
Doing more with less: Training large DNN models on
commodity servers for the masses
Youjie Li∗

University of Illinois at Urbana-Champaign
Champaign, IL, USA

Amar Phanishayee
Microsoft Research
Redmond, WA, USA

Derek Murray
Microsoft

Mountain View, CA, USA

Nam Sung Kim
University of Illinois at Urbana-Champaign

Champaign, IL, USA

ABSTRACT
Deep neural networks (DNNs) have grown exponentially in
complexity and size over the past decade, leaving only the
elite who have access to massive datacenter-based resources
with the ability to develop and train such models. One of the
main challenges for the long tail of researchers who might
have access to only limited resources (e.g., a singlemulti-GPU
server) is limited GPU memory capacity compared to model
size. The problem is so acute that the memory requirement
of training large DNNmodels can often exceed the aggregate
capacity of all available GPUs on commodity servers; this
problem only gets worse with the trend of ever-growing
model sizes. Current solutions that rely on virtualizing GPU
memory (by swapping to/fromCPUmemory) incur excessive
swapping overhead. In this paper, we advocate rethinking
how DNN frameworks schedule computation and move data
to push the boundaries of training large models efficiently
on modest multi-GPU deployments.

CCS CONCEPTS
• Computing methodologies→Machine learning; Par-
allel algorithms; • Software and its engineering→Mem-
ory management; Communications management.

∗Work done as part of MSR internship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465289

ACM Reference Format:
Youjie Li, Amar Phanishayee, Derek Murray, and Nam Sung Kim.
2021. Doing more with less: Training large DNN models on com-
modity servers for the masses. InWorkshop on Hot Topics in Operat-
ing Systems (HotOS ’21), May 31–June 2, 2021, Ann Arbor, MI, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3458336.
3465289

1 INTRODUCTION
Modern DNN models have transformed our approach to
solving a range of hard problems such as image classifica-
tion [12, 16, 18, 32, 55, 68], semantic segmentation [63], image
generation [14], translation [53, 65], and language model-
ing [5, 39, 52, 62, 65]. Over the years, these models have
grown exponentially in size while continuing to achieve
unprecedented accuracy on ever more complex tasks [1,
29, 40]. For example, a 557-million-parameter AmoebaNet
can achieve super-human accuracy in image classification
tasks [20]. Similarly, a state-of-the-art language model like
the 175-billion parameter GPT-3 [5] can produce human-like
text [15, 38, 61]. As these models grow, they also become
more computationally expensive. Training these models to
accuracy takes weeks to months of wall-clock time, despite
running in parallel on large clusters of fast accelerators.

These resource demands leave only the elite (e.g., Google,
Microsoft, Facebook, OpenAI, NVIDIA, etc.), who have ac-
cess to massive datacenter-based resources, with the abil-
ity to train such models. The long-tail of researchers, the
masses, who have access to only limited resources (e.g., a
single server with a couple of GPUs), increasingly risk being
alienated from innovating in this space. While training on
larger clusters naturally results in speedier training, in this
paper we investigate how to push the boundaries of training
large models on modest multi-GPU deployments.
Challenges.
One of the main challenges of training large models is

that the memory footprint of training far exceeds the mem-
ory capacity of fast accelerators. Fig. 1 shows how sizes of
models for image classification and language modeling tasks

https://doi.org/10.1145/3458336.3465289
https://doi.org/10.1145/3458336.3465289
https://doi.org/10.1145/3458336.3465289

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Youjie Li, Amar Phanishayee, Derek Murray, and Nam Sung Kim.

1E+04

1E+06

1E+08

1E+10

1E+12

LeNet
(1998)

AlexNet
(2012)

GNMT
(2016)

AmoebaNet
(2018)

GPT-2
(2019)

T5
(2019)

GPT-3
(2020)

Pa

ra
m

 (l
og

 sc
al

e)
 175B

60K

1.5B
61M 278M

11B
557M

Figure 1: DNN model size growth for image classifica-
tion (LeNet, AlexNet, AmoebaNet) and language mod-
eling (GNMT, GPT-2, T5, GPT-3) over two decades.

have grown dramatically over time. Furthermore, model pa-
rameters are only part of the memory footprint of training;
gradients, stashed activations, optimizer states, and frame-
work workspace all taken together significantly blow-up the
memory footprint [7, 27, 54, 58, 64]. Finally, the memory
footprint is also a function of the size of individual input
item (sample size) and the number of items in an input batch
(batch size). While batch size can usually be reduced, a simi-
lar reduction in sample size is hard to pull off especially due
to its effect on model accuracy [33, 60]. Taken together, the
memory footprint for a large model can far exceed individual
accelerator memory capacity.
This memory footprint problem motivates recent inno-

vations that alleviate memory pressure. For example, re-
cent advances in techniques that virtualize GPU memory
push the boundaries of what can be achieved on a single
GPU [9, 19, 50, 58], but as we show in Section 2 such tech-
niques are inefficient for parallel multi-GPU training. Other
techniques such as encoding data structures [27], recompu-
tation [7, 50, 64], optimizer state sharding [54] or offloading
the optimizer to CPUs [57], and modes of parallelism that
split a model across multiple accelerators such as model-
[31, 42, 62] or pipeline-parallelism [8, 20, 22, 42, 43] all aim
to reduce memory pressure during training. However, de-
spite these memory optimizations, on modest deployments
(single server with a handful of commodity GPUs), the gen-
eral problem of efficiently training massive models, which
exhaust the collective memory capacity of available accelera-
tors, is still an open problem.

