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ABSTRACT
Deep neural networks (DNNs) have grown exponentially in
complexity and size over the past decade, leaving only the
elite who have access to massive datacenter-based resources
with the ability to develop and train such models. One of the
main challenges for the long tail of researchers who might
have access to only limited resources (e.g., a singlemulti-GPU
server) is limited GPU memory capacity compared to model
size. The problem is so acute that the memory requirement
of training large DNNmodels can often exceed the aggregate
capacity of all available GPUs on commodity servers; this
problem only gets worse with the trend of ever-growing
model sizes. Current solutions that rely on virtualizing GPU
memory (by swapping to/fromCPUmemory) incur excessive
swapping overhead. In this paper, we advocate rethinking
how DNN frameworks schedule computation and move data
to push the boundaries of training large models efficiently
on modest multi-GPU deployments.

CCS CONCEPTS
• Computing methodologies→Machine learning; Par-
allel algorithms; • Software and its engineering→Mem-
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1 INTRODUCTION
Modern DNN models have transformed our approach to
solving a range of hard problems such as image classifica-
tion [12, 16, 18, 32, 55, 68], semantic segmentation [63], image
generation [14], translation [53, 65], and language model-
ing [5, 39, 52, 62, 65]. Over the years, these models have
grown exponentially in size while continuing to achieve
unprecedented accuracy on ever more complex tasks [1,
29, 40]. For example, a 557-million-parameter AmoebaNet
can achieve super-human accuracy in image classification
tasks [20]. Similarly, a state-of-the-art language model like
the 175-billion parameter GPT-3 [5] can produce human-like
text [15, 38, 61]. As these models grow, they also become
more computationally expensive. Training these models to
accuracy takes weeks to months of wall-clock time, despite
running in parallel on large clusters of fast accelerators.

These resource demands leave only the elite (e.g., Google,
Microsoft, Facebook, OpenAI, NVIDIA, etc.), who have ac-
cess to massive datacenter-based resources, with the abil-
ity to train such models. The long-tail of researchers, the
masses, who have access to only limited resources (e.g., a
single server with a couple of GPUs), increasingly risk being
alienated from innovating in this space. While training on
larger clusters naturally results in speedier training, in this
paper we investigate how to push the boundaries of training
large models on modest multi-GPU deployments.
Challenges.
One of the main challenges of training large models is

that the memory footprint of training far exceeds the mem-
ory capacity of fast accelerators. Fig. 1 shows how sizes of
models for image classification and language modeling tasks
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Figure 1: DNN model size growth for image classifica-
tion (LeNet, AlexNet, AmoebaNet) and language mod-
eling (GNMT, GPT-2, T5, GPT-3) over two decades.

have grown dramatically over time. Furthermore, model pa-
rameters are only part of the memory footprint of training;
gradients, stashed activations, optimizer states, and frame-
work workspace all taken together significantly blow-up the
memory footprint [7, 27, 54, 58, 64]. Finally, the memory
footprint is also a function of the size of individual input
item (sample size) and the number of items in an input batch
(batch size). While batch size can usually be reduced, a simi-
lar reduction in sample size is hard to pull off especially due
to its effect on model accuracy [33, 60]. Taken together, the
memory footprint for a large model can far exceed individual
accelerator memory capacity.
This memory footprint problem motivates recent inno-

vations that alleviate memory pressure. For example, re-
cent advances in techniques that virtualize GPU memory
push the boundaries of what can be achieved on a single
GPU [9, 19, 50, 58], but as we show in Section 2 such tech-
niques are inefficient for parallel multi-GPU training. Other
techniques such as encoding data structures [27], recompu-
tation [7, 50, 64], optimizer state sharding [54] or offloading
the optimizer to CPUs [57], and modes of parallelism that
split a model across multiple accelerators such as model-
[31, 42, 62] or pipeline-parallelism [8, 20, 22, 42, 43] all aim
to reduce memory pressure during training. However, de-
spite these memory optimizations, on modest deployments
(single server with a handful of commodity GPUs), the gen-
eral problem of efficiently training massive models, which
exhaust the collective memory capacity of available accelera-
tors, is still an open problem.

