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This paper studies compilation techniques for algebraic effect handlers. In particular, we present a sequence

of refinements of algebraic effects, going via multi-prompt delimited control, generalized evidence passing,
yield bubbling, and finally a monadic translation into plain lambda calculus which can be compiled efficiently

to many target platforms. Along the way we explore various interesting points in the design space. We

provide two implementations of our techniques, one as a library in Haskell, and one as a C backend for

the Koka programming language. We show that our techniques are effective, by comparing against three

other best-in-class implementations of effect handlers: multi-core OCaml, the Ev.Eff Haskell library, and

the libhandler C library. We hope this work can serve as a basis for future designs and implementations of

algebraic effects.

1 INTRODUCTION
Algebraic effects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013] provide a

powerful and flexible way to add structured control-flow abstraction to programming languages.

Unfortunately, it is not straightforward to compile effect handlers into efficient code: effect opera-

tions are generally able to capture- and resume a delimited continuation, which usually requires

special runtime support to do efficiently. For example, the effect handler implementation in multi-

core OCaml [Dolan et al. 2017; Sivaramakrishnan et al. 2021] relies on a runtime system that

uses segmented stacks which can be captured efficiently [Farvardin and Reppy 2020]. Then, a

natural question that arises is whether it is possible to compile effect handlers efficiently where the

target platform does not directly support delimited continuations, for example, when compiling to

C/LLVM, WASM [Haas et al. 2017], JavaScript, Java VM, .NET, etc.

In this paper we give a formalized translation and evaluation semantics from a typed effect

handler calculus into a plain typed lambda calculus as a sequence of refinements:

(1) First we show how effect handler semantics can be expressed using standard multi-prompt
delimited control semantics [Forster et al. 2019; Gunter et al. 1995] (Section 2.3).

(2) We refine this semantics further to evidence passing semantics (EPS) where the evidence for
a handler prompt in the evaluation context is pushed down to each effect operation as an

evidence vector (Section 2.4 and 3.1). This makes performing an operation a local transition
that no longer needs to search through the evaluation context (Section 2.5 and 3.2).

(3) Next we also localize yielding to a handler prompt by bubbling each yield through the

evaluation context instead of capturing in one step (Section 2.6 and 4.1). This closely follows

the effect handler semantics as given by Pretnar [2015].

(4) With all evaluation transitions localized, we can now define a direct monadic translation of

effect handlers into a plain typed lambda calculus using a multi-prompt monad (Section 2.7,

2.8, and 4). Such program can be directly compiled to any target platform (including C/LLVM,

WASM, JavaScript, Java VM, .NET, etc) without requiring special runtime mechanisms.

Aside from the novel evidence passing semantics, many parts of the refinements are known

compilation techniques for effect handlers – but we believe we are the first to formalize each

within a single polymorphically typed framework (combined with evidence passing semantics).

Specifically, we make the following contributions:
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• We formalize each refinement and translation, and show they are sound and semantics

preserving (Section 3 and 4). Along the way, we explore various interesting points in the

design space:

– The use of segmented stacks for implementing effect handlers in a direct way (as used

by multi-core OCaml [Sivaramakrishnan et al. 2021]) versus translation into a multi-

prompt monad (Section 2.3): segmented stacks need a dedicated runtime system but

can capture and resume an operation in constant time (for one-shot resumptions), while

a multi-prompt monad is linear in the continuation points.

– Using insertion- versus canonical ordered evidence vectors (Section 2.4): the former is

efficient to construct but needs a linear lookup for each operation, while a canonical

vector is more expensive to construct upfront but can use constant time lookup for

operations.

– Using short-cut resumptions to minimize the stack usage of a resumption while in-

creasing sharing of continuation points (Section 2.6.1); a similar technique is used

in [Kiselyov and Ishii 2015] to compose monadic binds in an effect monad.

– Using bind-inlining and join-point sharing for improved efficiency when translating

into the multi-prompt monad (Section 2.7.1).

• Our evidence passing semantics (EPS) is a generalization of the work on evidence passing

translation (EPT) [Xie et al. 2020]. In particular, EPT can only express a subset of full effect

handlers that are restricted to scoped resumptions only, whereas EPS lifts the restriction

and can fully express effect handlers (Section 2.9 and 3.1).

• We give the first formal account of optimized tail-resumptive operation semantics and

show how this can evaluate an operation in-place and avoid performing an expensive

yield-and-resume cycle in the majority of effect operations (Section 2.5 and 3.2). The tail-

resumptive optimization is surprisingly subtle to get correct – in particular in combination

with unscoped resumptions which we illustrate in Section 2.9.2. We prove the correctness

of the tail-resumptive optimization by showing that an optimized program is contextually

equivalent to the original one.

• We have implemented our techniques as a monadic library for effect handlers in Haskell,

called Mp.Eff (for “multi-prompt effect”) [Xie and Leijen 2021b], generalizing the Ev.Eff
library based on EPT provided by Xie and Leijen [2020]. Our implementation is based on

insertion-ordered evidence vectors.

• We have also implemented our techniques in the Koka programming language [Leijen 2020]

compiling to standard C code (Section 2.8). The implementation uses canonical evidence

vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of effect

handlers that compile to native code: the current state-of-the-art direct implementation

of effect handlers in multi-core OCaml which uses a dedicated runtime system based on

segmented stacks; our Mp.Eff Haskell library; the Ev.Eff Haskell library which has been

shown by Xie and Leijen [2020] to perform very well compared to other Haskell effect

handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and finally

the libhandler C library which implements effect handlers directly in C by copying fragments

of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but

the results clearly indicate that our approach can have competitive performance (Section 5).

Themetatheory proofs are available in the appendix, and theMp.Eff Haskell library and benchmarks

are available online [Leijen 2021; Xie and Leijen 2021b].
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2 OVERVIEW
We start with a short discussion and examples of basic effect handlers and follow with an overview

of each of our semantic refinements and translation techniques. We refer to other work [Hillerström

and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of effect handlers.

2.1 Algebraic Effects
With algebraic effect handlers, an effect l defines a set of operations op. For example, we can have a

reader effect with an ask operation

read { ask : () → int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes

the form op ↦→ f , providing the implementation f for the operation op from the handled effect

where the implementation f is of form 𝜆x . 𝜆k. e: x binds the operation argument, and k binds the

captured resumption that can be used to resume to the original call-site with the operation result.

For example, we can handle the reader effect by always resuming with the constant 1:

hread = { ask ↦→ 𝜆x . 𝜆k. k 1 }
where the expression handler hread (𝜆_. perform ask () + perform ask ()) evaluates to 2. The fol-

lowing evaluation rules give the essence of the untyped semantics for algebraic effect handlers [Xie

and Leijen 2020]:

(app) (𝜆x . e) v −→ e[x:=v]
(handler) handler h f −→ handle h (f ())
(return) handle h v −→ v
(perform) handle h E[perform op v] −→ f v (𝜆x . handle h E[x])

iff op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ h
Rule (app) is standard 𝛽-reduction and applies a function to a value v by substituting x for the

argument v in the function body. The (handler) takes a computation f , and applies the computation

to a unit value under a new frame handle h. The computation to be handled (f ) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as

in the call-by-push-value approach [Levy 2006] used in several algebraic effect systems [Kammar

and Pretnar 2017; Plotkin and Pretnar 2013].