We argue that current DNN frameworks have two funda-
mental problems that limit large model training on modest
deployments. First, they schedule work at a coarse granular-
ity, treating the training program as a black box: all DNN
layers in data-parallel training or a set of contiguous layers
in pipeline-parallel training. This coarse granularity limits
flexibility of scheduling tasks to available resources, thus
thwarting memory-reuse–based performance enhancements
that can reduce virtual memory swap overhead. For example,
executing a group of DNN layers, one input batch at a time,
limits reuse of tensors loaded into memory by intermediate

layers as they might get swapped out. Second, frameworks
eagerly bind work to accelerators, pushing this decision all the
way to the programmer’s training script in most cases. For
example, in PyTorch, the parameter state associated with a
single DNN layer is bound to a particular device, and thus the
forward and backward computation on that state is implic-
itly bound to the same device. Virtualizing the memory of a
single GPU helps here, by treating the nearby host RAM as
a swap target, but it makes inefficient use of other available
GPUs and the interconnects between them.
A united stand – the power of Harmony.
Ideally, users could write DNN training programs that

target a single virtual accelerator device with practically
unbounded memory. Our proposed system, Harmony, intro-
duces three key ideas towards this ideal. First, we decompose
the operations in a training script into fine-grained tasks and
introduce a distributed on-line task scheduler that efficiently
maps computation and state to physical devices (late bind-
ing); the tasks in the task graph can run on different physical
devices in a data-, model-, or pipeline-parallel fashion, and
Harmony transparently introduces collective communica-
tion operations (like AllReduce) to preserve the semantics of
the original tasks. Second, we further decompose individual
operations—such as a matrix multiplication—into subtasks
that can run on different physical devices. Third, to support
PyTorch and TensorFlow programming models based on im-
perative updates to mutable state, we generalize previous
work on GPU memory swapping [9, 19, 50, 58] to build a
coherent virtual memory across all available CPU and GPU
memory. The scheduler and swapping algorithms in Har-
mony inform each other’s decisions to maximize throughput
with the available resources.

Conceptually, our approach to DNN scheduling is simi-
lar to coarse-grained task scheduling architectures used in
systems like MapReduce [10], Dryad [25], Spark [67], and
Ray [41]. We expect to leverage many ideas from literature
around these systems, such as flow-based scheduling for data
locality [13, 26], delay scheduling [66], and low-latency load
balancing [48]. However, DNN training raises two additional
problems that motivate new research: “fine-grained” tasks
may be as short as a few microseconds, and the standard
implementation of SGD-based optimization algorithms rely
on in-place state mutation, so we cannot rely on having pure
tasks with immutable inputs.

Four principles guide our design for efficient training:
1. Minimize memory swaps. Harmony attempts to reuse
state in GPU memory, minimizing swaps when using GPU
memory virtualization. Empowered by the flexibility of sched-
uling at a finer granularity, we propose a technique called
input-batch grouping, where a scheduled operator can be run
across a group of input batches before scheduling the next

Doing more with less: Training large DNN models on commodity servers for the masses HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

0
15
30
45
60

0
0.5

1
1.5

2

1 2 3 4 G
lo

ba
l S

w
ap

-o
ut

 V
ol

(G
B

)

G
lo

ba
l T

hr
ou

gh
pu

t
(s

eq
s/

se
c)

GPUs

Throughput Swap Volume

(a) DP with per-GPU tensor swapping

GPU

Swap

Host Memory
CPU

PCIe
Switch

GPU GPU GPU

PCIe
Switch…

…

(b) Intra-server interconnects.

0

5

10

15

20

1 2 3 4

M
em

 U
sa

ge
 (G

B
)

GPU Index

Memory Capacity

Heavy
Swap No Swap

Light
Swap

(c) PP with per-GPU tensor swapping.

Figure 2: The swap bottleneck of training BERT [11] via data parallelism (DP) [37] and pipeline parallelism
(PP) [43] on a server with four NVIDIA 1080Ti GPUs each with 11GB of memory. Training the model with a
per-GPU batch size of 5 using PyTorch-1.5 [49], and IBM-LMS [24] for virtualizing individual GPU memory, re-
sults in memory footprint exceeding GPU memory capacity. (a) and (b) show that DP’s swap volume increases
linearly with the number of GPUs, exposing the bottleneck PCIe link and thus throttling training throughput. (c)
shows that PP’s swap volume is unbalanced across GPUs, resulting in bottleneck pipeline stages.

