phone context) and two
other objects that continuously change (contexts of the base
stations on the way). Once the user finishes the commute,
the access locality will resume, and every subsequent service
request and release for the user will again involve a single
base station (the one the user is currently attached to, which
is different from the one at the beginning of the commute).

This change is slow in time. People are stationary most of
the time. A study [12] shows that an average person makes
five one-way trips per day with a total length of 100km for
drivers and 20km for non-drivers (on average). Consequently,
handover requests are only between 2.5% and 5% of service
and release requests [45, 55], while the vast majority of ser-
vice and release requests repeatedly include the same base
station. Another fact that further improves locality in this
case is that a base station will only take part in handovers
with other base stations that are geographically close to it.

The optimal sharding should adapt to keep the relevant
objects together in the same node. In this particular example,
it should strive to keep the context of a phone and of the
base station it is associated to on the same node. However,
based on the above observations regarding user mobility,
re-sharding will occasionally need to happen, though only
for a single-digit fraction of transactions. We further discuss
and evaluate this example in Section 8.

Another example of access locality are peer-to-peer finan-
cial transactions. Several studies of the popular peer-to-peer
mobile payment system Venmo [69, 75] show that the trans-
actions mainly occur among groups of friends, and that the
transaction graph exhibits a higher local clustering than Face-
book and Twitter graphs. Moreover, as noted by Unger et
al. [69], the network remains largely consistent across the
studies, indicating slow temporal change in the interaction
graph. We study this case using publicly available data from
a recent Venmo study [60] and evaluate it on a popular fi-
nancial transactions benchmark Smallbank [10] in Section 8.
The optimal sharding may also change due to a shift in

object popularity. One example of this can be found in the
Voter benchmark [19], which we evaluate in Section 8. In a
long-lasting online public contest (e.g., Eurovision), many
users vote for a few contestants. The optimal sharding should
spread the load evenly, and would ideally put the most pop-
ular contestants each on a separate server, while potentially
grouping the least popular contestants together on a single
server. However, the popularity of each contestant changes
in time, and as she gets more or fewer votes, the optimal
sharding changes as well. As in the previous example, each
transaction involves only a few objects (a voter and a contes-
tant) and the frequency of change in the optimal sharding is
much lower than the frequency of the voting transactions.
Another example is stock exchange. Between 40–60% of

the volume on the New York Stock Exchange occurs on
just 40 out of 4000 stocks [66]. Stock popularity changes
at the granularity of hours or days, whereas daily trading
volume is on the order of 5-10 billion shares [48]. Thus, while
transaction volume is high, the change in popularity is slow.
Similar to the handover case, the re-sharding will need to
happen, but relatively infrequently.

Existing works [17, 37, 61, 66] propose dynamic sharding
to adapt to these kinds of changes. However, their datas-
tore designs that support re-sharding and provide strong

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

consistency operate at a sub-Mtps throughput. For instance,
Squall [23] and Rococo [47] report up to 100 Ktps per server,
and Rocksteady [37] up to 700 Ktps per server.

Meanwhile, state-of-the-art reliable in-memory datastores
(e.g., FaRM, FaSST) reach millions of tps per node but have
limited support for changes in locality. For instance, FaRM
only supports static location hints. If the access locality
changes, both FaRM and FaSST must execute remote transac-
tions. Some domain-specific datastores have been built that
exploit locality, but they do not meet all design objectives.
For example, S6 [72] does not offer replication (a must for
availability), while FTMB [63] runs only on one node and
replicates on non-volatile storage. Overall, to the best of our
knowledge, there is no in-memory datastore that meets all
our design objectives and effectively exploits locality.

3 Design overview
We start this section by outlining the Zeus datastore sys-
tem architecture. We then present a high-level overview
of the key part of Zeus — a pair of protocols that exploit
locality for high-performance transaction processing with
fault-tolerance, strong consistency and programmability.

3.1 Zeus system architecture
Zeus exploits request locality and uses an application-level
load balancer to enforce it. External requests issued to Zeus
are issued through a load balancer. The load balancer can ex-
tract the application level information, locate relevant object
keys and always forwards requests with the same set of keys
to the same server. Application-level load balancers are not
a new concept. Several previous systems have demonstrated
such load balancers [3, 5, 7, 51]. We implement a simple
one using a distributed, replicated key-value store based on
Hermes [35]. We extract a key from each request and look
it up in the key-value store. If not found, we pick a desti-
nation Zeus node at random, store it in the load balancer’s
key-value store and forward the request. If the key is found,
we forward the request to the corresponding destination.

Zeus considers a non-byzantine partially synchronous
model [22] with crash-stop node failures and network faults
including message reordering, duplication and loss. It im-
plements a reliable messaging protocol with low-level re-
transmission to recover lost messages. Zeus uses a reliable
membership with leases to deal with the uncertainty of de-
tecting node failures. Eachmembership update is taggedwith
a monotonically increasing epoch id (𝑒_𝑖𝑑) and is performed
across the deployment only after all node leases have expired.
This provides the same consistent views of live nodes across
the deployment despite unreliable failure detection (simi-
lar to Zookeeper [31] with leases). For data reliability, Zeus
maintains replicas of each object. The replication degree is
configurable; however, the higher the degree of replication,

Figure 1. Zeus’ locality-aware distributed transactions.

the greater the CPU and network overhead, and the lower is
the throughput of transactions that modify the state.

3.2 Zeus protocols overview
Zeus is efficient in executing distributed transactions by
forcing them to become local. At the heart of Zeus are two
separate, loosely connected reliable protocols. One of them
is the ownership protocol responsible for the on-demand mi-
gration of the object data from one server to another and
changing the access rights (read or write) of servers storing
the replica of an object. The other one is the reliable com-
mit protocol for committing the updates performed during a
transaction to the replicas. As these two protocols are only
loosely connected, they can be optimized, verified and tested
independently.
Zeus, inspired by hardware transactional memory [29],

executes and commits each transaction locally, on a server
designated to be the coordinator for that transaction. While
executing a transaction, the coordinator has to secure the
appropriate ownership level for each object involved in the
transaction. This is the task of the ownership protocol. Once
the coordinator acquires the required ownership levels and
finishes execution, it commits the transaction locally. Sub-
sequently, it copies the state of modified objects to backup
servers, also called followers. The latter is the task of the
reliable commit protocol. Crucially, the ownership protocol
is invoked only the first time a node accesses an object. Sub-
sequent transactions proceed without involving it, until an-
other node takes over the ownership (i.e., locality changes).

At a high level, a transaction in Zeus is carried out through
the following three steps (also shown in Figure 1):
1. Prepare & Execute: While the coordinator executes a

transaction, prior to accessing an object, it verifies that it
holds the appropriate ownership level (read or write) for
that object. If not, it acquires the appropriate ownership
level via the ownership protocol (described in Section 4)
and continues execution. Before performing its first up-
date to an object, the coordinator creates a private (to
the transaction) copy of the object. This private copy is
then used for all accesses of the transaction to the object.

2. Local Commit: The coordinator tries to serialize the
transaction locally via a traditional single-node commit.

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

This commit is local and unreliable but it does not expose
any updated values yet to other servers. We implement
a simple multi-threaded local commit that resolves con-
tention across threads using a simplified, local version
of the ownership protocol (details in Section 7).

3. Reliable Commit: If the local commit is successful, the
coordinator pushes all updates to the followers for data
reliability. In case the coordinator fails in the middle of
this process, the followers recover by safely replaying
any pending reliable commit of the failed coordinator.
Both backup and recovery actions are performed by the
reliable commit protocol (details in Section 5).

Zeus allows only a single server to modify an object at any
time. This server is called the owner and is the only node able
to use the object to execute write transactions (transactions
modifying at least one object). Each object is replicated on
one ormore backup servers. These backups are active and are
called the readers of the object; they can perform read-only
transactions but not write transactions using the object2.
Only the owner and the readers store the content of the
object. The owner (as a coordinator of write transactions)
updates all readers during the reliable commit phase. A user
can specify and dynamically change the number of readers
(i.e., replicas) of each object, making a trade-off between
reliability and replication overhead.
Zeus avoids the conventional distributed commit proto-

cols [46, 64] which are complex [9] because they need to deal
with distributed conflict resolution and the uncertainty of
commit or abort after faults. Zeus sidesteps these challenges
through a simple invariant that an initiated reliable commit
is idempotent and cannot be aborted by remote participants.
This is accomplished via the exclusive write access of the
coordinator and the use of idempotent invalidations (§ 5.1),
which are sent to all of the remote participants at the start of
the reliable commit. In case of a fault, any of the participants
can replay the invalidation message which contains enough
data to finish the transaction.

Zeus further introduces two key optimizations. Firstly, it
supports efficient strictly serializable read-only transactions.
Any node that is a reader of all objects involved in a read-
only transaction is able to execute it without invoking the
ownership protocol. A read-only transaction does not require
a reliable commit phase; as such, it is light-weight and incurs
no network traffic. Consistency of read-only transactions
is enforced through invalidation messages, as a read-only
transaction cannot execute on an object that is invalidated.

Secondly, a transaction coordinator in Zeus pipelines local
execution and commit with the reliable commit, as shown in
Figure 2. This is possible because no other server can update
the objects at the same time. This is guaranteed by the owner-
ship protocol, which ensures that only one node (the current

2Note that a reader is per object, whereas a follower is per transaction
(potentially spanning multiple objects).