We argue that current DNN frameworks have two funda-
mental problems that limit large model training on modest
deployments. First, they schedule work at a coarse granular-
ity, treating the training program as a black box: all DNN
layers in data-parallel training or a set of contiguous layers
in pipeline-parallel training. This coarse granularity limits
flexibility of scheduling tasks to available resources, thus
thwarting memory-reuse–based performance enhancements
that can reduce virtual memory swap overhead. For example,
executing a group of DNN layers, one input batch at a time,
limits reuse of tensors loaded into memory by intermediate

layers as they might get swapped out. Second, frameworks
eagerly bind work to accelerators, pushing this decision all the
way to the programmer’s training script in most cases. For
example, in PyTorch, the parameter state associated with a
single DNN layer is bound to a particular device, and thus the
forward and backward computation on that state is implic-
itly bound to the same device. Virtualizing the memory of a
single GPU helps here, by treating the nearby host RAM as
a swap target, but it makes inefficient use of other available
GPUs and the interconnects between them.
A united stand – the power of Harmony.
Ideally, users could write DNN training programs that

target a single virtual accelerator device with practically
unbounded memory. Our proposed system, Harmony, intro-
duces three key ideas towards this ideal. First, we decompose
the operations in a training script into fine-grained tasks and
introduce a distributed on-line task scheduler that efficiently
maps computation and state to physical devices (late bind-
ing); the tasks in the task graph can run on different physical
devices in a data-, model-, or pipeline-parallel fashion, and
Harmony transparently introduces collective communica-
tion operations (like AllReduce) to preserve the semantics of
the original tasks. Second, we further decompose individual
operations—such as a matrix multiplication—into subtasks
that can run on different physical devices. Third, to support
PyTorch and TensorFlow programming models based on im-
perative updates to mutable state, we generalize previous
work on GPU memory swapping [9, 19, 50, 58] to build a
coherent virtual memory across all available CPU and GPU
memory. The scheduler and swapping algorithms in Har-
mony inform each other’s decisions to maximize throughput
with the available resources.

Conceptually, our approach to DNN scheduling is simi-
lar to coarse-grained task scheduling architectures used in
systems like MapReduce [10], Dryad [25], Spark [67], and
Ray [41]. We expect to leverage many ideas from literature
around these systems, such as flow-based scheduling for data
locality [13, 26], delay scheduling [66], and low-latency load
balancing [48]. However, DNN training raises two additional
problems that motivate new research: “fine-grained” tasks
may be as short as a few microseconds, and the standard
implementation of SGD-based optimization algorithms rely
on in-place state mutation, so we cannot rely on having pure
tasks with immutable inputs.

Four principles guide our design for efficient training:
1. Minimize memory swaps. Harmony attempts to reuse
state in GPU memory, minimizing swaps when using GPU
memory virtualization. Empowered by the flexibility of sched-
uling at a finer granularity, we propose a technique called
input-batch grouping, where a scheduled operator can be run
across a group of input batches before scheduling the next
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(c) PP with per-GPU tensor swapping.

Figure 2: The swap bottleneck of training BERT [11] via data parallelism (DP) [37] and pipeline parallelism
(PP) [43] on a server with four NVIDIA 1080Ti GPUs each with 11GB of memory. Training the model with a
per-GPU batch size of 5 using PyTorch-1.5 [49], and IBM-LMS [24] for virtualizing individual GPU memory, re-
sults in memory footprint exceeding GPU memory capacity. (a) and (b) show that DP’s swap volume increases
linearly with the number of GPUs, exposing the bottleneck PCIe link and thus throttling training throughput. (c)
shows that PP’s swap volume is unbalanced across GPUs, resulting in bottleneck pipeline stages.