operator, thus improving state reuse in GPU memory and
consequently improving arithmetic intensity.
2. Schedule tasks just-in-time. Harmony schedules tasks
as soon as all input dependencies are available; this especially
helps tasks such as weight update, which in PyTorch are
normally scheduled to execute after the backward pass for
the entire model, resulting in avoidable CPU-GPU swaps.
3. Swap over fast peer-to-peer links. With late binding
of tasks to GPUs, Harmony can place adjacent tasks across
GPUs and transfer required state directly between GPUs
using p2p transfers rather than swapping state back and forth
to CPU memory (as in naive GPU memory virtualization).
4. Balance load. Late binding also enables Harmony to pack
tasks to balance compute, memory, and swap load across
accelerators. Such multi-dimensional load balancing aids in
parallel training schedules without pipeline bottlenecks.
In this paper, we show how task decomposition and late

binding, together with a set of novel performance optimiza-
tions, enable virtualized parallel training of large DNNs.

2 LIMITS OF MEMORY VIRTUALIZATION
The problem of a workload’s working set size exceeding
memory capacity constraints has a long history in CPU-
based systems. Demand-paged virtual memory is the stan-
dard approach for alleviatingmemory capacity constraints [6,
17]. Several recent projects have applied this idea to train-
ing DNNs on GPUs. They focus on increasing the effective
memory capacity when training models on a single GPU and
and seem to be promising techniques for large model train-
ing: GPU memory virtualization [46], backing GPU memory
with CPU memory in the memory hierarchy, and swapping
data structures automatically between CPU and GPU mem-
ory [9, 19, 23, 24, 28, 50, 56, 58, 64, 68]. We refer to these
techniques collectively as GPU memory virtualization in this

paper. However, such techniques are limited to only individ-
ual GPUs considered in isolation. Here we show that per-
GPU memory virtualization is inefficient as it causes either
a high swap overhead when used in data-parallel training;
or imbalanced swap overheads in pipeline-parallel training,
where the stage with the highest swap load is the bottleneck.

Today’s frameworks have four key inefficiencies that cause
these swap-overhead related performance problems in data-
and pipeline-parallel distributed training:
1. Repeated Swaps. An operator can consume different
input data or intermediate stashed tensors at different times,
but it always requires the same weight tensors or gradient
buffers. With GPU memory virtualization, these common
weight and gradient tensors/buffers are swapped in and out
repeatedly across batches of data.
2. Unnecessary Swaps. Certain operators in DNN frame-
works today are scheduled at rigid points in the timeline of
a training iteration even though all their inputs are avail-
able much earlier. When training large models with GPU
virtualization, this rigidity is inefficient: the GPU-resident
inputs and state for such operators can be swapped out of
GPU memory, only to be swapped back in again when the
operator is actually scheduled. For example, in a typical Py-
Torch script, the weight update for each layer only starts after
the backward pass for the entire model, potentially causing
unnecessary swaps of some layer weights and gradients.
3. Only CPU-GPU Swaps. GPU memory virtualization
lacks context about distributed training, works in isolation
to other GPUs, and can only swap to host memory. This ex-
poses the bottleneck device-to-host interconnect (Fig. 2(b))
and misses the opportunity to use fast device-to-device links
for cross-device swaps or tensor communication. Fig. 2(a)
shows that for data-parallel training the swap overhead
across multiple GPUs throttles throughput as the total swap
load across multiple GPUs exposes the bottleneck to host

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Youjie Li, Amar Phanishayee, Derek Murray, and Nam Sung Kim.

Perf
Tuner

A Data
Batch

ModelD4D3D2D

Task Decomposer

Task and Swap Scheduler

CPU

GPU
Swap

GPU
P2P

Message Passing & Shared Mem

Runtime

HW
Config

• Splitmodel‐wise ops into fine‐grain ops
• Decouple ops and Unbind resources
• Split data into microbatches

• Group tasks to reuse swapped tensor
• JIT‐schedule tasks to avoid unnecessary swaps
• Place tasks across GPUs to use P2P transfer
• Pack tasks to balance swap loads
• Setup task dependency

User

Harmony

Figure 3: High-level overview of Harmony.

memory: CPU and shared PCIe links with 4:1 or 8:1 oversub-
scription [2, 36, 45, 47, 51] (e.g., Fig. 2(b)). Furthermore, as
each GPU is swapping a similar amount of state, the swap
overhead grows linearly with the number of GPUs.
4. Unbalanced Swaps. In pipeline-parallel training, pipeline
stages are designed to be compute-load balanced, but pipelin-
ing schemes inherently have imbalanced memory require-
ments across pipeline stages: the head of the pipeline must
stashmore activations compared to the tail of the pipeline [42,
43]. Lacking this context, and operating in isolation on in-
dividual GPUs, naively using GPU memory virtualization
when training large models can result in swap imbalance
across stages thus exposing bottleneck stages with greater
swap overheads (Fig. 2(c)).