The handle frame is only generated by handler, and treated as a strictly internal frame. When

handling a computation under a handle h frame, there are two possible situations. In the first

case, the computation evaluates to a value and the (return) transition discards the handle h frame

and propagates the value. The second case captures the essence of algebraic effects handlers

where an operation is handled. In rule (perform), perform op v calls an effect operation op by

providing the operation argument v. The handle h frame handles the operation by applying the

operation implementation f to the operation argument v, and the resumption (𝜆x . handle h E[x]).
The resumption captures the original handle, as well as the whole evaluation context E between

handle and the operation call.

An evaluation context E is essentially an expression with a hole (□) in it, and the notation E[e]
represents the expression obtained by plugging e into the hole of E (e.g., (f (g □)) [x] = f (g x)).
In this rule, the condition op ̸∈ bop(E) indicates that op is not in the bound operations of E, i.e. not
handled by any handle frames in E, ensuring that h is always the innermost handle frame for the

effect that handles the operation.

2.1.1 Examples. Here we consider some standard examples of algebraic effects, and we refer the

reader to other work for more examples as well as practical uses of effect handlers [Bauer and
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Pretnar 2015; Hillerström and Lindley 2016; Kammar et al. 2013; Leijen 2017b; Pretnar 2015; Xie

et al. 2020]. In the examples, we use x ← e1; e2 as a shorthand for (𝜆x . e2) e1, and use e1; e2 for
(𝜆_. e2) e1, where 𝜆_ denotes a lambda whose binding is not used in the body.

Exceptions. The following definition defines an effect exn with one operation throw.
exn { throw : ∀𝛼. () → 𝛼 }
Given a datatype Maybe with two constructors Just and Nothing, we can define a handler for

exceptions that reifies any exceptional computation with aMaybe result to return Nothing on an

exception:

hexn = { throw ↦→ 𝜆x . 𝜆k. Nothing }
For example, suppose we define safe division as:

safediv = 𝜆x y. if (y == 0) then perform throw () else x/y
then we have

handler hexn (𝜆_. Just (safediv 42 2)) handler hexn (𝜆_. Just (safediv 42 0))
↦−→∗ handle hexn (Just (42/2)) ↦−→∗ handle hexn (Just (perform throw ()))
↦−→ handle hexn (Just 21) ↦−→ (𝜆x . 𝜆k. Nothing) () (𝜆x . handle hexn (Just x))
↦−→ Just 21 ↦−→∗ Nothing
We use the notation ↦−→ to allow expressions to take steps (−→) inside evaluation contexts, where

↦−→∗ is the transitive reflexive closure of ↦−→, and ↦−→+ is the transitive closure of ↦−→.

Reader. In the previous example we did not make use of the operation argument (x) or the
resumption (k). Let’s consider this time the evaluation of our first example with the reader effect:

handler hread (𝜆_. perform ask () + perform ask ())
↦−→∗ handle hread (perform ask () + perform ask ())
↦−→ (𝜆x . 𝜆k. k 1) () (𝜆x . handle hread (x + perform ask ()))
↦−→∗ (𝜆x . handle hread (x + perform ask ())) 1
↦−→ handle hread (1 + perform ask ()) ↦−→∗ (𝜆x . handle hread (1 + x)) 1 ↦−→∗ 2
where both ask operations resume back to the original calling context with a result.

State. We can define a state handler using the monadic encoding [Kammar and Pretnar 2017],

where performing an operation returns a function that takes in the current state.

st { get : () → 𝛼, hst = {get ↦→ 𝜆x . 𝜆k. (𝜆y. k y y),
set : 𝛼 → () } set ↦→ 𝜆x . 𝜆k. (𝜆y. k () x) }

The following program starts with an initial state 0.

(handler hst (𝜆_. perform set 21; w← perform get (); (𝜆z. w + w) )) 0
↦−→ (handle hst (perform set 21; w← perform get (); (𝜆z. w + w) )) 0
In the following derivation, we make use of the dot notation [Xie and Leijen 2020]. Specifically, the

notation E1 • E2 composes two evaluation contexts by plugging E2 into the hole of E1, resulting
in a new evaluation context. The (•) notation is right-associative and has the lowest precedence,

so we often write E1 • E2 instead of (E1) • E2. The notation E • e has the same meaning as

E[e], which plugs e into the hole of E, resulting in a new expression. Using the dot notation, the

evaluation order of expressions becomes more apparent, and it is now easier to discuss one specific

frame in the chain of evaluation contexts. We start by rewriting the last expression using the dot

notation as:

= □ 0 • handle hst □ • (□; w← perform get (); (𝜆z. w + w)) • perform set 21
For conciseness, we also often omit a trailing □ in an application context e □ • E and write instead

e • E; this is usually the case for handle expressions:
= □ 0 • handle hst • (□; w← perform get (); (𝜆z. w + w)) • perform set 21
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Writing contexts this way, it shows more clearly the stack of evaluation frames with the expression

under evaluation at the end. We can now continue evaluating as:

↦−→∗ □ 0 • (𝜆y. k () 21) with k = 𝜆x . handle hst • (□; w← perform get (); (𝜆z. w + w)) • x
= (𝜆y. k () 21) 0 ↦−→ k () 21
↦−→ □ 21 • handle hst • (□; w← perform get (); (𝜆z. w + w)) • ()
= □ 21 • handle hst • (() ; w← perform get () ; (𝜆z. w + w))
↦−→ □ 21 • handle hst • (w← □; (𝜆z. w + w)) • perform get () ↦−→∗ 42
While this is a nice example of the expressiveness of effect handlers, it is clearly not the most

efficient way to express mutable state. In practice, state can be implemented more efficiently using

parameterized handlers [Plotkin and Pretnar 2009] or a primitive state handler [Xie and Leijen 2020].

Moreover, using the more efficient implementations allow state handlers to be tail-resumptive
(Section 2.5).

Non-determinism. By having the resumption k available when handling, we can actually resume

more than once. In the handler of amb, we implement non-determinism by collecting all possible

results in a list by resuming the resumption twice, each time with one boolean result.

amb { flip : () → bool } handler hamb (𝜆_. x ← perform flip ();
hamb = { flip ↦→ 𝜆_ k. xs← k True; y← perform flip ();

ys← k False; [x && y])
xs ++ ys } ↦−→∗ [True, False, False, False]

2.2 Compiling Effect Handlers
As the examples show, algebraic effect handlers can be very expressive. Unfortunately, their

expressive power also makes it not easy to compile them efficiently. The main culprit is the

(perform) rule:
handle h E[perform op v] −→ f v (𝜆x . handle h E[x]) iff op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ h
This single rule combines two potentially expensive runtime operations:

(1) Searching: The innermost handler for op must be found which usually requires a linear

search through the current handlers in the evaluation context (i.e. search up through the

stack frames).