operator, thus improving state reuse in GPU memory and
consequently improving arithmetic intensity.
2. Schedule tasks just-in-time. Harmony schedules tasks
as soon as all input dependencies are available; this especially
helps tasks such as weight update, which in PyTorch are
normally scheduled to execute after the backward pass for
the entire model, resulting in avoidable CPU-GPU swaps.
3. Swap over fast peer-to-peer links. With late binding
of tasks to GPUs, Harmony can place adjacent tasks across
GPUs and transfer required state directly between GPUs
using p2p transfers rather than swapping state back and forth
to CPU memory (as in naive GPU memory virtualization).
4. Balance load. Late binding also enables Harmony to pack
tasks to balance compute, memory, and swap load across
accelerators. Such multi-dimensional load balancing aids in
parallel training schedules without pipeline bottlenecks.
In this paper, we show how task decomposition and late

binding, together with a set of novel performance optimiza-
tions, enable virtualized parallel training of large DNNs.

2 LIMITS OF MEMORY VIRTUALIZATION
The problem of a workload’s working set size exceeding
memory capacity constraints has a long history in CPU-
based systems. Demand-paged virtual memory is the stan-
dard approach for alleviatingmemory capacity constraints [6,
17]. Several recent projects have applied this idea to train-
ing DNNs on GPUs. They focus on increasing the effective
memory capacity when training models on a single GPU and
and seem to be promising techniques for large model train-
ing: GPU memory virtualization [46], backing GPU memory
with CPU memory in the memory hierarchy, and swapping
data structures automatically between CPU and GPU mem-
ory [9, 19, 23, 24, 28, 50, 56, 58, 64, 68]. We refer to these
techniques collectively as GPU memory virtualization in this

paper. However, such techniques are limited to only individ-
ual GPUs considered in isolation. Here we show that per-
GPU memory virtualization is inefficient as it causes either
a high swap overhead when used in data-parallel training;
or imbalanced swap overheads in pipeline-parallel training,
where the stage with the highest swap load is the bottleneck.

Today’s frameworks have four key inefficiencies that cause
these swap-overhead related performance problems in data-
and pipeline-parallel distributed training:
1. Repeated Swaps. An operator can consume different
input data or intermediate stashed tensors at different times,
but it always requires the same weight tensors or gradient
buffers. With GPU memory virtualization, these common
weight and gradient tensors/buffers are swapped in and out
repeatedly across batches of data.
2. Unnecessary Swaps. Certain operators in DNN frame-
works today are scheduled at rigid points in the timeline of
a training iteration even though all their inputs are avail-
able much earlier. When training large models with GPU
virtualization, this rigidity is inefficient: the GPU-resident
inputs and state for such operators can be swapped out of
GPU memory, only to be swapped back in again when the
operator is actually scheduled. For example, in a typical Py-
Torch script, the weight update for each layer only starts after
the backward pass for the entire model, potentially causing
unnecessary swaps of some layer weights and gradients.
3. Only CPU-GPU Swaps. GPU memory virtualization
lacks context about distributed training, works in isolation
to other GPUs, and can only swap to host memory. This ex-
poses the bottleneck device-to-host interconnect (Fig. 2(b))
and misses the opportunity to use fast device-to-device links
for cross-device swaps or tensor communication. Fig. 2(a)
shows that for data-parallel training the swap overhead
across multiple GPUs throttles throughput as the total swap
load across multiple GPUs exposes the bottleneck to host
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Figure 3: High-level overview of Harmony.

memory: CPU and shared PCIe links with 4:1 or 8:1 oversub-
scription [2, 36, 45, 47, 51] (e.g., Fig. 2(b)). Furthermore, as
each GPU is swapping a similar amount of state, the swap
overhead grows linearly with the number of GPUs.
4. Unbalanced Swaps. In pipeline-parallel training, pipeline
stages are designed to be compute-load balanced, but pipelin-
ing schemes inherently have imbalanced memory require-
ments across pipeline stages: the head of the pipeline must
stashmore activations compared to the tail of the pipeline [42,
43]. Lacking this context, and operating in isolation on in-
dividual GPUs, naively using GPU memory virtualization
when training large models can result in swap imbalance
across stages thus exposing bottleneck stages with greater
swap overheads (Fig. 2(c)).