3 TRAINING IN HARMONY
Fig. 3 shows a high-level overview of Harmony. Users pro-
vide Harmony with training data and their model (written
in imperative-style PyTorch [49], as if running sequentially
on a single device). Harmony extracts the model’s operator-
or layer-granularity graph, and further refines it to decouple
forward, backward, and weight update for each layer using
dependencies encoded in the task graph. These fine-grained
tasks are the unit of scheduling in Harmony; a concrete task
instance is tied to a specific micro-batch of input data.
With a user-specified parallelization scheme, Harmony’s

scheduler binds tasks to devices, appropriately moving re-
quired inputs (activations, gradients, stashed tensors, weights,
optimizer states, etc.). This swapping in of input data and
state, coordinated by Harmony, may either be from host

Forward Pass Backward Pass

Grouping Peer2Peer Just-In-Time

Time

GPU1
1
L1

2
L1

1
L3

2
L3

1
L4

2
L4 L4

1
L2

2
L2 L2

GPU2
1
L2

2
L2

1
L4

2
L4

1
L3

2
L3 L3

1
L1

2
L1 L1

L1-X L1-W L1-X

L1-X L1-X

L1-Y L1-Y

GPU2

Update

1
L1

2
L1

1
L2

GPU1

Microbatch Idx
Layer/Op Idx

Microbatch Idx
Layer/Op Idx

Layer/Op Idx

Compute

SwapIn

SwapOut

Peer2Peer

Compute

Figure 4: A simplified example of training a four-layer
“large” model on two GPUs with virtualized pipeline
parallelism in Harmony (assumes layer-level granu-
larity and layer runtimes are uniform).

(CPU) to device (GPU) memory or directly between device
memories; it is also responsible for swapping out tensors
from device to host memory based on their usage status and
memory pressure. Harmony’s memory manager maintains a
state machine tracking the lifetime of all tensors used.

Guided by the four principles in Section 1 (minimize mem-
ory swaps, schedule just-in-time, swap over fast inter-device
links, balance load across devices), Harmony implements
four optimizations to enable high-performance training:
1. Input-batch grouping allows a scheduled task to exe-
cute across different input batches back-to-back; the tasks’
state (e.g., weight or gradient buffer) can stay in memory
and be reused across multiple input batches/tensors. Group-
ing 𝑀 inputs for a task (each input-batch saturates GPU
memory) reduces what would otherwise have been 𝑀 re-
peated swaps of the state for each batch into a single swap.
Fig. 4 shows a toy example of training a large model using
pipeline-parallelism over two GPUs in Harmony, where each
layer-level task executes on a group of two microbatches
back-to-back before moving to the next task. Unlike tradi-
tional pipeline stages [20, 42, 43] which execute all layers in
the stage one batch at a time, in Harmony the forward pass of
layer-1 runs through 2 input batches without swapping out
its weights, and backward pass of layer-1 computes gradient
of 2 batches without swapping out its gradient buffer.
2. Just-in-time scheduling executes a task immediately
when all its input tensors are available in GPU memory,
avoiding delays in execution that risk unnecessarily swap-
ping out the required input tensors, and then swapping them
back in. For the example in Fig. 4, jit-scheduling brings the
update task of each layer closer to its backward pass so that

Doing more with less: Training large DNN models on commodity servers for the masses HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

Forward

Input 𝑿
Weight 𝑾

Output 𝒀
Stashed 𝑿
Weight 𝑾

Swap‐In Swap‐Out Backward

Output Grad 𝒅𝒀
Weight Grad 𝒅𝑾
Stashed Input 𝑿
Weight 𝑾

Input Grad 𝒅𝑿
Accumulated 𝒅𝑾ᇱ

Weight 𝑾

Update

Weight Grad 𝒅𝑾
Weight 𝑾
Optimizer State 𝑲

Reset 𝒅𝑾′
Updated 𝑾′
Updated 𝑲′

(a) Swap model.

(c) Swapping of weights for layer 𝑳𝒋 in “Harmony DP.”

Time
GPU
CPU𝑾𝑳𝒋 𝑾𝑳𝒋 𝑾′𝑳𝒋

… … … L L … … L L… L … …
 𝒊 ൌ 𝟏 𝒊 ൌ 𝒎 𝒊 ൌ 𝟏 𝒊 ൌ 𝒎

(b) Swapping of weights for layer 𝑳𝒋 in “DP with per-GPU memory virtualization.”

L1 L2 … …L… L2 L1L … L1 L2 L… Time… …

𝑾𝑳𝒋 𝑾𝑳𝒋

GPU
CPU

Repeat for
microbatch
 𝒊 ൌ 𝟏…𝒎 𝑾𝑳𝒋 𝑾′𝑳𝒋𝑾𝑳𝒋 𝑾𝑳𝒋

Figure 5: Tensors that need to be swapped in and out for forward, backward, andweight update phases of training.1