(2) Capturing: After finding the handler clause f , we need to capture the evaluation con-

text (i.e. stack and registers) up to the found handler, and create a resumption function

(𝜆x . handle h E[x]) which restores the captured context when invoked with a result. An

added complication is that in the general case such resumption may never be called (as in

hexn), or invoked more than once (as in hamb
), which can present difficulties in the runtime

(for scanning GC roots for example).

Capturing and restoring resumptions can be done relatively efficiently if the target runtime system

implements segmented stacks [Farvardin and Reppy 2020] – this is used in multi-core OCaml

[Dolan et al. 2015] for example, where segmented stacks split the stack at each handler so that

a one-shot resumption can be implemented efficiently by switching back to a previous stack

segment [Sivaramakrishnan et al. 2021]). However, many target platforms do not support directly

capturing parts of the stack at all, like compilation to C (as in Koka), WASM, .NET, the Java VM,

JavaScript, etc, and in these cases it is not even possible to implement (perform) in any direct way.

In this paper we address these compilation and runtime challenges by presenting various refine-

ments of the operational semantics in combination with source translations. Each of these steps

enables further optimizations and implementations, and we explore various interesting points in

the design space along the way.
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2.3 Multi-Prompt Semantics
As a first step, we are going to split the (perform) operation into two parts where we separate

the searching for a handler from capturing and restoring a resumption. To capture and restore

a resumption we are going to use standard (typed) multi-prompt delimited control [Gunter et

al. 1995]: instead of a handle h frame, we install a prompt m h frame that is uniquely identified

with a marker m, and performing an operation will use a yield m f frame to yield to such prompt.

As an example, consider again the reader effect handler hread = { ask ↦→ f }with f = 𝜆x . 𝜆k. 1,
where we have the following evaluation (rewritten using the dot notation):

handler hread (𝜆_. perform ask () + perform ask ())
↦−→∗ handle hread • (□ + perform ask ()) • perform ask ()
↦−→ f () (𝜆x . handle hread • (□ + perform ask ()) • x)
. . .

When using multi-prompt semantics, the first transition now installs a prompt m hread frame instead
of a handle frame, where m is a unique marker identifying the prompt:

handler hread (𝜆_. perform ask () + perform ask ())
↦−→∗ prompt m hread (perform ask + perform ask ())
= prompt m hread • (□ + perform ask ()) • perform ask ()
The next transition shows how we separate searching from capturing – perform ask () now only

finds the handler clause f but defers yielding to the prompt by using an explicit yield frame:

↦−→ prompt m hread • (□ + perform ask ()) • yield m (𝜆k. f () k)
The yield m g has two arguments: the marker m that uniquely identifies the prompt to yield to,

and a function g that is applied to the resumption when reaching the prompt. Through the marker

m, we can yield directly to the corresponding prompt which captures and applies the resumption:

↦−→ (𝜆k. f () k) (𝜆x . prompt m hread • (□ + perform ask ()) • x)
↦−→ f () (𝜆x . prompt m hread • (□ + perform ask ()) • x)
. . .

This separation of concerns does not immediately buy us much but, as we will see, it opens up the

way for optimizing each part individually by (1) using evidence passing semantics to avoid searching,

and (2) using a monadic translation to enable capturing without requiring a special runtime system.

Moreover, multi-prompt delimited control is one of the lowest level control operations that can be

typed in the simply typed lambda calculus.

If one controls the target platform, it is possible to efficiently implement multi-prompt delimited

control directly. This is done for example in multi-core OCaml using segmented stacks: here the

call stack is split in segments where each prompt frame starts a fresh segment. The marker m
can be implemented directly as the runtime pointer to that frame. Yielding up to a parent stack

segment is now a constant time operation as only the stack segment pointer needs to be adjusted.

Resuming once can also be done in constant time this way, but supporting multi-shot resumptions

still requires a linear copy of the resumption stack segments (and one of the reasons why multi-shot

resumptions are not directly supported in multi-core OCaml).

2.4 Evidence Passing Semantics
The (perform) operation is still a non-local transition as it searches through the evaluation context

to find the innermost handler. We can make it local using evidence passing semantics, where we
pass the current handlers in the evaluation context explicitly as an extra evidence vector w down to

the perform operations. Instead of searching through the context, we can now look up the handler
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locally. Essentially, if the current evidence vector is w, then the (perform) rule becomes:

perform op v −→ yield m (𝜆k. f v k) where (m, h) = w.l ∧ (op ↦→ f ) ∈ h
The expression w.l directly looks up the marker and handler (called evidence) for effect l from the

evidence vector w. We apply the idea to our example, where we use the
︷︸︸︷

notation to indicate

the current evidence vector and we sometimes omit the notation when it is irrelevant or obvious

from the context. Evaluation always starts with an empty evidence vector ⟨⟨⟩⟩:
⟨⟨⟩⟩︷                                                                                                         ︸︸                                                                                                         ︷

handler hread (𝜆_. perform ask () + perform ask ())
which evaluates into:

↦−→∗
⟨⟨⟩⟩︷                         ︸︸                         ︷

prompt m hread •

w = ⟨⟨read : (m,hread ) ⟩⟩︷                                                                              ︸︸                                                                              ︷
(□ + perform ask ()) • perform ask ()

where the prompt frame modifies the evidence for rest of the evaluation context. At this point

perform evaluates under an evidence vector ⟨⟨read : (m, hread)⟩⟩, and we get:

↦−→ prompt m hread • (□ + perform ask ()) • yield m (𝜆k. f () k) where (m, hread) = w.read
↦−→ (𝜆k. f () k) (𝜆x . prompt m hread • (□ + perform ask ()) • x)
↦−→ f () (𝜆x . prompt m hread • (□ + perform ask ()) • x)
. . .

Using evidence passing semantics makes the (perform) transition localized which can potentially be

more efficient than searching through the evaluation context. When we treat the evidence vector as

an abstract datatype there are two interesting variants depending on how the vectors are ordered:

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation

context. This is straightforward and also the approach we take in the associated Haskell

library. However, it means that the lookup operationw.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked list

where each handler pushes itself on the list. Since evidence vectors are not first-class values,

we can actually allocate this list on the evaluation stack directly and as such it becomes a

linked list of handlers at runtime – this is exactly how various languages (e.g. C++ compilers

used to do this) and systems (e.g. Windows structured exception handling) implement

exception handlers where the w parameter is a pointer to the head of the exception handler

list.

(2) Canonical order: Use a lexicographic order of the handler evidence based on their effect

label. This requires a strongly typed calculus but it means that if the effect type is fully

known at compile time, we can statically determine the index for a particular effect in

the runtime evidence vector. For example, in systems that keep track of the effect type of

expressions using row types [Hillerström and Lindley 2016; Leijen 2017b], the effect type of

our example perform ask () is the singleton effect row ⟨read⟩, and we know statically that

the dynamic runtime evidence vector will have the form ⟨⟨read : _⟩⟩. We can thus replace the

linear runtime lookup w.read with a constant-time array access w [0] instead. This is the
approach used in the Koka compiler.