3 TRAINING IN HARMONY
Fig. 3 shows a high-level overview of Harmony. Users pro-
vide Harmony with training data and their model (written
in imperative-style PyTorch [49], as if running sequentially
on a single device). Harmony extracts the model’s operator-
or layer-granularity graph, and further refines it to decouple
forward, backward, and weight update for each layer using
dependencies encoded in the task graph. These fine-grained
tasks are the unit of scheduling in Harmony; a concrete task
instance is tied to a specific micro-batch of input data.
With a user-specified parallelization scheme, Harmony’s

scheduler binds tasks to devices, appropriately moving re-
quired inputs (activations, gradients, stashed tensors, weights,
optimizer states, etc.). This swapping in of input data and
state, coordinated by Harmony, may either be from host
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Figure 4: A simplified example of training a four-layer
“large” model on two GPUs with virtualized pipeline
parallelism in Harmony (assumes layer-level granu-
larity and layer runtimes are uniform).

(CPU) to device (GPU) memory or directly between device
memories; it is also responsible for swapping out tensors
from device to host memory based on their usage status and
memory pressure. Harmony’s memory manager maintains a
state machine tracking the lifetime of all tensors used.

Guided by the four principles in Section 1 (minimize mem-
ory swaps, schedule just-in-time, swap over fast inter-device
links, balance load across devices), Harmony implements
four optimizations to enable high-performance training:
1. Input-batch grouping allows a scheduled task to exe-
cute across different input batches back-to-back; the tasks’
state (e.g., weight or gradient buffer) can stay in memory
and be reused across multiple input batches/tensors. Group-
ing 𝑀 inputs for a task (each input-batch saturates GPU
memory) reduces what would otherwise have been 𝑀 re-
peated swaps of the state for each batch into a single swap.
Fig. 4 shows a toy example of training a large model using
pipeline-parallelism over two GPUs in Harmony, where each
layer-level task executes on a group of two microbatches
back-to-back before moving to the next task. Unlike tradi-
tional pipeline stages [20, 42, 43] which execute all layers in
the stage one batch at a time, in Harmony the forward pass of
layer-1 runs through 2 input batches without swapping out
its weights, and backward pass of layer-1 computes gradient
of 2 batches without swapping out its gradient buffer.
2. Just-in-time scheduling executes a task immediately
when all its input tensors are available in GPU memory,
avoiding delays in execution that risk unnecessarily swap-
ping out the required input tensors, and then swapping them
back in. For the example in Fig. 4, jit-scheduling brings the
update task of each layer closer to its backward pass so that
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Figure 5: Tensors that need to be swapped in and out for forward, backward, andweight update phases of training.1

the weight and gradient tensors needed by the update tasks
can be reused while they are still resident in GPU memory.
3. p2p transfers moves CPU-GPU swaps to use fast device-
to-device communication, especially for those victim swaps
with GPU memory virtualization that are caused by early
binding of two tasks to the same GPU (with shared tensors
where the output of the first is used by the second) but suffer
from the shared tensors being swapped out and back in.
Harmony replaces such swaps with p2p transfers by late-
binding the corresponding operations with shared tensors
across two accelerators, and transferring the tensor over
device-to-device links. For the example in Fig. 4, all input
and output tensors of each layer are transferred directly
between the two GPUs; in contrast, with naive GPU memory
virtualization these tensors would incur CPU-GPU swaps.
4. Task packing packs together multiple operations along
with their assigned data for balancing the load (of compute,
memory, and swap) caused by different operations and input
data size. Harmony then schedules the resulting packed tasks
across accelerators for system-wide load balancing.
Harmony’s Performance Tuner profiles the runtime per-

formance; these profiles are used by the Task Decomposer
and Task and Swap Scheduler to tune task combinations and
for better scheduling. For example, a reinforcement learning
agent can be used for such online tuning.