the weight and gradient tensors needed by the update tasks
can be reused while they are still resident in GPU memory.
3. p2p transfers moves CPU-GPU swaps to use fast device-
to-device communication, especially for those victim swaps
with GPU memory virtualization that are caused by early
binding of two tasks to the same GPU (with shared tensors
where the output of the first is used by the second) but suffer
from the shared tensors being swapped out and back in.
Harmony replaces such swaps with p2p transfers by late-
binding the corresponding operations with shared tensors
across two accelerators, and transferring the tensor over
device-to-device links. For the example in Fig. 4, all input
and output tensors of each layer are transferred directly
between the two GPUs; in contrast, with naive GPU memory
virtualization these tensors would incur CPU-GPU swaps.
4. Task packing packs together multiple operations along
with their assigned data for balancing the load (of compute,
memory, and swap) caused by different operations and input
data size. Harmony then schedules the resulting packed tasks
across accelerators for system-wide load balancing.
Harmony’s Performance Tuner profiles the runtime per-

formance; these profiles are used by the Task Decomposer
and Task and Swap Scheduler to tune task combinations and
for better scheduling. For example, a reinforcement learning
agent can be used for such online tuning.

Harmony supports two differentmodes of parallel training:
data- [37] and pipeline-parallel training [20, 42, 43], while
offering users the illusion of running on a single virtual de-
vice with practically unbounded memory. We denote these
modes of parallelism as Harmony-DP and Harmony-PP, re-
spectively. Input-batch grouping results in Harmony-PP us-
ing a novel pipeline schedule compared to prior works.

1The running-state tensors, e.g., mean and std, are omitted for simplicity.

Analytical comparison.We perform an analytical compar-
ison of these schemes with their corresponding baselines
that use per-GPU memory virtualization. To simplify the
explanation, we assume (without loss of generality) a setup
with homogeneous GPUs where each GPU’s memory capac-
ity permits it to only hold one layer-level operation on 1
micro-batch at any time. We also assume the use of layer-
granularity task graphs and a simplified DNN model with
one type of layer (like Transformers) and where each layer
has the same runtime and memory footprint for its forward,
backward, and update phases.

We also model the swap volume for different types of op-
erations (tasks) [3, 7, 30, 34, 58, 59] where they each need to
swap-in certain inputs and swap out certain outputs (Fig. 5(a)).
In comparing Harmony-DP, Harmony-PP, and their corre-
sponding baselines with per-GPU memory virtualization,
we find that the Harmony variants significantly outperform
their baseline counterparts by reducing swap overhead.

Here, we focus on an example of one specific kind of tensor,
model weights𝑊 (with a size of |𝑊 |), to provide an intuition
for such reductions in swap overhead when training a model
of 𝑅 layers (i.e., |𝑊 | = ∑𝑅

𝑗=1 |𝑊𝐿𝑗 |) with𝑚 micro-batches per
GPU and 𝑁 GPUs (for a mini-batch of𝑚𝑁 microbatches).
Fig. 5(b) shows that, for a single iteration (mini-batch), when
using DP with per-GPU memory virtualization each GPU
has to swap-in and swap-out𝑊 for both the forward and
backward passes independently and this has to be done for
each of the𝑚 microbatches. At the end of the iteration, each
GPU also has to swap in and out𝑊 once for weight update.
This results in an overall swap volume of (4𝑚 + 2)𝑁 |𝑊 |
per iteration. In contrast, in Harmony-DP (Fig. 5(c)) each
GPU has to swap in𝑊 only once each for the forward and
the backward passes across all𝑚 microbatches (due to input-
batch grouping), and swap out𝑊 once for weight update

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Youjie Li, Amar Phanishayee, Derek Murray, and Nam Sung Kim.

(due to jit-scheduling), resulting in an overall swap volume
of 3𝑁 |𝑊 | per iteration. Finally, Harmony-PP (Fig. 4) brings
the overall per-iteration swap volume down to 3|𝑊 | (across
all𝑚 microbatches and all 𝑁 GPUs)!
For brevity, we omit the complete analytical model that

covers all tensors shown in Fig. 5(a); suffice to say, Harmony
offers swap load reduction for all tensors and Harmony-PP
dominates savings compared to all other baselines.

4 DISCUSSION
So far we have highlighted the key principles and techniques
of Harmony. However, interesting challenges remain and
merit future research.
Feasibility of end-to-end training. While Harmony en-
ables training of large models on modest deployments, train-
ing certain massive models end-to-end might be infeasi-
ble. For example, pre-training GPT-3 from scratch required
314 ZettaFLOPs (3.14 × 1023 FLOPs) [5], resulting in sev-
eral months of training even with thousands of cutting-edge
GPUs [44]; pre-training such a model on tens of GPUs will re-
sult in unrealistically long times (years). There is no denying
that training on larger clusters will naturally result in speed-
ier training of such models. However, despite this limitation,
we believe that Harmony can still enable the development
and debugging of such models on modest deployments (be-
fore they are deployed for pre-training at a larger scale), and
for fine-tuning of such large models which requires less than
10s of exaFLOPs (1019) [4, 11, 29] clocking in at days with
modest small-scale deployments [21].
Multi-machine training. Our prototype of Harmony oper-
ates on single-server deployments. However, the core ideas of
task decomposition, late binding, optimizations (input-batch
grouping, jit-scheduling, p2p transfers, task packing), and
parallel training schedules (Harmony-DP and Harmony-PP)
all extend to multi-server deployments. Specifically, Har-
mony’s Task and Swap Scheduler will have to operate as a
distributed scheduler responsible for scheduling tasks across
servers and Harmony’s Runtime implementations will have
to take into account heterogeneous and hierarchical inter-
connects (PCIe, NVLink versus Ethernet, Infiniband). If the
aggregate memory across all GPUs is large enough to ac-
commodate the memory footprint of large models, swapping
becomes irrelevant and pipeline parallel training becomes
an attractive solution [20, 42, 43]. In this case, the abstrac-
tions and optimization techniques in Harmony would enable
model developers to separate the definition of their model
from a particular parallelism strategy, and make it easier
to experiment with different strategies. In our experience
with cutting-edge models like sparsely-gated mixtures of
experts [35], training scripts are tightly coupled with a par-
ticular parallelism strategy, switching strategies entails a