2.5 Tail-Resumptive Operations
With evidence semantics in place, the only expensive operation left is yielding and capturing a

resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in

practice happen to be tail resumptive where the operation clause has the form:

op ↦→ 𝜆x . 𝜆k. k e where k ̸∈ fv(e)
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For example, the ask operation in our hread handler is of this form2
. It turns out we can perform

such operations in place: instead of yielding up and eventually resuming with the final result, we

can directly evaluate e on the current stack without doing an expensive yield followed by a resume.

To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a

tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is defined and is used for the evaluated-in-place expression. We illustrate the

use of this in our running example:

⟨⟨⟩⟩︷                                                                                                         ︸︸                                                                                                         ︷
handler hread (𝜆_. perform ask () + perform ask ())

↦−→∗
⟨⟨⟩⟩︷                          ︸︸                          ︷

prompt m hread •

⟨⟨read : (m,hread , ⟨⟨⟩⟩) ⟩⟩︷                                                                              ︸︸                                                                              ︷
(□ + perform ask ()) • perform ask ()

Here, the evidence vector for perform is ⟨⟨read : (m, hread, ⟨⟨⟩⟩)⟩⟩ and we can locally find the operation

clause ask→ 𝜆x k. k 1 ∈ hread and determine that it is tail-resumptive. Instead of generating yield
as before, we instead evaluate e (as in 𝜆x . 𝜆k. k e, with e being 1 in this case) in-place:
↦−→ prompt m hread • (□ + perform ask ()) • under read • 1

↦−→ prompt m hread • (□ + perform ask ()) • 1

↦−→ prompt m hread (1 + perform ask ())
. . .

The operation clause is now evaluated in-place – but note it needs to be evaluated under an under l
frame. Such frame ensures that if the operation clause e itself performs operations, these are

resolved correctly with respect to the actual handler up in the evaluation context. Consider for

example the following reader handler:

h2 = { ask ↦→ 𝜆x .𝜆k. k (perform ask () + 1) }
Here the operation clause is tail-resumptive, and itself performs an ask operation. Now consider:

handler hread (𝜆_. handler h2 (𝜆_. perform ask()))

↦−→∗
⟨⟨⟩⟩︷                           ︸︸                           ︷

prompt m1 hread •

w1 = ⟨⟨read : (m1,hread , ⟨⟨⟩⟩) ⟩⟩︷                      ︸︸                      ︷
prompt m2 h2 •

w2 = ⟨⟨read : (m2,h2,w1), read : (m1,hread , ⟨⟨⟩⟩) ⟩⟩︷                        ︸︸                        ︷
perform ask ()

At this point, the evidence vector at the second prompt is w1 = ⟨⟨read : (m1, hread, ⟨⟨⟩⟩)⟩⟩, but the ev-
idence vector at the perform contains two entries: w2 = ⟨⟨read : (m2, h2,w1), read : (m1, hread, ⟨⟨⟩⟩)⟩⟩.
Here we see how the third member of the evidence always points to the “previous” evidence vector

(e.g., w1) under which a particular hander (e.g., h2) is defined. If using insertion-ordered evidence

vectors as a linked list, this is always just the tail of the list, but for canonical evidence vectors the

previous vector must be kept explicitly. Since the operation clause is tail-resumptive, we get:

↦−→

⟨⟨⟩⟩︷                           ︸︸                           ︷
prompt m1 hread •

w1︷                      ︸︸                      ︷
prompt m2 h2 •

w2︷               ︸︸               ︷
under read •

w1︷                                  ︸︸                                  ︷
perform ask () + 1

= prompt m1 hread • prompt m2 h2 • under read • (□ + 1) • perform ask ()
The evidence vector for the perform ask () + 1 is now w1 and not the unchanged w2. Indeed, it

would be incorrect to use w2 or otherwise we would invoke the operation clause of h2 again!
The under read frame prevents this from happening and adjusts the evidence vector to the one

2
While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-

dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb

handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,

respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –

for example 𝜆x k. if x == 0 then k 1 else k 2 which can be transformed to 𝜆x k. k (if x == 0 then 1 else 2) .

8
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under which the read handler is itself defined: this is exactly the third component of the evidence,

w2 .read .thd, which is w1 in our example. We now continue as:

↦−→

⟨⟨⟩⟩︷                           ︸︸                           ︷
prompt m1 hread •

w1︷                      ︸︸                      ︷
prompt m2 h2 •

w2︷               ︸︸               ︷
under read •

w1︷                                        ︸︸                                        ︷
(□ + 1) • under read •

⟨⟨⟩⟩︷︸︸︷
1

↦−→ prompt m1 hread • prompt m2 h2 • under read • (□ + 1) • 1

↦−→ prompt m1 hread • prompt m2 h2 • under read • 2 ↦−→∗ 2
Note that the second under read frame adjusts the evidence further to ⟨⟨⟩⟩ (which is w1.read .thd).
The correct formalization of under is subtle, and we will come back to this in Section 2.9.

2.6 Bubbling Yields
Using evidence semantics, perform is a local transition which only leaves yields as a non-local
transition for non-tail-resumptive operations. We can further make yield m local by bubbling it

up until it meets its corresponding prompt m frame in the evaluation context. That is, instead

of capturing the delimited evaluation context E wholesale, we are going to build a resumption

function piecemeal while bubbling up. To this end, we extend yield m v with an extra argument as

yield m v k where k is the current partially built up continuation (starting out as identity).

Consider our earlier exception effect in Section 2.1.1 where:

handler hexn (𝜆_. safediv 42 0)
↦−→∗ handle hexn • Just □ • perform throw ()
↦−→ (𝜆x k. Nothing) () (𝜆x . handle hexn (Just x))
When using yield bubbling we evaluate instead as (writing f for 𝜆x k. Nothing):

handler hexn (𝜆_. safediv 42 0)
↦−→∗ prompt m hexn • Just □ • perform throw ()
↦−→ prompt m hexn • Just □ • yield m (𝜆k. f () k) id
At this point, the yield does a local transition and bubbles up only one step through the Just
application, resulting in

↦−→ prompt m hexn • yield m (𝜆k. f () k) (Just ◦ id)
Note how the resumption function changed from the initial identity id to the composition Just ◦ id.
Generally, yields keep bubbling up this way extending their current resumption until they meet

their target prompt:

↦−→∗ f () (𝜆x . prompt m hexn ((Just ◦ id) x)) ↦−→∗ Nothing
Using bubbling removes any direct manipulation of the evaluation context E and only regular

functions are used instead. The bubbling technique for implementing delimited continuations is

well known [Felleisen et al. 1986; Parigot 1992] and used for example to give direct semantics to

effect handlers [Kiselyov and Sivaramakrishnan 2017; Pretnar 2015].

2.6.1 Short-cut Resumptions. When bubbling up, a resumption is built up as a composition of

continuations, f1 ◦ . . . ◦ fn ◦ id, and when resuming it is applied as (f1 ◦ . . . ◦ fn ◦ id) x which will

recreate all f1 to fn application frames on the evaluation stack which can be expensive. Instead, in

an implementation we can represent the composition as a list [f1, . . ., fn], and resume instead as

resume [f1, . . ., fn] x where resume folds through the list from the end:

resume [] x = x resume (fs ++ [f ]) x = resume fs (f x)
This can be done efficiently by using a queue or array representation (as done in Koka) and also

uses minimal stack space by evaluating just one f continuation at a time. Moreover, any further
yields in a frame fi will bubble up directly through the current resume and thus capture all f1 to fi−1

9
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continuations in one go (and will itself share those continuations through the various yields). We

call these short-cut resumptions as these can be resumed by immediately starting at the deepest

continuation point. This uses minimal stack space while increasing the use of shared continuations.