Harmony supports two differentmodes of parallel training:
data- [37] and pipeline-parallel training [20, 42, 43], while
offering users the illusion of running on a single virtual de-
vice with practically unbounded memory. We denote these
modes of parallelism as Harmony-DP and Harmony-PP, re-
spectively. Input-batch grouping results in Harmony-PP us-
ing a novel pipeline schedule compared to prior works.

1The running-state tensors, e.g., mean and std, are omitted for simplicity.

Analytical comparison.We perform an analytical compar-
ison of these schemes with their corresponding baselines
that use per-GPU memory virtualization. To simplify the
explanation, we assume (without loss of generality) a setup
with homogeneous GPUs where each GPU’s memory capac-
ity permits it to only hold one layer-level operation on 1
micro-batch at any time. We also assume the use of layer-
granularity task graphs and a simplified DNN model with
one type of layer (like Transformers) and where each layer
has the same runtime and memory footprint for its forward,
backward, and update phases.

We also model the swap volume for different types of op-
erations (tasks) [3, 7, 30, 34, 58, 59] where they each need to
swap-in certain inputs and swap out certain outputs (Fig. 5(a)).
In comparing Harmony-DP, Harmony-PP, and their corre-
sponding baselines with per-GPU memory virtualization,
we find that the Harmony variants significantly outperform
their baseline counterparts by reducing swap overhead.

Here, we focus on an example of one specific kind of tensor,
model weights𝑊 (with a size of |𝑊 |), to provide an intuition
for such reductions in swap overhead when training a model
of 𝑅 layers (i.e., |𝑊 | = ∑𝑅

𝑗=1 |𝑊𝐿𝑗 |) with𝑚 micro-batches per
GPU and 𝑁 GPUs (for a mini-batch of𝑚𝑁 microbatches).
Fig. 5(b) shows that, for a single iteration (mini-batch), when
using DP with per-GPU memory virtualization each GPU
has to swap-in and swap-out𝑊 for both the forward and
backward passes independently and this has to be done for
each of the𝑚 microbatches. At the end of the iteration, each
GPU also has to swap in and out𝑊 once for weight update.
This results in an overall swap volume of (4𝑚 + 2)𝑁 |𝑊 |
per iteration. In contrast, in Harmony-DP (Fig. 5(c)) each
GPU has to swap in𝑊 only once each for the forward and
the backward passes across all𝑚 microbatches (due to input-
batch grouping), and swap out𝑊 once for weight update
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(due to jit-scheduling), resulting in an overall swap volume
of 3𝑁 |𝑊 | per iteration. Finally, Harmony-PP (Fig. 4) brings
the overall per-iteration swap volume down to 3|𝑊 | (across
all𝑚 microbatches and all 𝑁 GPUs)!
For brevity, we omit the complete analytical model that

covers all tensors shown in Fig. 5(a); suffice to say, Harmony
offers swap load reduction for all tensors and Harmony-PP
dominates savings compared to all other baselines.