Figure 2. Zeus’ pipelined execution of transactions for ob-
jects X and Y, on the same coordinator (labels in boxes are
the same as in Figure 1).

owner) may modify an object. It is thus safe for the coordi-
nator to keep modifying the same object without waiting for
the reliable commit to finish. As a consequence, any local
transactions to objects for which permissions have already
been acquired will not block the application execution.
We also note that we made a conscious design trade-off

to make the ownership protocol blocking, to simplify appli-
cation portability and to make Zeus transactions (the most
frequent operations) non-blocking. This means that the ap-
plication thread stalls when executing an ownership request
(phase 1(a) in Figure 1). Such a design is justified because
ownership requests are much less frequent than transactions,
as discussed in Section 2. It would be straightforward to im-
prove the performance of the ownership protocol, e.g., via a
user-mode thread scheduling framework as in [34]; however,
that would increase the burden on the developer and likely
require re-architecting the application, thus invalidating a
key design requirement as laid out in Section 2.

Finally, we specified Zeus’ ownership and reliable commit
in TLA+ and model checked them. The details are in Section 8.

4 Reliable ownership
The reliable ownership atomically alters object access rights
and transfers content between nodes.We start by introducing
themain terminology used in the protocol. We then overview
its operation without faults and contention, and follow by
discussing these other cases.

Access levels, directory andmetadata.A node can be the
owner, a reader or a non-replica of an object. Each object has
at most one owner at any time that has an exclusive write
and (non-exclusive) read access to it. An object can also have
several other readers with read access. Both the owner and
the readers store a replica of the object. A non-replica node
has neither the access rights nor the data for the object.
Zeus maintains an ownership directory where it stores

ownership metadata about each object. This directory is
replicated across three nodes for reliability (even if a Zeus
deployment has more nodes). The nodes that store directory
information are called the directory nodes.
The directory stores the followingmetadata for an object:

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

directory owner reader(s) non-replica
data ✓ ✓
ownership metadata ✓ ✓
ownership levels - w/r r -

Table 1. Data and metadata stored by each node along with
their read (r) and exclusive write (w) access permissions.

• 𝑜_𝑠𝑡𝑎𝑡𝑒: the ownership state of the object, which can be
Valid, Invalid, Request or Drive;

• 𝑜_𝑡𝑠 =<𝑜𝑏 𝑗_𝑣𝑒𝑟, 𝑛𝑜𝑑𝑒_𝑖𝑑>: ownership timestamp compris-
ing a monotonically increasing number and a node id;

• 𝑜_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 : denotes all nodes storing a replica of the object
and their access rights (i.e., the owner and readers).

These ownership metadata are also stored by each object’s
owner node. The summary of the above is given in Table 1.

4.1 Reliable ownership protocol
Failure- and contention-free operation. An ownership
request is illustrated at the top of Figure 3. The coordina-
tor that starts a request is called a requester node. The re-
quester assigns a locally unique request id to the request (to
be able to match the response) and sets the object’s local
𝑜_𝑠𝑡𝑎𝑡𝑒 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 . It then sends a request (REQ) message
with the request id to an arbitrarily chosen directory node,
and this node becomes the driver of the request. The direc-
tory nodes and the object owner help arbitrating concurrent
ownership requests to the same object, and are called arbiters.
Upon reception of a REQ message, the driver assigns an

ownership timestamp 𝑜_𝑡𝑠 to the object and sets its local
state to 𝑜_𝑠𝑡𝑎𝑡𝑒 = 𝐷𝑟𝑖𝑣𝑒 1 . It also sends an invalidation
(INV) message containing both the request id and ownership
metadata to the remaining arbiters (including the current
owner) 2 . Assuming no contention for the ownership of the
object, each arbiter sets the object’s local state to 𝑜_𝑠𝑡𝑎𝑡𝑒 =
𝐼𝑛𝑣𝑎𝑙𝑖𝑑 , updates its local 𝑜_𝑡𝑠 and 𝑜_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 and responds
with an ACK message directly to the requester. Note that we
optimize the ownership latency by sending the responses
directly to the requester instead of passing via the driver. If
the requester is a non-replica and does not have the data of
the object, the current owner includes the data in her ACK.
When the requester receives all expected ACK messages,

it applies its request locally before responding to all arbiters
with a validation (VAL) message 3 . To apply the request, it
updates the 𝑜_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 to specify itself as the new owner,
and sets its object’s local 𝑜_𝑠𝑡𝑎𝑡𝑒 = 𝑉𝑎𝑙𝑖𝑑 . Finally, upon
reception of the VAL message, each arbiter also applies the
request in the same way and the request is finished 4 .

Notice that to keep 𝑜_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 consistent with the replica
placement and the access levels of the object, the requester
must apply the request before any of the arbiters. Moreover,
once the requester receives all the ACK messages, it unblocks
the application. Thus, the application resumes its transaction
after 1.5 round-trips, as shown in the top part of Figure 3.

Figure 3. Zeus’ ownership protocol with and without faults.

Contention resolution. Zeus uses the 𝑜_𝑡𝑠 timestamp to
resolve contending requests. Multiple nodes may issue an
ownership request for the same object concurrently through
different drivers. Each driver creates a per-object unique
timestamp for the request 𝑜_𝑡𝑠 =<𝑜𝑏 𝑗_𝑣𝑒𝑟 + 1, 𝑛𝑜𝑑𝑒_𝑖𝑑>,
using its previous local 𝑜𝑏 𝑗_𝑣𝑒𝑟 and own 𝑛𝑜𝑑𝑒_𝑖𝑑 1 . In case
of contention, a driver of one of the contending requests
will receive an INV message of another contending request
(for the same object) 2 . It will only process the INV message
if the 𝑜_𝑡𝑠 in the message is lexicographically larger than
its own 𝑜_𝑡𝑠 for the object. This guarantees that there is
one and only one winner of each contention. All the drivers
whose requests fail send a NACK message to their requesters.
Similarly, the owner responds with a NACK directly to the
requester if the requested object is involved in a pending
transaction (Section 5). Upon receiving a NACK the requester
either aborts its ownership request or retries it later.
Failure recovery. The failure recovery procedure starts
when the reliable membership is updated after fault detec-
tion and the expiration of leases. Each live directory node
(and the live owners) update their 𝑜_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 removing any
non-live nodes. The objects whose owners died will be taken
over by a new owner on the next write transaction. After
the membership update which increases the epoch id (𝑒_𝑖𝑑),
requests from previous epochs are ignored. This is achieved
by including the 𝑒_𝑖𝑑 of the current epoch in the INV and
ACK messages. The requester and arbiters ignore these type
of messages when their 𝑒_𝑖𝑑s differ from their local ones.

A node fault followed by a membership update can leave
arbiters of a pending ownership request in Invalid 𝑜_𝑠𝑡𝑎𝑡𝑒 .
Nevertheless, any arbiter has all the information to replay
the idempotent arbitration phase of the ownership request
(dubbed arb-replay) between the live arbiters and unblock.
A blocked arbiter acts as the request driver and initiates
an arb-replay by constructing and transmitting the same
exact INV message using its local state. During arb-replays

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

some arbiter may receive an INV message for a request it
has already applied locally (with same 𝑜_𝑡𝑠). In this case, the
arbiter simply responds with an ACK. A basic recovery path
from an owner failure is illustrated at the bottom of Figure 3.

Note that in the recovery process the arbitration phase of
an ownership request is finalized with ACK messages sent
from the arbiters to the driver instead of the requester, as
shown in Figure 3. This is done in order to have a single re-
covery process that covers failures of all nodes including the
requester. If the requester is not live the driver directly sends
VAL messages to unblock the other live arbiters. Otherwise,
for safety, as in the failure-free case, the requester must be
the first to apply the request. To achieve that we introduce a
new RESP message which confirms the win of the arbitration
to the requester; who can then apply the request prior to
sending VAL messages to the live arbiters, as before.

4.2 Fast scalable ownership
The Zeus ownership protocol is scalable since it 1) does not
store directory metadata for each object at every transac-
tional node; 2) does not broadcasts to every transactional
node to locate an object’s owner. Zeus’ ownership protocol
has a latency of at most 3 hops (without faults and con-
tention) to reliably acquire the ownership regardless of the
node requesting the ownership. We believe this to be the
lowest possible latency for a scalable ownership protocol.
The worst-case latency is incurred when an ownership re-
quest originates from a non-replica node where neither the
owner nor the requester are co-located with the object’s di-
rectory metadata. To proceed, the requester must receive the
latest value of the object. In order to locate the object, the
requester should first contact the directory. The directory
will forward the request to the owner, which, in turn, will
send the value to the requester, resulting in 3 hops. Note that
if the requester is co-located with a directory replica, the
first hop is eliminated and ownership is acquired after just
one round-trip (2 hops) to the owner.

5 Reliable commit
Zeus reliable commit protocol is responsible for propagating
the updates made by a local transaction to all of the followers
(illustrated in Figure 4). For clarity, we start by describing the
information maintained by the protocol. We next overview
the operation without faults, and then discuss the case with
failures. Finally, we present two optimizations: pipelining
and local read-only transactions from all replicas.
(Meta)data. Each replica (i.e., the owner and readers) keep
the following information for an object:
• 𝑡_𝑠𝑡𝑎𝑡𝑒: the state of the object, which can be either Valid,
Invalid or Write;

• 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛: the version of the object, which is incremented
on every transaction that modifies the object;

• 𝑡_𝑑𝑎𝑡𝑎: the data of the object stored by the application.

Figure 4. Zeus’ reliable commit protocol and its messages.

For every transaction, at the beginning of reliable commit,
the coordinator generates a unique 𝑡𝑥_𝑖𝑑 = <𝑙𝑜𝑐𝑎𝑙_𝑡𝑥_𝑖𝑑,
𝑛𝑜𝑑𝑒_𝑖𝑑>, where 𝑛𝑜𝑑𝑒_𝑖𝑑 is its own id and 𝑙𝑜𝑐𝑎𝑙_𝑡𝑥_𝑖𝑑 is a
locally unique, monotonically increasing transaction id.