Note that while bubbling upwe can also encounter prompt and under frames besides regular appli-

cations; for example, the final resumptionmay be of the form f1 ◦ . . . ◦ fi ◦ prompt m h ◦ fi+1 ◦ . . . ◦ fn.
When resuming, we need to ensure that such prompt and under frames are properly restored and

cannot use short-cut’s for those. Of course we can still use resume for the application fragments

surrounding the prompt/under frames, e.g. resume [f1, . . ., fi] ◦ prompt m h ◦ resume [fi+1, . . ., fn].

2.7 Monadic Translation
At this point all transitions are local and no longer capture the evaluation context explicitly. This

means we are now able to translate our core calculus into a pure lambda calculus together with

a multi-prompt delimited control monad. This is a straightforward transformation where every

(effectful) expression is sequenced through a monadic bind. Our running example:

handler hread (𝜆_. perform ask () + perform ask ())
translates to the following monadic expression:

handler hread (𝜆_. perform ask () ▷ (𝜆x . perform ask () ▷ (𝜆y. Pure (x + y))))
where we write (▷) for monadic binding, and Pure for lifting pure expressions into the monad.

Through the bind operation, the current continuation becomes explicit (as a function argument)

and can be captured and resumed using regular function application, where bind is implemented

essentially
3
as:

e ▷ g = case e of Pure x → g x
Yield m f k→ Yield m f (𝜆x . k x ▷ g)

Pure values are directly propagated while a yield bubbles up (upto its matching prompt) and

appends each explicit continuation g to the built up resumption. Since all of this can be expressed

in plain typed lambda calculus, this can be directly translated to almost any target platform – all

control flow is now fully explicit.

2.7.1 Bind-Inlining and Join-Point Sharing. However, if done naively there may be a high cost to

this translation: since every bind operation takes a lambda as its second argument this may lead to

many closure allocations even for non-yielding code. Moreover, any direct tail-recursive calls are

no longer directly tail-recursive as they occur under a lambda now!

To improve this we need two techniques: bind-inlining and join-point sharing. To avoid always

allocating a lambda, we can use bind-inlining to simply inline every bind operation, expanding our

example expression to:

handler hread (𝜆_. case perform ask () of
Yield m f k→ Yield m f (𝜆z. k z ▷ (𝜆x . perform ask () ▷ (𝜆y. Pure (x + y))))
Pure x → case perform ask () of Yield m f k→ Yield m f (𝜆z. k z ▷ (𝜆y. Pure (x + y)))

Pure y → Pure (x + y))
For clarity, we did not inline the bind operations in an expansion itself. Nevertheless, we can already

see that at every original bind operation, we duplicated the g argument in the expansion. This

means that if we have a sequence of N statements, we may end up with 2
N
duplications.

3
As shown in Section 4 the actual definition also propagates the current evidence vector as part of the monad.

10
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To avoid such expansion, we need to use join-point sharing: we consider every g argument as a

join point, and rewrite the initial translation to make this sharing explicit:

join
1
= 𝜆x y. Pure (x + y) join

2
= 𝜆x . perform ask () ▷ (𝜆y. join

1
x y)

hander hread (𝜆_. perform ask () ▷ join
2
)

From there, we perform bind-inlining only for non-join definitions, but also aggressively inline

join-definitions for the Pure branches. This results effectively in a fully inlined fast path along the

Pure branches:
handler hread (𝜆_. case perform ask () of
Yield m f k→ Yield m f (𝜆z. k z ▷ join

2
)

Pure x → case perform ask () of Yield m f k→ Yield m f (𝜆z. k z ▷ join
1
x)

Pure y → Pure (x + y))
Note how the join

1
join point is shared by the join

2
definition as well, and the code expansion for

N statements is now reduced from 2
N
to 2N . In practice, the Koka compiler does a type-selective

transformation and leaves out monadic binds for functions that are total (since those will never

yield) which further reduces code expansion by a large factor.

This strategy ensures that we have a fast path along each Pure branch: if no operation performs

a full yield, no allocation happens along this path and tail-recursive calls are preserved (and as

such, this optimization works best when used together with tail-resumptive optimization). Only in

the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a

resumption is constructed on demand. When such a resumption is resumed, the execution is a bit

slower as well as it takes the code path along the joinn definitions where the binds are not inlined –

this is the price we pay for limiting the expansion. Note though that if the function is recursive,

any further recursive calls will again start at the fast path.

Another possible approach to implementing delimited control primitives is by using continuation

passing style (CPS) instead of the monadic approach. Using CPS, we would instead translate our

example essentially as:

handler hread (𝜆_ k. perform ask () (𝜆x . perform ask () (𝜆y. k (x + y))))
This looks similar to the monadic approach, where instead of explicitly using a monadic bind (▷)
we pass the current continuation as the last argument k to every effectful function. Unfortunately,

since we now pass the continuation as an argument, we always need to allocate the lambda in
advance. In contrast, in the monadic approach with bind-inlining we can immediately call the

function and inspect its result without doing any allocation; only if it happens to return a Yield we

actually need to allocate the continuation.

2.8 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a

target platform. As an example, we show here how Koka compiles to standard C. In our final calculus

all effectful functions return a monadic result, either Pure or Yield. Since this monad is internal to

the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) flag to indicate yielding (in which case the actual returned value is ignored).

Moreover, every function has one extra parameter that holds the (thread-local) context ctx which

contains the current evidence vector (ctx→w), and the yielding flag (ctx→is_yielding). For
example, the expression 𝜆_. perform ask () + perform ask () translates essentially as:

int expr( unit_t u, context_t* ctx) {
int x = perform_ask( ctx→w[0], unit, ctx );
if (ctx→is_yielding) { yield_extend(&join2,ctx); return 0; }
int y = perform_ask( ctx→w[0], unit, ctx );

11
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if (ctx→is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }
return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as

ctx→w[0]. Here the offset 0 is known as the effect type is ⟨read⟩ and Koka uses canonical evidence
vectors. If the effect row type was not fully known, e.g., a polymorphic row type ⟨read | 𝜇⟩, the code
would instead be find_ev(ctx→w,tag_read) to find the evidence dynamically. When yielding,

the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every effectful call if we are yielding or

not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted

well. In the future we would like to leverage C compiler primitives to implement the is_yielding
flag in the processor carry flag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.9 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT differs fundamentally from our approach. First, while

our evidence-passing semantics provides a set of direct evaluation rules for the algebraic effect

calculus, EPT is defined via elaboration from the algebraic effect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic effect handler programs,

whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only

be used under the same handler context as captured by the handler.