broad rewrite, and manually invoking collective operations
(AllToAll, AllReduce, etc.) is prone to deadlock.
The memory–performance tango. A Harmony task packs
multiple operations executing on a microbatch of input (e.g.,
forward, backward, or weight update on a contiguous se-
quence of layers). Consequently, both the pack size of a task
and the microbatch size determine the memory footprint and
performance when executing the task. Given a fixed memory
capacity, increasing the pack size can reduce p2p transfer and
swap volume (when using recompute [7]), but the task can
only operate on a small microbatch. In contrast, shrinking
the pack size and operating on a large microbatch can in-
crease accelerator utilization and arithmetic intensity. Prior
works on model- and pipeline-parallel training [20, 42] fix
one or both of these parameters either using heuristics or by
punting the problem to model developers. Furthermore, not
all classes of operations have uniform runtimes or memory
footprint; e.g., a fixed pack of layers can have 2− 3× the run-
time and memory footprint in the backward pass compared
to the forward pass, thus motivating the need for different
pack and microbatch sizes across these passes. With a user
specified mini-batch size, the multi-dimensional problem of
algorithmically determining the optimal task granularity and
the size of microbatches they operate on is an open one.
Swap scheduling in Harmony poses another interesting

memory-performance trade-off. Harmony can mitigate swap
overheads by prefetching and overlapping data copies for a
microbatch with compute for another microbatch (e.g., L1-X
for the second microbatch in Figure 4), but this requires a
form of double buffering. Harmony can instead forgo such
a memory overhead and incur swap overheads in the crit-
ical path, but in doing so can support larger layer packs
or microbatches. It is unclear which of these is a better op-
tion at first glace and algorithmically reasoning about such
memory-performance trade-offs mandates future research.

5 CONCLUSION
DNN model size growth over the years has brought us to
a point where only the elite who have access to massive
computing resources can develop and train them. One of the
main challenges for the masses in training these models on
modest multi-GPU deployments is limited GPU memory ca-
pacity compared to model size. Current solutions that rely on
virtualizing GPU memory incur excessive swap overheads.
We advocate rethinking how DNN frameworks schedule
computation and move data, and we articulate the princi-
ples, functionality, and optimizations needed to push the
boundaries of training large models efficiently on such mod-
est deployments. We are excited to harmoniously explore
research directions opened up by our proposal.

Doing more with less: Training large DNN models on commodity servers for the masses HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

REFERENCES
[1] Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver

Stegle. 2016. Deep learning for computational biology. Molecular
systems biology 12, 7 (2016), 878.

[2] ASUS. 2019. High-density 4U GPU server, https://www.asus.com/us/
Commercial-Servers-Workstations/ESC8000-G4/HelpDesk_Manual.

[3] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and
distributed deep learning: An in-depth concurrency analysis. ACM
Computing Surveys (CSUR) (2019).

[4] Aishwarya Bhandare, Tianju Xu, and Kshama Pawar. 2020. GPT-
2 fine-tuning with ONNX Runtime. Microsoft Open Source Blog
(2020). https://cloudblogs.microsoft.com/opensource/2020/08/24/
pytorch-gpt-2-fine-tuning-onnx-runtime-speedup-training-time

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. arXiv arXiv/2005.14165 (2020).

[6] Randal E Bryant, O’Hallaron David Richard, and O’Hallaron
David Richard. 2003. Computer systems: a programmer’s perspective.
Vol. 2. Prentice Hall Upper Saddle River.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
2016. Training deep nets with sublinear memory cost. arXiv
arXiv/1604.06174 (2016).

[8] Xie Chen, Adam Eversole, Gang Li, Dong Yu, and Frank Seide. 2012.
Pipelined back-propagation for context-dependent deep neural net-
works. In Thirteenth Annual Conference of the International Speech
Communication Association (INTERSPEECH’12). Portland, USA.

[9] Minsik Cho, Tung D Le, U Finkler, Haruiki Imai, Yasushi Negishi,
Taro Sekiyama, Saritha Vinod, Vladimir Zolotov, Kiyokuni Kawachiya,
David S Kung, et al. 2018. Large model support for deep learning in
caffe and chainer. SysML’18 (Feb. 2018).