5.1 Reliable commit protocol
Failure-free operation. At the end of the Local Commit
phase, the transaction coordinator updates the 𝑡_𝑑𝑎𝑡𝑎 of all
modified objects with its private copies created during the
Prepare & Execute phase. It also increments their 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠
and sets 𝑡_𝑠𝑡𝑎𝑡𝑒 =𝑊𝑟𝑖𝑡𝑒 — for pending reliable commit.
At the beginning of the Reliable Commit phase, the co-

ordinator broadcasts an invalidation (R-INV) message to all
followers. As shown at the bottom of Figure 4, this mes-
sage contains the 𝑡𝑥_𝑖𝑑 , the current epoch id (𝑒_𝑖𝑑) and the
𝑛𝑜𝑑𝑒_𝑖𝑑s of all followers. For each updated object, it also
contains the new 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 and 𝑡_𝑑𝑎𝑡𝑎. The coordinator tem-
porarily stores the R-INV message locally.
Upon receiving an R-INV message, a follower checks if

the received and the local 𝑒_𝑖𝑑 match, if not the message
is ignored. If they match, the follower goes through each
updated object and compares its local 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 with that
of the message. In case an object’s local version is greater
or equal, it skips the update of that object. Otherwise, it
updates the local 𝑡_𝑑𝑎𝑡𝑎 (the actual content of the object)
and 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 with the new ones from the message, and sets
its local 𝑡_𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 — denoting that the object has a
pending reliable commit. A follower then responds to the
coordinator with an R-ACK message containing the same
𝑡𝑥_𝑖𝑑 and temporarily stores the R-INV.

Once the coordinator receives R-ACKs from all the follow-
ers, it reliably commits the transaction locally by changing
the 𝑡_𝑠𝑡𝑎𝑡𝑒 of each updated object to Valid. Subsequently,
the coordinator broadcasts a validation (R-VAL) message con-
taining the 𝑡𝑥_𝑖𝑑 to all followers and discards the previously
stored R-INV message of the transaction. When a follower
receives an R-VAL message for which it has already stored
an R-INV message (with same 𝑡𝑥_𝑖𝑑), it sets the 𝑡_𝑠𝑡𝑎𝑡𝑒 of all
objects previously updated by the transaction to the Valid
state if and only if their 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 has not been increased. It
then discards the stored R-INV message.

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

Figure 5. Zeus’ per-node (in reality per-thread §7) pipelines.
Reliable replay under failures. A node failure triggers a
membership reconfiguration, where the epoch id (𝑒_𝑖𝑑) is
increased and the set of live nodes is updated. Subsequently,
the ownership protocol stops accepting requests for objects
whose owner node is not live in the current membership.

At this point, each locally stored R-INV message on any
live node represents a pending transaction in the Reliable
Commit phase. A live node, replays its own pending reliable
commits and those from the failed nodes. This is accom-
plished by first updating the local pending R-INV messages
(issued or received) with the new 𝑒_𝑖𝑑 and by removing all
non-live nodes from followers. Themessages are then re-sent
and handled as explained before. A follower who receives an
R-INV message with the latest 𝑒_𝑖𝑑 for a transaction (𝑡𝑥_𝑖𝑑)
that it has previously stored locally simply ignores its content
and responds with an R-ACK . Although multiple nodes may
replay the reliable commit phase of the same transaction,
all relevant R-INV messages are idempotent containing the
same 𝑡𝑥_𝑖𝑑 (and 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠) so only one can apply updates.

When a node has nomore pending reliable commits (R-INV
messages) from nodes that are not live, it informs the own-
ership protocol that it has finished the recovery (Section 4).
Once all live nodes finish the recovery, the ownership proto-
col starts accepting again all ownership requests as normal.

5.2 Non-blocking transaction pipelining
We further introduce transaction pipelining to avoid block-
ing the application at the coordinator during replication
(illustrated in Figure 2). This is possible because a locally
(unreliably) committed transaction at the coordinator can-
not be aborted. Thus, the coordinator can proceed using its
locally committed values with certainty.
However, Zeus also needs to maintain the strict serializ-

ability on each backup replica. Thus, it requires that followers
respect the pipeline order of the coordinators when applying
updates. For this, Zeus uses 𝑡𝑥_𝑖𝑑 =<𝑙𝑜𝑐𝑎𝑙_𝑡𝑥_𝑖𝑑, 𝑛𝑜𝑑𝑒_𝑖𝑑>
which is transmitted in every R-INV message and contains
both the local transaction order within the node 𝑙𝑜𝑐𝑎𝑙_𝑡𝑥_𝑖𝑑
and the 𝑛𝑜𝑑𝑒_𝑖𝑑 . As a result, although there could be several
pending causally-related reliable commits, all will be applied
in the correct order as specified by the 𝑙𝑜𝑐𝑎𝑙_𝑡𝑥_𝑖𝑑 .

Note that the ordering is enforced only within each differ-
ent pipeline as shown in Figure 5. This is because an object’s
owner change (i.e., when an object switches pipelines) is
not approved until all pending reliable commits with that
object have been completed (Section 4). Thus, an object can-
not be involved in pending transactions from two different
coordinator nodes and the ordering across coordinators does
not matter. We further optimize this by enabling per-thread

Figure 6. Zeus’ consistent read-only transactions on readers.

(instead of per-node) pipelines via our choice of local commit
as explained in Section 7. The pipelining optimization also
reduces the number of R-ACK and R-VAL messages, since send-
ing a message with a 𝑡𝑥_𝑖𝑑 implies the successful reception
and processing of all previous messages in that pipeline.

A nodemay not be a follower of all R-INVs, and thus receive
a partial stream of a pipeline. An extra condition is needed for
when such followers can apply an R-INV. A follower applies
an R-INV if for the previous 𝑙𝑜𝑐𝑎𝑙_𝑡𝑥_𝑖𝑑 (slot) of the pipeline
it has either applied an R-INV or has received an R-VAL. The
latter occurs for a transaction follower F who was not also a
follower of the previous slot in the pipeline. To facilitate this,
during the broadcast of an R-INV, the coordinator piggybacks
a prev-VAL bit if it has broadcasted R-VALs for the previous
slot. Otherwise, it includes F in the R-VAL broadcast of that
previous slot. Finally, after a coordinator’s failure, an R-INV
is considered as a pending reliable commit and is replayed
by a follower iff that follower has not only received but also
applied the R-INV message.

5.3 Read-only transactions
Zeus optimizes read-only transactions by allowing them to
be executed locally from any replica that stores all relevant
objects, regardless of the ownership level (read or write), and
without compromising strict serializability. This is enabled
by three ideas. First, read-only transactions do not need
to communicate any updates to other replicas. Second, a
verification-based scheme can be applied to exploit the local
object versioning and ensure a consistent snapshot across all
reads of a read-only transaction. Finally, the reliable commit
guarantees that all replicas are invalidated before any up-
dated state is exposed externally by the readers. We elaborate
on the latter before discussing the read-only protocol.
Invalidation-based reliable commit.A locally committed
write transaction does not reliably commit on the owner
unless it has invalidated all its followers (i.e., the readers of
modified objects). As noted before, a reader which applies an
invalidation to its local object also updates its object’s local
value with the newly received value. Thus, it cannot return
neither the old value nor the new one as the object has been
invalidated. The reader can return the new value only after
it receives the R-VAL message and validates its local object.
Simply put, there is a transitioning period until a reader

can safely return the new value. That period ends once all
readers of a modified object have stopped returning the old
value and have received the new one. If a reader was to
prematurely return the new value (i.e., before receiving the

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

R-VAL message and the end of that period), two things could
go wrong. First, another reader who has not yet invalidated
the object could subsequently return the old value and com-
promise consistency. Second, if all nodes that have received
the new (not yet reliably committed) value fail3, then the
prematurely returned value would be permanently lost.
Read-only protocol. Consequently, in Zeus, a read-only
transaction completes after only two phases as shown in
Figure 6 and described next. In the Prepare & Execute phase,
the coordinator of a read-only transaction sequentially reads
and buffers the 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 and the value (𝑡_𝑑𝑎𝑡𝑎) of each local
object as specified by the transaction. In the Local Commit
phase, the coordinator checks if all accessed objects are in
𝑡_𝑠𝑡𝑎𝑡𝑒 = 𝑉𝑎𝑙𝑖𝑑 before verifying that all 𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 have re-
mained the same. If so, the transaction commits successfully.
Otherwise, there is an ongoing conflicting (local or remote)
reliable commit and the read-only transaction is aborted.
Use-case. Apart from the obvious performance benefit, one
example where the read-only optimization is useful is con-
trol/data-plane applications, such as in a cellular networks.
There, write transactions are executed by a control-plane
node (the Zeus owner), for instance to configure routing,
while all data-plane nodes (i.e., Zeus readers) can perform
consistent read-only transactions locally, e.g., for forwarding.

6 Discussion
6.1 Distributed commit vs Zeus
Traditional datastores statically shard objects and execute
reliable transactions in a distributed manner across servers.
This poses two challenges. The first is accessing the objects.
Static sharding schemes do not guarantee that all objects ac-
cessed by a transaction reside on the same node. Frequently,
one or more objects in a transaction are stored remotely. In
this case the execution stalls until the objects are fetched –
sometimes sequentially (e.g, pointer chasing or control flow).

The second challenge is handling concurrent transactions
on conflicting objects. If two nodes try to commit transac-
tions on conflicting objects simultaneously, one of them has
to abort. Detecting and handling these conflicts under the un-
certainty of faults needs extra signaling across nodes. Thus,
transactional systems based on distributed commit need nu-
merous round-trips to commit each transaction (e.g., see
FaSST). Moreover, a node cannot start the next transaction
on the same set of objects until the commit is finished, as it
cannot be sure that it will not have to abort. This introduces
several round-trips of delay in the critical path of the commit
and significantly reduces the transactional throughput.
Zeus replaces remote accesses and distributed commit

with its (occasional) ownership, local accesses and reliable
commit to addresses the two main issues mentioned above
and accelerate workloads with locality. Firstly, the ownership
makes objects accessed by a transaction accessible locally
3That is a smaller number of nodes than the replication degree.

most of the time, which avoids stalls during the execution.
Secondly, only a single node (the owner) can execute a write
transaction on an object at a time, so a transaction cannot
be aborted remotely, commits after a single round-trip and
is pipelined. Zeus’ reliable commit also allows local and
consistent read-only transactions from all backups.