Specifically, in EPT, as the evidence vector is passed statically during elaboration, it is determined

before running the program. However, the statically passed-in evidence vector may, as the program

evaluates, no longer match the handlers in the current dynamic evaluation context (and in such

case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic

effects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration

that resumes continuations on a different host [Kiselyov et al. 2006].

2.9.1 Non-Scoped Resumptions. We illustrate the problem of non-scoped resumptions using the

following evil effect as shown by Xie et al. [2020]:

evil { evil : () → () } hevil = { evil ↦→ 𝜆x k. k }

The handler hevil illustrates again the expressiveness of effect handlers: the captured resumption is

a first-class value and thus can be returned directly, and in this example we are going to resume

it later under a changed handler context. Suppose we have another reader handler that always

returns 2:

hread2 = { ask ↦→ 𝜆x k. k 2 }

Consider the following program, where f = (𝜆k. handler hread2 (𝜆_. k ())), which takes a contin-

uation and resumes it under a new handler (ignoring tail-resumptive optimization for now):

f (handler hread (𝜆_. handler hevil (𝜆_. perform ask (); perform evil (); perform ask ())))

↦−→

⟨⟨⟩⟩︷                                      ︸︸                                      ︷
f • prompt m1 hread •

w1 = ⟨⟨read : (m1, hread ) ⟩⟩︷                         ︸︸                         ︷
prompt m2 hevil

•

w2 = ⟨⟨evil : (m2, hevil ), read : (m1,hread ) ⟩⟩︷                                                                                                                 ︸︸                                                                                                                 ︷
(□ ; perform evil () ; perform ask ()) • perform ask ()
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It may seem that both ask operations will return 1 as they both have read : (m1, hread) in the evidence
vector w2 but, as we will see, that is not the case! The first ask returns 1 as expected though:

↦−→ f • prompt m1 hread • prompt m2 hevil • (□ ; perform evil () ; perform ask ()) • 1

However, before we can handle the second ask, the operation evil is performed, which captures the

second ask in the resumption k:

↦−→ f • prompt m1 hread • prompt m2 hevil • (□ ; perform ask ()) • perform evil ()

↦−→

⟨⟨⟩⟩︷                                      ︸︸                                      ︷
f • prompt m1 hread •

w1︷︸︸︷
k with k = 𝜆x . prompt m2 hevil • (□ ; perform ask ()) • x (1)

As k is a value, it is propagated through the prompt m1 frame:

↦−→ f k ↦−→ handler hread2 (𝜆_. k ())

At this point, the reader handler in the context is now changed to hread2 :

↦−→

⟨⟨⟩⟩︷                            ︸︸                            ︷
prompt m0 hread2 •

w3 = ⟨⟨read : (m0, hread2 ) ⟩⟩︷︸︸︷
k () (2)

↦−→

⟨⟨⟩⟩︷                            ︸︸                            ︷
prompt m0 hread2 •

w3︷                         ︸︸                         ︷
prompt m2 hevil •

w4 = ⟨⟨evil : (m2, hevil ), read : (m0, hread2 ) ⟩⟩︷                                                ︸︸                                                ︷
(□ ; perform ask ()) • ()

and the ask operation is performed under w4 using the new hread2 and thus evaluates to 2 (and not

1)!

EPT rejects this program at runtime by detecting the non-scoped resumption k: k is captured

under w1 at (1), but is later applied under w3 at (2). In particular, in EPT, both ask operations

statically receive w2 as the evidence vector during elaboration to the evidence calculus. As such

resuming k under a changed evidence vector means the statically received evidence vector does no

longer match the dynamic handler context anymore, and is thus not allowed in their system. In

contrast, our generalized evidence passing semantics correctly models the dynamic behavior of the

evidence vector, and can express the full semantics of algebraic effect handlers.

2.9.2 Non-Scoped Resumptions with Tail-Resumptive Optimization. Xie et al. [2020] also describe

the tail-resumptive optimization, and argue that tail-resumptive operations are examples of scoped

resumptions, but do not provide any formalization of the optimization.

It turns out that the tail-resumptive optimization is more challenging with generalized evidence

passing semantics, and our formalization goes beyond what is sketched in [Xie et al. 2020]. In

particular, the interaction between non-scoped resumptions and tail-resumptive operations is subtle

and the formalization of under is tricky to get right. We illustrate this by performing the previous

evil example from inside a tail-resumptive operation:

tl { tl : () → Int } htl = { tl ↦→ 𝜆x k. k (perform ask (); perform evil (); perform ask ()) }

Here we have the same sequence of operations as before, but this time these happen from inside an

operation. Note that this operation is tail-resumptive, despite all effects performed before resuming.

Now consider the following program, which performs tl under three handlers, and passes the result
to f .

f (handler hread (𝜆_. handler hevil (𝜆_. handler htl (𝜆_. perform tl () ))))
−→∗ f • prompt m1 hread • prompt m2 hevil • prompt m3 htl • perform tl ()

13



Xie and Leijen MSR-TR-2021-5

We evaluate tl in-place under w2, as htl is itself defined under w2.

−→∗
⟨⟨⟩⟩︷                                      ︸︸                                      ︷

f • prompt m1 hread •

w1=⟨⟨read : (m1,hread , ⟨⟨⟩⟩) ⟩⟩︷                         ︸︸                         ︷
prompt m2 hevil •

w2=⟨⟨evil : (m2, hevil ,w1),read : (m1,hread , ⟨⟨⟩⟩) ⟩⟩︷                      ︸︸                      ︷
prompt m3 htl

•

w3=⟨⟨tl : (m3, htl ,w2), evil : (m2, hevil ,w1) , read : (m1,hread , ⟨⟨⟩⟩) ⟩⟩︷            ︸︸            ︷
under tl •

w2︷                                                                                                                ︸︸                                                                                                                ︷
(□ ; perform evil (); perform ask ()) • perform ask ()

ask is also tail-resumptive and gets evaluated in-place.

−→ f • prompt m1 hread • prompt m2 hevil • prompt m3 htl

• under tl • (□ ; perform evil (); perform ask ()) • under read • 1 (3)

We then perform evil, which again captures the resumption and passes it to f .

−→∗ f • prompt m1 hread • prompt m2 hevil • prompt m3 htl

• under tl • (□; perform ask ()) • perform evil
−→∗ f k where k = 𝜆x . prompt m2 hevil • prompt m3 htl • under tl • (□; perform ask ()) • x (4)

f applies k under a reader handler hread2 :

−→∗
⟨⟨⟩⟩︷                            ︸︸                            ︷

prompt m0 hread2 •

w4=⟨⟨read : (m0, hread2 , ⟨⟨⟩⟩ ⟩⟩︷                         ︸︸                         ︷
prompt m2 hevil •

w5=⟨⟨evil : (m1,hevil ,w4), read : (m0, hread2 , ⟨⟨⟩⟩) ⟩⟩︷                      ︸︸                      ︷
prompt m3 htl

•

w6=⟨⟨tl : (m3, htl ,w5), evil : (m2, hevil ,w4) , read : (m0,hread2 , ⟨⟨⟩⟩) ⟩⟩︷         ︸︸         ︷
under tl •

w5︷                        ︸︸                        ︷
perform ask () (5)

−→∗ 2

The evaluation is quite subtle in several places. First, at (3) we introduced under tl. As shown at

(4), the under frame can itself be captured by a resumption. This explains why we cannot directly

apply the optimization but require an extra under frame: inside the resumption we still need to

remember that operations happening after under tl can only reach handlers beyond htl .
However, at (3), it might be tempting to introduce the frame as under w2 instead of under tl, as

that would be enough to ensure that all operations afterwards are evaluated under w2. By doing so,

under could be formalized in a simpler way: under w2 could simply ignore the current evidence

vector and always pass w2 to future operations. Our initial formalization did this but unfortunately

this turns out to be unsound.