[10] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data
processing on large clusters. Commun. ACM (Jan. 2008), 107–113.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv arXiv/1810.04805 (2018).

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An
image is worth 16x16 words: Transformers for image recognition at
scale. arXiv arXiv/2010.11929 (2020).

[13] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and
Steven Hand. 2016. Firmament: Fast, centralized cluster scheduling
at scale. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16). Savannah, GA.

[14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.
Generative adversarial networks. arXiv arXiv/1406.2661 (2014).

[15] The Guardian. 2020. A robot wrote this entire article. Are you scared
yet, human? The Guardian (2020).

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’16). Las
Vegas, NV.

[17] John L Hennessy and David A Patterson. 2011. Computer architecture:
a quantitative approach. Elsevier.

[18] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR’18). Salt Lake City, Utah.

[19] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Push-
ing deep learning beyond the GPU memory limit via smart swapping.

In Proceedings of the 25th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’20).
Lausanne, Switzerland.

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu
Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le,
Yonghui Wu, et al. 2019. GPipe: Efficient training of giant neural
networks using pipeline parallelism. In Proceedings of the 33st Interna-
tional Conference on Neural Information Processing Systems (NIPS’19).
Vancouver, Canada.

[21] Hugging Face. 2021. Transformer Examples, https://huggingface.co/
transformers/v2.3.0/examples.html.

[22] Zhouyuan Huo, Bin Gu, Heng Huang, et al. 2018. Decoupled parallel
backpropagation with convergence guarantee. In Proceedings of the
35th International Conference on Machine Learning (ICML’18). Stock-
holm, Sweden.

[23] IBM. 2018. TensorFlow Large-Model-Support, https://github.com/IBM/
tensorflow-large-model-support.

[24] IBM. 2020. PyTorch Large-Model-Support, https://github.com/IBM/
pytorch-large-model-support.

[25] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. 2007. Dryad: distributed data-parallel programs from sequen-
tial building blocks. In Proceedings of the 2nd European Conference on
Computer Systems (EuroSys’07). Lisbon, Portugal.

[26] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: fair scheduling for
distributed computing clusters. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles (SOSP’09). San Diego,CA.

[27] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gen-
nady Pekhimenko. 2018. Gist: Efficient data encoding for deep neural
network training. In The ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA’18). Los Angeles, CA.

[28] Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng
He, and Shaofeng Zhao. 2018. Layer-centric memory reuse and data
migration for extreme-scale deep learning on many-core architectures.
ACM Transactions on Architecture and Code Optimization (TACO’18)
15, 3 (2018), 1–26.

[29] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. 2020. Scaling laws for neural language models. arXiv
arXiv/2001.08361 (2020).

[30] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic
optimization. arXiv arXiv/1412.6980 (2014).

[31] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional
neural networks. arXiv arXiv/1404.5997 (2014).

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-
genet Classification with Deep Convolutional Neural Networks. In
Proceedings of the 25th International Conference on Neural Information
Processing Systems (NIPS’12). Lake Tahoe, NV.

[33] Paras Lakhani. 2020. The importance of image resolution in build-
ing deep learning models for medical imaging. Radiology: Artificial
Intelligence 2, 1 (2020), e190177.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278–2324.

[35] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. 2021. GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR’21).

[36] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R
Tallent, and Kevin J Barker. 2019. EvaluatingmodernGPU interconnect:
PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect. IEEE Transactions

https://www.asus.com/us/Commercial-Servers-Workstations/ESC8000-G4/HelpDesk_Manual
https://www.asus.com/us/Commercial-Servers-Workstations/ESC8000-G4/HelpDesk_Manual
https://cloudblogs.microsoft.com/opensource/2020/08/24/pytorch-gpt-2-fine-tuning-onnx-runtime-speedup-training-time
https://cloudblogs.microsoft.com/opensource/2020/08/24/pytorch-gpt-2-fine-tuning-onnx-runtime-speedup-training-time
https://huggingface.co/transformers/v2.3.0/examples.html
https://huggingface.co/transformers/v2.3.0/examples.html
https://github.com/IBM/tensorflow-large-model-support
https://github.com/IBM/tensorflow-large-model-support
https://github.com/IBM/pytorch-large-model-support
https://github.com/IBM/pytorch-large-model-support

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Youjie Li, Amar Phanishayee, Derek Murray, and Nam Sung Kim.

on Parallel and Distributed Systems 31, 1 (2019), 94–110.
[37] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,

Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
et al. 2020. Pytorch distributed: Experiences on accelerating data
parallel training. arXiv arXiv/2006.15704 (2020).

[38] Farhad Manjoo. 2020. How Do You Know a Human Wrote This? The
New York Times (2020).

[39] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017.
Regularizing and optimizing LSTM language models. arXiv
arXiv/1708.02182 (2017).

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Play-
ing Atari with Deep Reinforcement Learning. arXiv arXiv/1312.5602
(2013). http://arxiv.org/abs/1312.5602

[41] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, William Paul, Michael I. Jordan, and Ion Sto-
ica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’18). Carlsbad, CA.