Unlike distributed commit, Zeus’ ownership is a protocol
specialized for single-object atomic operations (including
migration). Zeus resolves concurrent ownership requests
in a decentralized way, and applies an idempotent scheme
to tolerate faults without extra overheads on the common
failure-free case. This makes acquiring ownership reliable
yet fast (1.5 round-trips) during fault-free operation.

6.2 Other details
Cost of ownership vs. remote access. The object size
influences the cost of acquiring ownership for it by a non-
replica node similarly to a remote access, since in the fault-
free case the value is included in a single ownership message
as in the response of a remote access. A reader acquires
the ownership without the value and thus is not influenced
by its size. The reliability of Zeus’ ownership comes with a
higher message cost compared to a remote access. These are
small constant messages with cost amortized over several
local accesses in workloads with locality. Nevertheless, for
workloads without enough locality, that cost renders Zeus
less suitable than remote accesses and distributed commit.
Deadlocks. Zeus currently circumvents deadlocks via a
simple back-off mechanism. For Zeus, such a situation may
arise only early in a transaction (i.e., in the Prepare & Execute
phase) – when requesting ownership for an object. This man-
ifests with repeated failed ownership requests, after which
Zeus aborts and retries a transaction with an exponential
back-off. In practice, deadlocks in Zeus are rare because
transactions on the same object are mostly executed on the
same server by virtue of load balancing. For deployments
where that is not the case, a more sophisticated scheme such
as the one proposed by Lin et al. [40] may be considered.
Distributed directory. For simplicity, Zeus uses a single
directory for all objects in the deployment. The directory is
replicated for fault-tolerance, and the ownership protocol
is lightweight and is designed to balance the load across all
the directory replicas. However, a single replicated directory
may become a scalability bottleneck at large deployment
sizes or when locality is limited. In such cases, a distributed
directory scheme (i.e., using consistent hashing on an object
to determine its directory nodes) should be used instead.
Sharding request types. Zeus exploits the ownership pro-
tocol for other types of sharding requests, such as reliably
removing a reader. For example, when a non-replica acquires
the ownership of an object, the total number of replicas
increases. To keep the initial replication degree and avoid
increasing the cost of reliable commits, we invoke the own-
ership protocol out-of-the-critical-path to discard a reader.

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

Write transactions with opacity. Apart from strict serial-
izability, Zeus provides an additional guarantee that all write
transactions see a consistent snapshot of the database even
if they abort. This is also referred to as opacity [26]. Opacity
further enhances Zeus’ programmability since by prevent-
ing inconsistent accesses in write transactions it relieves the
programmer from the effort of handling those cases.

7 System
We have built a custom in-memory datastore and imple-
mented the Zeus protocols on top of it. In this section we
briefly discuss the implementation details.

An application communicates with the datastore through a
transactional memory API that consists of primitives to create
and manage memory objects of different sizes. This includes
implementations of malloc (create an object), free (destroy
an object), tr_open_read and tr_open_write (for marking ob-
ject as used in a transaction for reading and writing). Each
transaction starts with a create transaction call tr_create
(for write) or tr_r_create (for read-only transaction), fol-
lowed by an arbitrary code that can invoke the above APIs,
and finishes with a tr_commit (or tr_abort), at which point
the local commit starts (aborts). This is a low-level API, very
similar to the one used by FaRM, and it allows great flexibility
to build further abstractions on top of it.

The datastore is implemented in C over DPDK, and it con-
sists of two parts. One part is the datastore module that runs
as a separate process implementing the main datastore func-
tionality. The other part is the Zeus library that is linked
to any application over shared memory without limiting its
architecture (it can be a separate process, container, etc).

The datastore module implements the Zeus protocols, the
transactional memory API, and a reliable messaging between
nodes. Zeus communicates between nodes using a custom
reliable messaging library we built on top of DPDK. The data-
store module also includes a customizable, application-aware
load balancing functionality, as described in Section 3.
Both application and the datastore modules can run in

multiple threads. In the evaluation, we use up to 10 appli-
cation and 10 datastore worker threads. These threads are
pinned to their own cores. We also use one core for DPDK.

We implement a simple multi-threaded Local Commit (Sec-
tion 3) using the same intuition as for the overall Zeus. Each
thread that executes a transaction has to become the owner
of each object. However, this ownership is local andmanaged
through standard locking. We leverage the aforementioned
load balancer to enforce locality across the threads and in-
crease concurrency. Apart from simplicity, this also enables
transaction pipelining to be applied on a per-thread bases
which increases the overall concurrency of reliable commits.

Currently, porting an application to Zeus requires manual
code modification on pointer accesses, similarly to prior
work (e.g., as in FaRM). However, this can be automatized at
a compiler level, as performed by Sherry et al. [63].

characteristic tables columns txs read txs
Handovers large contexts 5 36 4 0%
Smallbank write-intensive 3 6 6 15%
TATP read-intensive 4 51 7 80%
Voters popularity skew 3 9 1 0%

Table 2. Summary of evaluated benchmarks.

8 Evaluation
Formal verification. We specified the ownership protocol
and the reliable commit of Zeus in TLA+ and model checked
them in the presence of crash-stop failures, message reorder-
ings and duplication. We have verified them against several
key invariants including the following:
• Live nodes4 in 𝑡_𝑠𝑡𝑎𝑡𝑒=𝑉𝑎𝑙𝑖𝑑 have always consistent data.
• All live arbiters in 𝑜_𝑠𝑡𝑎𝑡𝑒=𝑉𝑎𝑙𝑖𝑑 agree and correctly re-
flect the owner and reader nodes of the object.

• At any time there is at most one owner and that owner
stores the most up-to-date value of the object.

The detailed protocol specifications and the complete list of
the model-checked invariants can be found online5.
Locality in workloads. We begin by briefly analysing the
locality of access patterns in workloads. For this, we report
the fraction of remote transactions of three workloads, span-
ning the telecommunication, financial, and trade sectors.
• Boston cellular handovers: As explained in Section 2,

in a cellular workload, remote transactions are caused by
remote handovers. To evaluate the real-world frequency
of remote handovers, we use the population and mobil-
ity model from Boston metropolitan area [12] with the
reported averaged daily commute of 100km. We assume
base stations are uniformly spread through the area at
a distance of 1km (with a typical coverage of a macro
cell [32] and a common ratio of cells per population [45]).
These are sharded across all nodes in a deployment. As
the number of nodes increases, the number of remote han-
dovers also increases, up to 6.2% for six nodes. In summary,
for a setup where 5% of all transactions are handovers and
out of these 6.2% of handovers are remote (in a six node
deployment), there are in total 0.31% remote transactions.

• Venmo transactions: We use the most recent public
Venmo dataset [60] with more than seven million financial
transactions to analyze the fraction of remote transactions.
We partition the users to nodes, but still observe 0.7% and
1.2% of remote transactions for 3 and 6 nodes, respectively.

• TPC-C: Wemathematically analyze the number of remote
transactions in the TPC-C benchmark, which is considered
representative for industries that trade products. In TPC-C,
only a small fraction of new-order and payment trans-
actions may result in remote accesses. We find that just
2.45% of the transactions in the benchmark are remote.

4By construction non-live nodes cannot compromise safety because 𝑒_𝑖𝑑𝑠
prevent them from participating in either transaction or ownership requests.
5https://zeus-protocol.com

https://zeus-protocol.com/

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

3 6
Number of nodes

0

2

4

6

8

10

Th
ro

ug
hp

ut
 [M

tp
s]

2.5% handovers - all-local (ideal)
2.5% handovers - Zeus
5% handovers - all-local (ideal)
5% handovers - Zeus

Figure 7. All-local (ideal) vs. Zeus for
2.5% and 5% handovers on 3 and 6 nodes.

0 5 10 20
% Remote write transactions

0

0.5

1

1.5

2

Th
ro

ug
hp

ut
 [M

tp
s/

no
de

]

Ve
nm

o

3
no

de
s

6

no
de

s

Zeus - 3 nodes [40Gb Reliable DPDK]
Zeus - 6 nodes [40Gb Reliable DPDK]
FaSST [56Gb Unreliable RDMA]
DrTM [56Gb Reliable RDMA]

Figure 8. Smallbank while varying re-
mote write transactions.

0 5 10 20 40
% Remote write transactions

0
1
2
3
4
5
6
7

Th
ro

ug
hp

ut
 [M

tp
s/

no
de

]

Zeus - 3 nodes [40Gb Reliable DPDK]
Zeus - 6 nodes [40Gb Reliable DPDK]
FaSST [56Gb Unreliable RDMA]
FaRM [2x 56Gb Reliable RDMA]

Figure 9. TATP while varying remote
write transactions.