4 DISCUSSION
So far we have highlighted the key principles and techniques
of Harmony. However, interesting challenges remain and
merit future research.
Feasibility of end-to-end training. While Harmony en-
ables training of large models on modest deployments, train-
ing certain massive models end-to-end might be infeasi-
ble. For example, pre-training GPT-3 from scratch required
314 ZettaFLOPs (3.14 × 1023 FLOPs) [5], resulting in sev-
eral months of training even with thousands of cutting-edge
GPUs [44]; pre-training such a model on tens of GPUs will re-
sult in unrealistically long times (years). There is no denying
that training on larger clusters will naturally result in speed-
ier training of such models. However, despite this limitation,
we believe that Harmony can still enable the development
and debugging of such models on modest deployments (be-
fore they are deployed for pre-training at a larger scale), and
for fine-tuning of such large models which requires less than
10s of exaFLOPs (1019) [4, 11, 29] clocking in at days with
modest small-scale deployments [21].
Multi-machine training. Our prototype of Harmony oper-
ates on single-server deployments. However, the core ideas of
task decomposition, late binding, optimizations (input-batch
grouping, jit-scheduling, p2p transfers, task packing), and
parallel training schedules (Harmony-DP and Harmony-PP)
all extend to multi-server deployments. Specifically, Har-
mony’s Task and Swap Scheduler will have to operate as a
distributed scheduler responsible for scheduling tasks across
servers and Harmony’s Runtime implementations will have
to take into account heterogeneous and hierarchical inter-
connects (PCIe, NVLink versus Ethernet, Infiniband). If the
aggregate memory across all GPUs is large enough to ac-
commodate the memory footprint of large models, swapping
becomes irrelevant and pipeline parallel training becomes
an attractive solution [20, 42, 43]. In this case, the abstrac-
tions and optimization techniques in Harmony would enable
model developers to separate the definition of their model
from a particular parallelism strategy, and make it easier
to experiment with different strategies. In our experience
with cutting-edge models like sparsely-gated mixtures of
experts [35], training scripts are tightly coupled with a par-
ticular parallelism strategy, switching strategies entails a

broad rewrite, and manually invoking collective operations
(AllToAll, AllReduce, etc.) is prone to deadlock.
The memory–performance tango. A Harmony task packs
multiple operations executing on a microbatch of input (e.g.,
forward, backward, or weight update on a contiguous se-
quence of layers). Consequently, both the pack size of a task
and the microbatch size determine the memory footprint and
performance when executing the task. Given a fixed memory
capacity, increasing the pack size can reduce p2p transfer and
swap volume (when using recompute [7]), but the task can
only operate on a small microbatch. In contrast, shrinking
the pack size and operating on a large microbatch can in-
crease accelerator utilization and arithmetic intensity. Prior
works on model- and pipeline-parallel training [20, 42] fix
one or both of these parameters either using heuristics or by
punting the problem to model developers. Furthermore, not
all classes of operations have uniform runtimes or memory
footprint; e.g., a fixed pack of layers can have 2− 3× the run-
time and memory footprint in the backward pass compared
to the forward pass, thus motivating the need for different
pack and microbatch sizes across these passes. With a user
specified mini-batch size, the multi-dimensional problem of
algorithmically determining the optimal task granularity and
the size of microbatches they operate on is an open one.
Swap scheduling in Harmony poses another interesting

memory-performance trade-off. Harmony can mitigate swap
overheads by prefetching and overlapping data copies for a
microbatch with compute for another microbatch (e.g., L1-X
for the second microbatch in Figure 4), but this requires a
form of double buffering. Harmony can instead forgo such
a memory overhead and incur swap overheads in the crit-
ical path, but in doing so can support larger layer packs
or microbatches. It is unclear which of these is a better op-
tion at first glace and algorithmically reasoning about such
memory-performance trade-offs mandates future research.

5 CONCLUSION
DNN model size growth over the years has brought us to
a point where only the elite who have access to massive
computing resources can develop and train them. One of the
main challenges for the masses in training these models on
modest multi-GPU deployments is limited GPU memory ca-
pacity compared to model size. Current solutions that rely on
virtualizing GPU memory incur excessive swap overheads.
We advocate rethinking how DNN frameworks schedule
computation and move data, and we articulate the princi-
ples, functionality, and optimizations needed to push the
boundaries of training large models efficiently on such mod-
est deployments. We are excited to harmoniously explore
research directions opened up by our proposal.
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