[42] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN
training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP’19). Huntsville, Canada.

[43] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and
Matei Zaharia. 2020. Memory-efficient pipeline-parallel DNN training.
arXiv arXiv/2006.09503 (2020).

[44] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and
Matei Zaharia. 2021. Efficient Large-Scale Language Model Training
on GPU Clusters. arXiv arXiv/2104.04473 (2021).

[45] NVIDIA. 2017. NVIDIA DGX-1 System Architecture White
Paper, https://www.azken.com/images/dgx1_images/dgx1-system-
architecture-whitepaper1.pdf.

[46] NVIDIA. 2017. Unified Memory, https://developer.nvidia.com/blog/
unified-memory-cuda-beginners/.

[47] NVIDIA. 2018. NVIDIA DGX-2H The World’s Most
Powerful System for The Most Complex AI Challenges,
https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-
Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r6-web.pdf.

[48] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, Low Latency Scheduling. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP’13). Farminton, Pennsylvania.

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Proceedings of the 25th International Conference on Neural Information
Processing Systems (NIPS’19). Vancouver, Canada.

[50] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based GPU mem-
ory management for deep learning. In Proceedings of the 25th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’20). Lausanne, Switzerland.

[51] PNY. 2021. Single Root Complex Purley 4U GPU Server for Deep
Learning Applications, https://www.pny.eu/en/consumer/explore-all-
products/pny-gpu-servers/983-single-root-complex-purley-4u-gpu-
server-for-deep-learning-applications.

[52] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. 2019. Language Models are Unsupervised Multitask
Learners. Technical report, OpenAi (2019).

[53] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019.
Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv arXiv/1910.10683 (2019).

[54] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
2020. Zero: Memory optimization towards training a trillion parameter
models. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC’20) (Atlanta,
Georgia).

[55] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019.
Regularized evolution for image classifier architecture search. In Pro-
ceedings of the AAAI conference on artificial intelligence (AAAI’19).
Honolulu, Hawaii.

[56] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, and Dong Li. 2021. Sentinel:
Runtime Data Management on Heterogeneous Main MemorySystems
for Deep Learning. In Proceedings of the IEEE International Symposium
on High-Performance Computer Architecture (HPCA’21).

[57] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. ZeRO-Offload: Democratizing Billion-Scale Model Training.
arXiv arXiv/2101.06840 (2021).

[58] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W Keckler. 2016. vDNN: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In Proceedings
of the 49th IEEE/ACM International Symposium on Microarchitecture
(MICRO’16). Taipei, Taiwan.

[59] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986.
Learning representations by back-propagating errors. Nature 323, 6088
(1986), 533–536.

[60] Carl F Sabottke and Bradley M Spieler. 2020. The effect of image resolu-
tion on deep learning in radiography. Radiology: Artificial Intelligence
2, 1 (2020), e190015.

[61] Ram Sagar. 2020. OpenAI Releases GPT-3, The Largest Model So Far.
Analytics India Magazine (2020).

[62] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-
billion parameter language models using model parallelism. arXiv
arXiv/1909.08053 (2019).

[63] Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao, Dong Liu,
Yadong Mu, Xinggang Wang, Wenyu Liu, and Jingdong Wang. 2019.
High-resolution representations for labeling pixels and regions. arXiv
arXiv/1904.04514 (2019).

[64] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dy-
namic GPU memory management for training deep neural networks.
In Proceedings of the 23rd ACM SIGPLAN symposium on principles and
practice of parallel programming (PPoPP’18). Wien, Austria.

[65] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation.
arXiv arXiv/1609.08144 (2016).

[66] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.
In Proceedings of the 5th European conference on Computer systems
(EuroSys’10). Paris, France.

http://arxiv.org/abs/1312.5602
https://www.azken.com/images/dgx1_images/dgx1-system-architecture-whitepaper1.pdf
https://www.azken.com/images/dgx1_images/dgx1-system-architecture-whitepaper1.pdf
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r6-web.pdf
https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r6-web.pdf
https://www.pny.eu/en/consumer/explore-all-products/pny-gpu-servers/983-single-root-complex-purley-4u-gpu-server-for-deep-learning-applications
https://www.pny.eu/en/consumer/explore-all-products/pny-gpu-servers/983-single-root-complex-purley-4u-gpu-server-for-deep-learning-applications
https://www.pny.eu/en/consumer/explore-all-products/pny-gpu-servers/983-single-root-complex-purley-4u-gpu-server-for-deep-learning-applications

Doing more with less: Training large DNN models on commodity servers for the masses HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

[67] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, Ion Stoica, et al. 2010. Spark: Cluster computing with work-
ing sets.. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud’10). Boston, MA.

[68] Junzhe Zhang, Sai Ho Yeung, Yao Shu, Bingsheng He, and Wei Wang.
2019. Efficient memory management for gpu-based deep learning
systems. arXiv arXiv/1903.06631 (2019).

	Abstract
	1 Introduction
	2 Limits of memory virtualization
	3 Training in Harmony
	4 Discussion
	5 Conclusion
	References