We empirically evaluate benchmarks related to cellular and
financial transactions (i.e., Handovers and Smallbank). While
promising in terms of locality, we leave the experimental
evaluation of TPC-C for future work because our current
implementation of Zeus does not support range queries.
Experimental testbed. We run all our experiments on a
dedicated cluster with six servers. Each server has a dual
socket Intel Xeon Skylake 8168 with 24 cores per socket, run-
ning at 2.7GHz, 192 GB of DDR4 memory and aMellanox CX-3
card. We use and pin all our threads into the first socket only,
where the network card resides. All servers communicate
through a Dell S6100-ON switch with 40 Gbps links.
We first evaluate Zeus on several benchmarks (summa-

rized in Table 2); including three benchmarks discussed in
Section 2 and the TATP benchmark [49] to further study Zeus’
limits over FaSST and FaRM. For benchmarks, as in prior
work [34], we consider 3-way replication and enough co-
located clients to saturate each evaluated system. The initial
sharding of all systems is the same. Unlike Zeus, baselines
do not support dynamic sharding (i.e., ownership). We were
not able to run the baseline systems FaRM, FaSST and DrTM
on our platform, but the hardware used in their evaluation is
similar, so we report numbers from their papers [20, 34, 71].
We conclude by demonstrating the ease of porting legacy
applications onto Zeus by porting and evaluating a cellular
packet gateway, an Nginx server and the SCTP protocol.

8.1 Handovers
We start our evaluation with a cellular handovers bench-
mark. We evaluate three operations described in Section 2:
a handover (consists of two transactions, one at the start
and one at the end), a service request and a release (each a
single transaction). We implement them as defined in 3GPP
specification, on top of Zeus. All transactions are write trans-
actions. A typical cellular phone context for these operation
is large and many parts of it get modified so we need to
commit about 400B of data per transaction.
Recall that mobile users perform both handovers and all

other requests, while the stationary users only perform other
requests (i.e., no handovers). In our evaluation, we vary the
ratios of the total number of handovers versus the total num-
ber of requests (handovers, service requests and releases),
each modeling different mobility speeds in the network. A

typical cellular network has 2.5% handovers [45], and we also
evaluate the 5% case corresponding to doubling the mobility.
We run a benchmark on a population of 2M users out of

which 400k are mobile. We use the typical cell network provi-
sioning as reported in [45, 55], scaled to 2M users (requiring
1000 base stations). Not all handovers will involve ownership
transfers because some will occur between objects of the
same node. For the ratio of remote handovers we use the
numbers we analyzed from the Boston metropolitan area.

In our evaluation we vary the number of nodes in the sys-
tem, and plot the total throughput for the two ratios as well
as for all local transactions. This is shown in Figure 7. We see
that the difference between Zeus and the perfect sharding
is at most 9%. This is because there a large fraction of the
transactions is local, and we have less than 0.5% ownership
requests. We also see that the performance scales linearly
with the number of nodes, even though there are more trans-
actions with ownership transfers for a larger number of
nodes. Lastly, we note that prior works have not studied
the handover benchmark; as such, there are no published
numbers for state-of-the-art systems to compare against.

8.2 Smallbank
Smallbank is a benchmark that simulates financial transac-
tions [10]. It is write intensive with 85% write transactions.
Out of them, 30% modify two objects and the rest modify 3 or
more objects per transaction. All read transactions access 3
objects. We use the same access skew on objects as in FaSST.

Smallbank does not specify which pairs of users transact
with each other, hence it cannot be used to infer real-world
transaction locality. To understand how much the degree of
locality affects Zeus, we start increasing the number of trans-
actions that require an ownership change, until Zeus breaks
even with the beaselines. This is shown in Figure 8. We see
that running Smallbank with the real-world remote transac-
tions, as observed in the Venmo, Zeus outperforms FaSST
and DrTM by about 35% and 100%, respectively. Recall that
neither FaSST nor DrTM support dynamic sharding so any
small and gradual change in access pattern will eventually
lead to an almost random placement and most requests be-
ing remote, which is what we show here. As expected, Zeus
throughput drops as the remote transactions increase and
the trend between three and six nodes remains the same. As

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

3 8 12
Time [s]

0

1

2

3

4

Th
ro

ug
hp

ut
 [M

tp
s]

Zeus node 1
Zeus node 2
Zeus node 3

Figure 10. Voter Performance when
moving 1M objects across nodes.

2 6 10 14
Time [s]

0
1
2
3
4
5
6

Th
ro

ug
hp

ut
 [M

tp
s]

Zeus total
node 1
node 2
node 3

Figure 11. Voter Performance when
registering votes and moving objects.

0 20 40 60 80 100
Ownership Latency (us)

0

25

50

75

100

CD
F

Moving 1M voters
Moving 100K hot voters

Figure 12. CDF of Zeus ownership re-
quest latency for Voter experiments.

long as less than 5% (20%) of transactions require ownership
change, Zeus provides a benefit over FaSST (DrTM).
Reliable lower-end networking. Note that unlike FaSST,
Zeus implements reliablemessagingwith its overheads.While
this reduces Zeus’ performance, it allows Zeus to gracefully
tolerate message losses. In contrast, FaSST must kill and re-
cover a node for each lost message. Also, FaSST uses 56Gb
RDMA. DrTM similarly leverages 56Gb RDMA and relies on
hardware transactional primitives for its performance. Zeus
uses a 40Gb non-RDMA networking and it does not depend
on hardware-assisted transactions for its performance.

8.3 TATP
We next evaluate the TATP benchmark [49], which gives us
a second point of comparison with other state-of-art sys-
tems [21, 34]. It is read intensive, with 80% read and 20%
write transactions. We use 1M subscribers per server, as in
FaSST. Similarly to the Smallbank benchmark, we vary the
fraction of transactions that require an ownership change.
The total throughput is shown in Figure 9. We see that when
the fraction of remote requests is small, Zeus outperforms
FaSST and FaRM by up to 2× and 3.5× respectively.
As discussed in the Smallbank study, neither FaRM nor

FaSST allow dynamic sharding so they end up issuing remote
requests whenever there is a changing access pattern. Zeus
keeps the requests local bymoving objects, and it is especially
effective for a read-dominant benchmark like TATP, since
there is little overhead on reads. We also see that as long as
there are fewer than 20% (40%) of write transactions with
ownership requests, Zeus outperforms FaSST (FaRM). Again,
these thresholds are higher than in the case of Smallbank
due to read-dominant workload. The performance trend of
Zeus for three and six nodes is the same as in Smallbank.

8.4 Voter
Voter is a benchmark that represents a real-time phone vot-
ing system [19]. Using three nodes, we simulate 20 contes-
tants in a popularity show with 1M unique voters, each
identified by their phone number. Each voter can vote for
one contestant during one phone call and there is a limit how
many times each voter may vote per unit of time. Therefore,
each phone voting operation updates two objects: the total
votes of a contestant and the voting history of the voter.

In this benchmark, we evaluate the ability of Zeus to move
popular objects around, as discussed in Section 2. In the first
experiment, we evaluate the performance of the ownership
transfer protocol in isolation. We have 1M voters that gener-
ate 4M transactions per second (in comparison, E-store [66]
evaluates up to 200Ktps). At time 2s, we move all voter ob-
jects from node 1 to node 2, and at time 7s, we move them
again to node 3. The results are shown in Figure 10. We see
that the full move takes 4s, implying that a single worker
thread (out of ten) can move 25k objects per second.

In the second experiment, we evaluate the performance of
ownership transfers concurrently with transaction process-
ing. We have 1 very popular contestant that has 100k voters
voting for her, generating 700Ktps. All other voters vote for
other contestants and generate about 5.3Mtps in aggregate.
In this experiment, a single application and worker thread
process the popular voter. As in the previous experiment, at
times 2s, 6s and 10s, we start moving the object correspond-
ing to the popular contestant to another node. The results
are shown in Figure 11. We see that the single worker thread
still performs 25k ownership requests per second (moving
100k objects in 4s) while at the same time the rest of the
system completes 5.3Mtps. This shows that the performance
of ownership is not impacted by concurrent transactions.
Figure 12 shows the latency distribution of ownership

transfer. This metric is important since an application thread
is stalled during an ownership transfer, which allows easy
porting of applications. We see that the mean latency and the
99.9th percentile are close during the first voter experiment;
17 and 36 𝜇s, respectively. Under high load and while moving
hot objects (during the second experiment) the mean latency
is slightly higher at 29 𝜇s, and the 99.9th percentile is 83 𝜇s.
This makes Zeus 3 times faster than Rocksteady6 [37] in the
99.9th percentile despite moving hot objects under load.

8.5 Legacy applications
One of the advantages of Zeus is that it is easy to port existing
applications on it. Different applications assume different
multi-threading or multi-process models, with different role
for each thread (process). They also often take dependencies
on various external libraries and OS calls. FaRM, FaSST and

6Evaluated in similar setup with DPDK networking over 40Gb CX-3 NICs.

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

10

20

30

40

4G
 C

on
tro

l P
la

ne
 T

hr
ou

gh
pu

t [
Kt

ps
]

Local memory
Redis (Blocking store)
Zeus (1 active + 1 passive)
Zeus (2 active)

Figure 13.Cellular packet gateway con-
trol plane performance.

150B packets 1440B packets
0

200

400

600

800

1000

1200

1400

SC
TP

 th
ro

ug
hp

ut
 [M

bp
s]

No replication
Zeus

Figure 14. SCTP performance.

0 10 20 30 40 50 60
Time [s]

0

20

40

60

HT
TP

 tr
an

sa
ct

io
n

ra
te

 [K
tp

s]

No Zeus
Zeus w. scale in/out

Figure 15. Nginx performance in a
scale-in / scale-out scenario.

DrTM have to wait on each remote access. To mitigate this
latency, they assume transaction multiplexing via custom
user-mode threading (e.g., co-routines or Boost user-threads
in FaSST); however, this makes it difficult to integrate with
many legacy applications.