As shown at (5), the evidence vector for under tl itself has changed, from w3 to w6, and thus the

evidence vector passed by under tl has also changed from w2 to w5, so that the last ask is handled

by hread2 and returns 2 (the reader can check that 2 is indeed the desired result of the program by

evaluating without tail-resumptive optimization). If we would have used under w2, the ask would

wrongly return 1!

Proving the correctness of under is also challenging, as it essentially requires us to show that a

program with tail-resumptive optimization will produce the same result as of the same program

without the optimization. To this end, we show that the optimized program is contextual equivalent
to the original program.

3 SEMANTICS
This section presents System Fpw , which features algebraic effects using multi-prompt and evidence

passing semantics. The system is designed based on System F𝜖 [Xie et al. 2020], an explicitly typed

polymorphic algebraic effect calculus.
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Expression e ::= v | e e | e 𝜎
| prompt m h e
| yield m v

Value v ::= x | 𝜆𝜖x :𝜎. e | Λ𝛼𝜅 . v
| handler h
| perform op 𝜖 𝜎

Handler h ::= { opi ↦→ fi }
Evaluation ctx. E ::= □ | E e | v E | E 𝜎

| prompt m h E
F ::= □ | F e | v F | F 𝜎

Type 𝜎 ::= 𝛼𝜅 | c𝜅 𝜎 | 𝜎 → 𝜖 𝜎

| ∀𝛼𝜅 . 𝜎
Effect row 𝜖 ::= ⟨⟩ | ⟨l | 𝜖⟩ | 𝛼eff

Kind 𝜅 ::= ∗ | 𝜅 → 𝜅 | lab | eff

Type env. Γ ::= ∅ | Γ, x :𝜎
Effect ctx. Σ ::= { li : sigi }
Effect sig. sig ::= { opi :∀𝛼

𝜅 . 𝜎i → 𝜎 ′i }
Evidence ev ::= (m, h, w)
Evidence vec. w ::= ⟨⟨⟩⟩ | ⟨⟨l : ev | w⟩⟩

(app) (𝜆𝜖x :𝜎. e) v −→ e[x:=v]
(tapp) (Λ𝛼𝜅 . v) 𝜎 −→ v [𝛼 :=𝜎]
(handler) handler h v −→ prompt m h (v ()) with unique m
(promptv) prompt m h v −→ v
(prompt) prompt m h E[yield m f ] −→ f (𝜆𝜖x :𝜎2. prompt m h E[x])

with ∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎

(perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆𝜖k :𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎. f 𝜎 v k)
with (m, h, _) = w.l ∧ (op ↦→ f ) ∈ h

(op :∀𝛼. 𝜎1→ 𝜎2) ∈ Σ(l) ∧∅ ⊢ h : 𝜎 | l | 𝜖

e −→ e′

w ⊢ F[e] ↦−→ F[e′]
(step)

w ⊢ e −→ e′

w ⊢ F[e] ↦−→ F[e′]
(stepw)

w ⊢ e ↦−→∗ e

⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e ↦−→ e′

w ⊢ F[prompt m h e] ↦−→ F[prompt m h e′]
(promptw)

w ⊢ e ↦−→∗ e′ w ⊢ e′ ↦−→ e′′

w ⊢ e ↦−→∗ e′′

Fig. 1. Fpw : multi-prompt with evidence-passing semantics.

3.1 Multi-Prompt with Evidence Passing Semantics
3.1.1 Syntax. Figure 1 defines the syntax. Expressions e include values v, applications e e, type
applications e 𝜎 and the internal frames prompt m h and yield m v. Values include variables x,
lambdas 𝜆𝜖 x :𝜎.e, which is annotated with the effect 𝜖 that may be performed when the lambda

is applied, type lambdas Λ𝛼k . v, and handler h and perform op 𝜖 𝜎 . Since the calculus is explicitly
typed and an operation signature can be polymorphic, performing an operation perform op 𝜖 𝜎
needs to indicate its context effect 𝜖 , as well as to explicitly pass the type arguments 𝜎 . A handler h
contains a list of operation clauses op ↦→ f , where f denotes a function expression. As we have

seen before, an evaluation context E is essentially an expression with a hole in it, which indicates

explicitly the evaluation order of an expression. A pure evaluation context F has no prompt frame.

Types. Types 𝜎 include type variables 𝛼𝜅 of kind 𝜅, type constructors c𝜅 𝜎 where c𝜅 of kind 𝜅

is applied to the arguments 𝜎 , function types 𝜎 → 𝜖 𝜎 annotated with the effect 𝜖 that may be

performed when the function is applied, and polymorphic types ∀𝛼𝜅 . 𝜎 . Types of kind eff are called

effect rows and we write them as 𝜖 . Such row can be either empty ⟨⟩ (i.e. the type constructor ⟨⟩eff)
which denotes the total effect, an extension ⟨l | 𝜖⟩ (i.e. the type constructor ⟨_ | _⟩lab → eff → eff

),

which extends 𝜖 with effect label l (i.e. a type constructor llab), or a type variable 𝛼eff
(often written

as 𝜇). Effect rows that end with such a type variable (e.g., ⟨l | 𝜇⟩) are called open, while effect rows
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ending with an empty effect (e.g., ⟨l | ⟨⟩⟩) are called closed.
Equivalence between row types (≡) is defined as follows. Row equivalence is reflexive, transitive,

and can freely reorder distinct labels.

𝜖 ≡ 𝜖
𝜖1 ≡ 𝜖2 𝜖2 ≡ 𝜖3

𝜖1 ≡ 𝜖3
𝜖1 ≡ 𝜖2

⟨l | 𝜖1⟩ ≡ ⟨l | 𝜖2⟩
l1 ≠ l2 𝜖1 ≡ 𝜖2

⟨l1, l2 | 𝜖1⟩ ≡ ⟨l2, l1 | 𝜖2⟩

To distinguish among types, System Fpw uses a basic kind system. Kinds 𝜅 include the basic kind

(∗), functions (𝜅 → 𝜅), the kind of labels (lab), and the kind of effects (eff). The judgment⊢wf 𝜎 : 𝜅

checks the kind of types, whose definition is standard and is given in the appendix.