As explained in Section 3, Zeus takes a different approach.
Since most transactions are pipelined and do not block the
application thread, there is no need to re-architect a legacy
application. Zeus only blocks the application during the own-
ership requests, which are infrequent.
In order to verify the claim about portability, we port

and evaluate three existing applications on top of Zeus: the
control plane of a cellular packet gateway, the SCTP transport
protocol and an Nginx web server.
Cellular packet gateway. Cellular packet gateway is a vir-
tual network function in a cellular network that forwards all
packets from mobile users. It has a control and data plane.
The control plane performs service request and release op-
erations, as described in the handover benchmark (but not
the handovers themselves). Each of these operations is one
transaction. We use the OpenEPCv8 [53] 4G implementa-
tion of the cellular core control plane. We remove the legacy
datastore and instrument every access to use Zeus. We use a
custom load generator to create test workloads with service
and release requests. We test the gateway without any data-
store (all data in local memory and no replication), using an
off-the-shelf Redis datastore without replication, and Zeus.

The results are shown in Figure 13. Requests to Redis are
remote and, due to the OpenEPC design, the application
thread blocks on every request. This is why Redis perfor-
mance is lower than 10Ktps even without replication, and
illustrates the challenges due to blocking when porting exist-
ing applications. Zeuswith a single active node (and 1 passive
replica) is as fast as the gateway with local accesses and no
replication. This is because the bottleneck is in parsing and
processing the signalling messages, not in the datastore ac-
cess. When we use both nodes as active (being each other
replica), the throughput is 60% higher. We are not able to
scale beyond three nodes due to limitations of our signal
generator, which cannot saturate more than two Zeus nodes.
SCTP transport protocol. SCTP is commonly used in the
cellular control plane to offer a degree of fault tolerance on

network issues. For fault tolerance, SCTP natively supports
multi-homing and is able to switch from one access network
to another in case of a network failure, without dropping
a connection. However, current SCTP implementations can-
not survive a node failure as the connection state is not
replicated. If an SCTP connection fails, all active users drop
calls. Moreover, it is not easy to virtualize SCTP state as the
protocol is originally implemented as a part of a Unix kernel.

To demonstrate Zeus efficiency and the ability to support
legacy applications, we port an implementation of SCTP pro-
tocol [59] to Zeus and replicate all changes to the connection
states. We implement each packet transmission, reception
and a timer event as a single transaction. Thus, any node
failure will be perceived by the peers as a network loss, and
dealt with by the protocol. SCTP uses standard BSD macros
for basic data structures (e.g., lists, hash tables) that are com-
patible with Zeus memory interfaces (described in Section 7).
We are able to keep the original SCTP design (timer, RX and
TX threads) as we do not have to deal with thread blocking.

We use a standard iperf3 client to generate a single SCTP
flow to a Zeus server running SCTP. All state is replicated on
another Zeus server. Figure 14 shows the throughput of the
single flow for different packet sizes. For large packet sizes,
Zeus is 40% slower than vanilla SCTP with no modifications.
This is because SCTP has a complex state that is modified for
every packet and 6.8 KB of data has to be replicated (note
that we have not spent any time optimizing state access and
providing read-only accesses). The difference is higher for
smaller packets because of the replication overhead. How-
ever, we argue that this is fine for the control plane, where
the reliability is more important than speed. We also note
that Zeus pipelined transactions are important for the SCTP
case with a few flows because many consecutive transac-
tions access the same object and do not have to wait for the
reliable commit of the previous transaction (§ 5.2).
Nginx web server. Finally, we evaluate the session persis-
tence routing mode [50] of an Nginx web server on top of
Zeus. In this mode, Nginx runs as an application-layer load
balancer. It looks up a specific cookie in an HTTP request and
chooses an end destination based on its value. Session per-
sistence is not available in the open source version of Nginx
so we implement our own variant using the Zeus datastore.

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

If the cookie is found in the replicated datastore, we route
the request to the destination stored in the entry. If not, we
randomly select one of the two HTTP back-end servers and
store it to the datastore (replicated over two nodes).
A client creates a number of requests for a single small

HTTP page. Initially, all packets requests are processed by the
same Nginx server node using a single core. We then emulate
a scale-out and a scale-in by adding and removing another
server node, and spreading the load across all available nodes.
The number of forwarded HTTP requests processed by Nginx
is shown in Figure 15. We see that the Nginx performance
with Zeus is the same as without Zeus, showing that the
bottleneck is in the application and not in the datastore. We
also see that it seamlessly scales in and out as the number of
servers change. Again, this illustrates an ease of portability
of an existing legacy application to Zeus.

9 Related work
Recent works on in-memory distributed transactions present
distributed commit protocols that leverage modern hardware
to achieve good performance with strong consistency, but
do not fully exploit locality [15, 20, 21, 34, 38, 70]. Some
systems expose object locality which allows programmers to
implement locality-aware optimisations [4, 20], but, unlike
Zeus, object relocation is costly and burdens the programmer.

There are also works that mitigate the cost of distributed
transactions but impose other constrains. For example, some
mandate determinism [30, 41, 57, 68], and are limited to non-
interactive transactions that require the read/write sets of
all transactions to be known prior to execution [58]. Others
adopt epoch-based designs to amortize the cost of commit
across several transactions [16, 42, 43]. Contrary to those,
Zeus enhances programmability and supports fully-general
transactions that need not wait the end of epochs to commit.

Object partitioning has been used to improve performance
of distributed transactions. Typically, objects are partitioned
andmigrated periodically to improve locality [1, 17, 23, 37, 39,
54, 61, 66]. In geo-distributed systems, object migration can
significantly reduce WAN traffic [14]. Facebook’s Akkio [7]
splits data in 𝜇-shards which migrates across datacenters to
leverage locality in workloads. Similarly, SLOG [57] deploys
a periodic remastering scheme over a deterministic data-
base to reduce across-datacenter round-trips, but mandates
coordination within a datacenter. Other works also exploit
locality to reduce across-datacenter round-trips [25, 67, 74].
In contrast, Zeus infers locality and moves the object eagerly
on the first access, supports non-deterministic transactions,
and reduces coordination within the datacenter.

Zeus protocols bear similarity to cache coherence in multi-
processor systems. Cache coherence protocols move the
cache lines to the requesting node on access. Cache coher-
ence protocols have been used to implement hardware trans-
actions [29]. Zeus builds on ideas in Hermes [35], which
adapted concepts from cache coherence and applied them to

enforce strong consistency for replicated in-memory datas-
tores. Hermes allows for local reads and fast reliable updates
to individual objects from all replicas; however, it does not
support multi-object reliable transactions or ownerships.

Distributed shared memory (DSM) provides an abstraction
of single shared memory space built on top of a collection
of machines (e.g. [6, 13, 65]). Similarly to Zeus, many DSMs
use cache coherence protocols, moving data to the accessing
node, but, unlike Zeus, most focus on single-object consis-
tency. A few support transactions (e.g., [11, 73]) but relax
consistency and/or forfeit availability for performance.

Several works on software transactions have used owner-
ship-related ideas albeit on a single-node context [18, 28, 44].
L-Store [40] optimizes for locality using ownerships in a dis-
tributed local area setting, but only supports durable transac-
tions (i.e., without replicas and availability). In contrast, Zeus
enables strictly-serializable transactions and fast ownerships
over a replicated deployment that facilitates availability and
local read-only transactions from any replica.

Akin to Zeus’ local commit, PWV [24] enables early write
visibility, as soon as a transaction executes all statements
that could cause it to abort. However, transactions in PWV
forfeit strictness and need determinism. In contrast, Zeus
transactions exploit locality and afford strict serializability.
An area that has looked into datastores with dynamic

sharding are virtualized network functions. Several have
built custom datastores to exploit locality (e.g., [63, 72]), but
they do not deliver on other desired requirements – speed,
availability or consistency. Others have forgone locality ben-
efits [33, 36] and rely on external datastores (e.g., [52]).

10 Conclusion
Many real-world applications exhibit high access locality.
Zeus leverages this to depart from the conventional dis-
tributed transaction design. Instead of executing a trans-
action across nodes, Zeus brings all objects to the same node
and executes the transaction locally. It does so via two new
reliable protocols: one for fast localized transactions with
replication, and one for efficient object ownership. Another
benefit of Zeus is the ease of porting existing applications
on top of it, as localized transactions can pipeline replication
without blocking the application. Zeus is up to 2× faster than
state-of-art systems on TATP benchmark and up to 40% on
Smallbank while using lower-end networking. It can move
up to 250k objects per second per server and process millions
of transactions per second. Zeus can run many industry stan-
dard applications without any re-architecting. We believe
that Zeus can accelerate the uptake of reliable in-memory
databases for a wide range of applications in the near future.

Acknowledgments
We thank our shepherd, Liuba Shrira, and our reviewers for
their feedback. This work is supported by the EPSRC grant
EP/L01503X/1 and Microsoft via its PhD Scholarship Program.

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

References
[1] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. Dy-

naMast: Adaptive dynamic mastering for replicated systems. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
1381–1392.

[2] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast
Key-Value Stores: An Idea Whose Time Has Come and Gone. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems (Bertinoro,
Italy) (HotOS ’19). Association for Computing Machinery, New York,
NY, USA, 113–119. https://doi.org/10.1145/3317550.3321434

[3] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,
Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,
Jason Hunter, Roberto Peon, Larry Kai, Alexander Shraer, Arif Mer-
chant, and Kfir Lev-Ari. 2016. Slicer: Auto-Sharding for Datacenter
Applications. In Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, USA, 739–753.

[4] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and
Christos Karamanolis. 2007. Sinfonia: A New Paradigm for Build-
ing Scalable Distributed Systems. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles (Stevenson, Wash-
ington, USA) (SOSP ’07). Association for Computing Machinery, New
York, NY, USA, 159–174.

[5] Mukhtiar Ahmad, Syed Usman Jafri, Azam Ikram, Wasiq Noor Ah-
mad Qasmi, Muhammad Ali Nawazish, Zartash Afzal Uzmi, and Za-
far Ayyub Qazi. 2020. A Low Latency and Consistent Cellular Control
Plane. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (Virtual
Event, USA) (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 648–661. https://doi.org/10.1145/3387514.3406218

[6] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Kele-
her, Honghui Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy
Zwaenepoel. 1996. TreadMarks: Shared Memory Computing on Net-
works of Workstations. Computer 29, 2 (Feb. 1996), 18–28. https:
//doi.org/10.1109/2.485843

[7] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,
Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael
Stumm. 2018. Sharding the Shards: Managing Datastore Locality at
Scale with Akkio. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA)
(OSDI’18). USENIX Association, USA, 445–460.

[8] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera,
Kobus Van der Merwe, and Sampath Rangarajan. 2015. Scaling
the LTE Control-Plane for Future Mobile Access. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies (Heidelberg, Germany) (CoNEXT ’15). Association for
Computing Machinery, New York, NY, USA, Article 19, 13 pages.
https://doi.org/10.1145/2716281.2836104

[9] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and
Erfan Zamanian. 2016. The End of Slow Networks: It’s Time for a
Redesign. Proc. VLDB Endow. 9, 7 (March 2016), 528–539. https:
//doi.org/10.14778/2904483.2904485

[10] Michael J Cahill, Uwe Röhm, and Alan D Fekete. 2009. Serializable iso-
lation for snapshot databases. ACM Transactions on Database Systems
(TODS) 34, 4 (2009), 1–42.

[11] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang
Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and ShengWang.
2018. Efficient Distributed Memory Management with RDMA and
Caching. Proc. VLDB Endow. 11, 11 (July 2018), 1604–1617. https:
//doi.org/10.14778/3236187.3236209

[12] Francesco Calabrese, Mi Diao, Giusy Lorenzo, Joseph Ferreira, and
Carlo Ratti. 2013. Understanding individual mobility patterns from
urban sensing data: A mobile phone trace example. Transportation

Research Part C: Emerging Technologies 26 (01 2013), 301–313. https:
//doi.org/10.1016/j.trc.2012.09.009

[13] John B. Carter, John K. Bennett, and Willy Zwaenepoel. 1991. Imple-
mentation and Performance of Munin. In Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles (Pacific Grove, Cali-
fornia, USA) (SOSP ’91). Association for Computing Machinery, New
York, NY, USA, 152–164. https://doi.org/10.1145/121132.121159

[14] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2018.
Adapting to access locality via live data migration in globally dis-
tributed datastores. In 2018 IEEE International Conference on Big Data
(Big Data). IEEE, 3321–3330.

[15] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and General Distributed Transactions Using RDMA and
HTM. In Proceedings of the Eleventh European Conference on Com-
puter Systems (London, United Kingdom) (EuroSys ’16). Association
for Computing Machinery, New York, NY, USA, Article 26, 17 pages.
https://doi.org/10.1145/2901318.2901349

[16] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit
Agarwal, and Lorenzo Alvisi. 2018. Obladi: Oblivious Serializable
Transactions in the Cloud. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation (Carlsbad, CA, USA)
(OSDI’18). USENIX Association, USA, 727–743.

[17] Carlo Curino, Evan Jones, Yang Zhang, and SamMadden. 2010. Schism:
A Workload-Driven Approach to Database Replication and Partition-
ing. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 48–57. https://doi.org/10.
14778/1920841.1920853

[18] Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional Locking II
(DISC’06). Springer-Verlag, Berlin, Heidelberg, 194–208. https://doi.
org/10.1007/11864219_14

[19] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudre-Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Bench-
marking Relational Databases. Proc. VLDB Endow. 7, 4 (Dec. 2013),
277–288. https://doi.org/10.14778/2732240.2732246

[20] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast Remote Memory. In Proceedings of the
11th USENIX Conference on Networked Systems Design and Implemen-
tation (Seattle, WA) (NSDI’14). USENIX Association, USA, 401–414.

[21] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (Monterey, California) (SOSP ’15).
Association for Computing Machinery, New York, NY, USA, 54–70.
https://doi.org/10.1145/2815400.2815425

[22] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus
in the Presence of Partial Synchrony. J. ACM 35, 2 (April 1988), 288–323.
https://doi.org/10.1145/42282.42283

[23] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Di-
vyakant Agrawal, and Amr El Abbadi. 2015. Squall: Fine-Grained
Live Reconfiguration for Partitioned Main Memory Databases. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). As-
sociation for Computing Machinery, New York, NY, USA, 299–313.
https://doi.org/10.1145/2723372.2723726

[24] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High
Performance Transactions via EarlyWrite Visibility. Proc. VLDB Endow.
10, 5 (Jan. 2017), 613–624. https://doi.org/10.14778/3055540.3055553

[25] Hua Fan andWojciech Golab. 2019. Ocean vista: gossip-based visibility
control for speedy geo-distributed transactions. Proceedings of the
VLDB Endowment 12, 11 (2019), 1471–1484.

[26] Rachid Guerraoui and Michal Kapalka. 2008. On the Correctness
of Transactional Memory (PPoPP ’08). Association for Computing
Machinery, New York, NY, USA, 175–184. https://doi.org/10.1145/
1345206.1345233

https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1145/3387514.3406218
https://doi.org/10.1109/2.485843
https://doi.org/10.1109/2.485843
https://doi.org/10.1145/2716281.2836104
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.1016/j.trc.2012.09.009
https://doi.org/10.1016/j.trc.2012.09.009
https://doi.org/10.1145/121132.121159
https://doi.org/10.1145/2901318.2901349
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/2723372.2723726
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/1345206.1345233

EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Katsarakis, et al.

[27] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stone-
braker. 2017. An Evaluation of Distributed Concurrency Control. Proc.
VLDB Endow. 10, 5 (Jan. 2017), 553–564. https://doi.org/10.14778/
3055540.3055548

[28] Tim Harris and Keir Fraser. 2014. Language Support for Lightweight
Transactions. SIGPLAN Not. 49, 4S (July 2014), 64–78. https://doi.org/
10.1145/2641638.2641654

[29] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In Proceedings
of the 20th Annual International Symposium on Computer Architecture
(San Diego, California, USA) (ISCA ’93). Association for Computing
Machinery, New York, NY, USA, 289–300. https://doi.org/10.1145/
165123.165164

[30] L. Hoang Le, E. Fynn, M. Eslahi-Kelorazi, R. Soulé, and F. Pedone. 2019.
DynaStar: Optimized Dynamic Partitioning for Scalable State Machine
Replication. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). 1453–1465.

[31] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-Free Coordination for Internet-Scale Systems.
In Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-
nical Conference (Boston, MA) (USENIXATC’10). USENIX Association,
USA, 11.

[32] iWireless. 2020. Macrocell vs Microcell. https://www.iwireless-
solutions.com/macrcocell-vs-microcell/. (Accessed on 10/06/2020).

[33] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. State-
less Network Functions: Breaking the Tight Coupling of State and
Processing. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 97–
112.

[34] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (Savannah, GA, USA)
(OSDI’16). USENIX Association, USA, 185–201.

[35] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh,
Arpit Joshi, Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan.
2020. Hermes: A Fast, Fault-Tolerant and Linearizable Replication
Protocol. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing
Machinery, New York, NY, USA, 201–217. http://hermes-protocol.com

[36] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance
for Stateful Chained Network Functions. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(Boston, MA, USA) (NSDI’19). USENIX Association, USA, 501–515.

[37] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and
Ryan Stutsman. 2017. Rocksteady: Fast Migration for Low-Latency
In-Memory Storage. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (Shanghai, China) (SOSP ’17). Association
for Computing Machinery, New York, NY, USA, 390–405. https:
//doi.org/10.1145/3132747.3132784

[38] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and
John Ousterhout. 2015. Implementing Linearizability at Large Scale
and Low Latency. In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, California) (SOSP ’15). 71–86.

[39] Juchang Lee, Kyu Hwan Kim, Hyejeong Lee, Mihnea Andrei, Seongyun
Ko, Friedrich Keller, and Wook-Shin Han. 2020. Asymmetric-Partition
Replication for Highly Scalable Distributed Transaction Processing
in Practice. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3112–3124. https:
//doi.org/10.14778/3415478.3415538

[40] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
and Zhengkui Wang. 2016. Towards a Non-2PC Transaction Manage-
ment in Distributed Database Systems. In Proceedings of the 2016 Inter-
national Conference on Management of Data (San Francisco, California,

USA) (SIGMOD ’16). Association for Computing Machinery, New York,
NY, USA, 1659–1674. https://doi.org/10.1145/2882903.2882923

[41] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast
and Practical Deterministic OLTP Database. Proc. VLDB Endow. 13, 12
(July 2020), 2047–2060. https://doi.org/10.14778/3407790.3407808

[42] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2021. Epoch-based
Commit and Replication in Distributed OLTP Databases. Proc. VLDB
Endow. 14 (2021), 743–756. https://doi.org/10.14778/3407790.3407808

[43] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Trans-
actions through Asymmetric Replication. Proc. VLDB Endow. 12, 11
(July 2019), 1316–1329. https://doi.org/10.14778/3342263.3342270

[44] Virendra Jayant Marathe and Mark Moir. 2008. Toward High Per-
formance Nonblocking Software Transactional Memory. In Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (Salt Lake City, UT, USA) (PPoPP ’08). As-
sociation for Computing Machinery, New York, NY, USA, 227–236.
https://doi.org/10.1145/1345206.1345240

[45] Ali Mohammadkhan, KK Ramakrishnan, Ashok Sunder Rajan, and
Christian Maciocco. 2016. Considerations for re-designing the cellular
infrastructure exploiting software-based networks. In 2016 IEEE 24th
International Conference on Network Protocols (ICNP). IEEE, 1–6.

[46] C. Mohan, B. Lindsay, and R. Obermarck. 1986. Transaction Manage-
ment in the R* Distributed Database Management System. ACM Trans.
Database Syst. 11, 4 (Dec. 1986), 378–396. https://doi.org/10.1145/7239.
7266

[47] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014.
Extracting More Concurrency from Distributed Transactions. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (Broomfield, CO) (OSDI’14). USENIX Association,
USA, 479–494.

[48] Alex Nazaruk and Michael Rauchman. 2013. Big Data in Capital Mar-
kets. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, New York, USA) (SIGMOD ’13).
Association for Computing Machinery, New York, NY, USA, 917–918.
https://doi.org/10.1145/2463676.2486082

[49] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka.
2009. Telecom Application Transaction Processing Benchmark. http:
//tatpbenchmark.sourceforge.netl.

[50] Nginx. 2021. High-Performance Load Balancing. https://www.nginx.
com/products/nginx/load-balancing/. (Accessed on 16/03/2021).

[51] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman,
Thomas Karagiannis, Jakub Kocur, and Jacobus Van der Merwe. 2018.
ECHO: A Reliable Distributed Cellular Core Network for Hyper-
scale Public Clouds. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking (New Delhi, In-
dia) (MobiCom ’18). ACM, New York, NY, USA, 163–178. https:
//doi.org/10.1145/3241539.3241564

[52] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, et al. 2015. The RAMCloud storage system.
ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 1–55.

[53] PhantomNet. 2021. OpenEPC Tutorial. https://wiki.emulab.net/
wiki/phantomnet/oepc-protected/openepc-tutorial. (Accessed on
16/03/2021).

[54] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami,
and Anastasia Ailamaki. 2016. Adaptive NUMA-Aware Data Place-
ment and Task Scheduling for Analytical Workloads in Main-Memory
Column-Stores. 10, 2 (Oct. 2016), 37–48. https://doi.org/10.14778/
3015274.3015275

[55] A. S. Rajan, S. Gobriel, C. Maciocco, K. B. Ramia, S. Kapury, A. Singhy,
J. Ermanz, V. Gopalakrishnanz, and R. Janaz. 2015. Understanding the
bottlenecks in virtualizing cellular core network functions. In The 21st
IEEE International Workshop on Local and Metropolitan Area Networks.
1–6. https://doi.org/10.1109/LANMAN.2015.7114735

https://doi.org/10.14778/3055540.3055548
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.1145/2641638.2641654
https://doi.org/10.1145/2641638.2641654
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164
https://www.iwireless-solutions.com/macrcocell-vs-microcell/
https://www.iwireless-solutions.com/macrcocell-vs-microcell/
http://hermes-protocol.com
https://doi.org/10.1145/3132747.3132784
https://doi.org/10.1145/3132747.3132784
https://doi.org/10.14778/3415478.3415538
https://doi.org/10.14778/3415478.3415538
https://doi.org/10.1145/2882903.2882923
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3342263.3342270
https://doi.org/10.1145/1345206.1345240
https://doi.org/10.1145/7239.7266
https://doi.org/10.1145/7239.7266
https://doi.org/10.1145/2463676.2486082
http://tatpbenchmark.sourceforge.netl
http://tatpbenchmark.sourceforge.netl
https://www.nginx.com/products/nginx/load-balancing/
https://www.nginx.com/products/nginx/load-balancing/
https://doi.org/10.1145/3241539.3241564
https://doi.org/10.1145/3241539.3241564
https://wiki.emulab.net/wiki/phantomnet/oepc-protected/openepc-tutorial
https://wiki.emulab.net/wiki/phantomnet/oepc-protected/openepc-tutorial
https://doi.org/10.14778/3015274.3015275
https://doi.org/10.14778/3015274.3015275
https://doi.org/10.1109/LANMAN.2015.7114735

Zeus: Locality-aware Distributed Transactions EuroSys ’21, April 26–29, 2021, Online, United Kingdom

[56] Redis. 2020. Redis. https://redis.io.
[57] Kun Ren, Dennis Li, and Daniel J. Abadi. 2019. SLOG: Serializable,

Low-Latency, Geo-Replicated Transactions. Proc. VLDB Endow. 12, 11
(July 2019), 1747–1761. https://doi.org/10.14778/3342263.3342647

[58] Kun Ren, Alexander Thomson, and Daniel J Abadi. 2014. An evaluation
of the advantages and disadvantages of deterministic database systems.
Proceedings of the VLDB Endowment 7, 10 (2014), 821–832.

[59] I. Rüngeler and M. Tüxen. 2015. Socket API for the SCTP User-land Im-
plementation (usrsctp). https://github.com/sctplab/usrsctp. (Accessed
on 16/03/2021).

[60] Dan Salmon. 2020. sa7mon/venmo-data. https://github.com/sa7mon/
venmo-data original-date: 2019-06-12T18:02:28Z.

[61] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf
Aboulnaga, andMichael Stonebraker. 2016. Clay: fine-grained adaptive
partitioning for general database schemas. Proceedings of the VLDB
Endowment 10, 4 (2016), 445–456.

[62] Ravi Sethi. 1982. Useless actions make a difference: Strict serializability
of database updates. Journal of the ACM (JACM) 29, 2 (1982), 394–403.

[63] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind
Krishnamurthy, Christian Maciocco, Maziar Manesh, João Martins,
Sylvia Ratnasamy, Luigi Rizzo, and et al. 2015. Rollback-Recovery for
Middleboxes. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (London, United Kingdom)
(SIGCOMM ’15). Association for Computing Machinery, New York, NY,
USA, 227–240. https://doi.org/10.1145/2785956.2787501

[64] Dale Skeen. 1981. Nonblocking Commit Protocols. In Proceedings of
the 1981 ACM SIGMOD International Conference on Management of
Data (Ann Arbor, Michigan) (SIGMOD ’81). Association for Computing
Machinery, New York, NY, USA, 133–142. https://doi.org/10.1145/
582318.582339

[65] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt,
Leonidas Kontothanassis, Srinivasan Parthasarathy, and Michael Scott.
1997. Cashmere-2L: Software Coherent Shared Memory on a Clustered
Remote-Write Network. In Proceedings of the Sixteenth ACM Sympo-
sium on Operating Systems Principles (Saint Malo, France) (SOSP ’97).
Association for Computing Machinery, New York, NY, USA, 170–183.
https://doi.org/10.1145/268998.266675

[66] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J
Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker.
2014. E-store: Fine-grained elastic partitioning for distributed trans-
action processing systems. Proceedings of the VLDB Endowment 8, 3
(2014), 245–256.

[67] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-
dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,
Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, BramGruneir,
Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. CockroachDB: The
Resilient Geo-Distributed SQL Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Port-
land, OR, USA) (SIGMOD ’20). Association for Computing Machin-
ery, New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.
3386134

[68] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transac-
tions for Partitioned Database Systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (Scottsdale,
Arizona, USA) (SIGMOD ’12). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/2213836.2213838

[69] Clive Unger, Dhiraj Murthy, Amelia Acker, Ishank Arora, and Andy
Chang. 2020. Examining the Evolution of Mobile Social Payments
in Venmo. In International Conference on Social Media and Society
(Toronto, ON, Canada) (SMSociety’20). Association for Computing
Machinery, New York, NY, USA, 101–110. https://doi.org/10.1145/
3400806.3400819

[70] XingdaWei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Decon-
structing RDMA-Enabled Distributed Transactions: Hybrid is Better.
In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX
Association, USA, 233–251.

[71] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Fast In-Memory Transaction Processing Using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machin-
ery, New York, NY, USA, 87–104. https://doi.org/10.1145/2815400.
2815419

[72] ShinaeWoo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. 2018. Elastic Scaling of Stateful Network Functions.
In Proceedings of the 15th USENIX Conference on Networked Systems
Design and Implementation (Renton, WA, USA) (NSDI’18). USENIX
Association, USA, 299–312.

[73] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry Rudolph,
and Srinivas Devadas. 2018. Sundial: Harmonizing Concurrency
Control and Caching in a Distributed OLTP Database Management
System. Proc. VLDB Endow. 11, 10 (June 2018), 1289–1302. https:
//doi.org/10.14778/3231751.3231763

[74] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishna-
murthy, and Dan RK Ports. 2018. Building consistent transactions
with inconsistent replication. ACM Transactions on Computer Systems
(TOCS) 35, 4 (2018), 1–37.

[75] Xinyi Zhang, Shiliang Tang, Yun Zhao, Gang Wang, Haitao Zheng,
and Ben Y. Zhao. 2017. Cold Hard E-Cash: Friends and Vendors in the
Venmo Digital Payments System.. In ICWSM. AAAI Press, 387–396.

https://redis.io
https://doi.org/10.14778/3342263.3342647
https://github.com/sctplab/usrsctp
https://github.com/sa7mon/venmo-data
https://github.com/sa7mon/venmo-data
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/582318.582339
https://doi.org/10.1145/582318.582339
https://doi.org/10.1145/268998.266675
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/3400806.3400819
https://doi.org/10.1145/3400806.3400819
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.14778/3231751.3231763
https://doi.org/10.14778/3231751.3231763

	Abstract
	1 Introduction
	2 Objectives and motivation
	2.1 Datastore design objectives
	2.2 A case for access locality

	3 Design overview
	3.1 Zeus system architecture
	3.2 Zeus protocols overview

	4 Reliable ownership
	4.1 Reliable ownership protocol
	4.2 Fast scalable ownership

	5 Reliable commit
	5.1 Reliable commit protocol
	5.2 Non-blocking transaction pipelining
	5.3 Read-only transactions

	6 Discussion
	6.1 Distributed commit vs Zeus
	6.2 Other details

	7 System
	8 Evaluation
	8.1 Handovers
	8.2 Smallbank
	8.3 TATP
	8.4 Voter
	8.5 Legacy applications

	9 Related work
	10 Conclusion
	Acknowledgments
	References