The term context Γ is standard. A global effect context Σ maps each effect l to its signa-

ture sigl , which gives every operation its input and output types, i.e., opi : ∀𝛼 i . 𝜎i → 𝜎 ′i (where
𝛼 i = ftv(𝜎i → 𝜎 ′i )).We assume each op is uniquely named, andwe use the notation op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)
to denote the type of op that belongs to effect l.
Evidence Vectors. System Fpw incorporates evidence passing semantics. In particular, evidence ev is

a triple consisting of a marker m, its corresponding handler h and the evidence vector w where

h is defined. An evidence vector w is a map from effect labels to evidence. It can be either empty

⟨⟨⟩⟩, or an extension ⟨⟨ev | w⟩⟩ which extends w with evidence ev. We also write ⟨⟨w1 | w2⟩⟩ for the
concatenation of w1 and w2. We use the notation w.l to select evidence of label l from w. As we
have discussed in Section 2.4, we treat the evidence vector as an abstract datatype, as it can be either

canonical or insertion ordered, depending on how the extension operation ⟨⟨ev | w⟩⟩ is implemented.

Importantly though, for correctness of the evidence passing semantics, selection and extension

should satisfy the following laws, so that w.l always finds the most recent evidence of l, which
corresponds to the dynamic semantics of algebraic effects where an operation is handled by its

innermost handler.

⟨⟨l : ev | w⟩⟩.l = ev ⟨⟨l′ : ev | w⟩⟩.l = w.l iff l ≠ l′

3.1.2 Operational Semantics. The operational semantics rules of System Fpw (Figure 1) include three

definitions: −→ provides a primitive evaluation step, ↦−→ evaluates expressions under evaluation

contexts, and ↦−→∗ defines the transitive closure of ↦−→. In practice, evaluating an expression always

start with an empty evidence vector. For clarify, we use a lighter color for all type information,

which is needed for type soundness, but not directly for the dynamic semantics of algebraic effects.

(−→). During evaluation, we pass the current handlers down as an evidence vector. However, the

evidence vector only matters when performing an operation, and many evaluation steps do not

need to inspect the evidence vector. To make the difference clear, we separate the evaluation step

into two categories: plain e1 −→ e2, and evaluation under an evidence vector w ⊢ e1 −→ e2.
Rule (app) and (tapp) are standard. In rule (handler), handler installs a prompt m frame, with a

fresh unique marker m, so that the marker can later be used to find the specific prompt. Values are
propagated through the prompt frame (rule (promptv)).
As this system models the multi-prompt semantics, we split performing an operation into two

parts: searching for a handler (rule (perform)), and capturing and restoring a resumption (rule

(prompt)). Rule (perform) captures the essence of evidence passing semantics. Specifically, given

the evidence vector w, performing an operation directly gets the handler h by selecting out the

corresponding evidence by w.l. The operation implementation f from h is then used to handle the

operation. As we will see shortly, the notation ∅ ⊢ops h : 𝜎 | l | 𝜖 says that h is a handler for effect

l, which has result type 𝜎 and may itself perform effect 𝜖 . Notice the difference between 𝜖0 and 𝜖 –

𝜖0 is the effect where perform is defined, and 𝜖 is the effect where prompt h is defined. Finally, in

rule (prompt), yield captures the resumption (𝜆𝜖x :𝜎2 . prompt m h E[x]), to which f is applied.

16



Generalized Evidence Passing for Effect Handlers MSR-TR-2021-5

Γ ⊢ e : 𝜎 | 𝜖 Γ ⊢val v : 𝜎 Γ ⊢ops h : 𝜎 | l | 𝜖
x :𝜎 ∈ Γ

Γ ⊢val x : 𝜎
var

Γ ⊢val v : 𝜎

Γ ⊢ v : 𝜎 | 𝜖
val

Γ, x :𝜎1 ⊢ e : 𝜎2 | 𝜖
Γ ⊢val 𝜆𝜖 x :𝜎1. e : 𝜎1→ 𝜖 𝜎2

abs

Γ ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 Γ ⊢ e2 : 𝜎1 | 𝜖
Γ ⊢ e1 e2 : 𝜎 | 𝜖

app

Γ ⊢val v : 𝜎 𝜅 ≠ lab 𝛼 ̸∈ ftv(Γ)
Γ ⊢val Λ𝛼𝜅 . v : ∀𝛼𝜅 . 𝜎

tabs

Γ ⊢ e : ∀𝛼𝜅 . 𝜎1 | 𝜖 ⊢wf 𝜎 : 𝜅

Γ ⊢ e 𝜎 : 𝜎1 [𝛼 :=𝜎] | 𝜖
tapp

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)
Γ ⊢val perform op 𝜖 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎]

perform

Γ ⊢ops h : 𝜎 | l | 𝜖
Γ ⊢val handler h : (() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎

handler

Γ ⊢ops h : 𝜎 | l | 𝜖 Γ ⊢ e : 𝜎 | ⟨l | 𝜖⟩
Γ ⊢ prompt m h e : 𝜎 | 𝜖

prompt

Γ ⊢val f : (𝜎 → 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′

Γ ⊢ yield m f : 𝜎 | 𝜖
yield

opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) 𝛼 ̸∩ ftv(𝜖, 𝜎) Γ ⊢val fi : ∀𝛼. 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎)
Γ ⊢ops { op1 ↦→ f1, . . ., opn ↦→ fn } : 𝜎 | l | 𝜖

ops

Fig. 2. Typing Rules for System Fpw .

(↦−→). When evaluating expressions under evaluation contexts, each rule is given the current

evidence vector w. Rule (step) and (stepw) correspond respectively to a plain −→ and a w ⊢ −→
step. Both rules evaluate under an F. That is because as shown in rule (promptw), the prompt m h e
frame modifies the evidence vector by inserting the new evidence l : (m, h,w) and uses the evidence
vector ⟨⟨l : (m, h, w) | w⟩⟩ for evaluating e. Here the evaluation context is again an F ensuring that

the evidence vectors always match the prompt frames in the context.

Example. In Section 2, for better illustration, we have used the

w︷︸︸︷
notation to indicate the current

evidence vector. In the formal system, we always use w ⊢ . The following example shows the eval-

uation derivation of handler hread (𝜆_. perform ask ()) ↦−→∗ 1. We have omitted type annotations,

and details regarding ⟨⟨⟩⟩ ⊢ e1 ↦−→ e3 and ⟨⟨⟩⟩ ⊢ e6 ↦−→∗ 1.
(1) e1 = handler hread (𝜆_. perform ask ())
(2) e2 = perform ask ()
(3) e3 = prompt m hread e2
(4) e4 = yield m (𝜆k. (𝜆x k. 1) () k)
(5) e5 = prompt m hread e4
(6) e6 = (𝜆k. (𝜆x k. 1) () k) (𝜆x . prompt m hread x)

· · ·
⟨⟨⟩⟩ ⊢ e1 ↦−→∗ e3

⟨⟨m, hread , ⟨⟨⟩⟩⟩⟩ ⊢ e2 −→ e4
⟨⟨⟩⟩ ⊢ e3 ↦−→ e5

⟨⟨⟩⟩ ⊢ e1 ↦−→∗ e5
e5 −→ e6

⟨⟨⟩⟩ ⊢ e5 ↦−→ e6
⟨⟨⟩⟩ ⊢ e1 ↦−→∗ e6

· · ·

⟨⟨⟩⟩ ⊢ e1 ↦−→∗ 1

3.1.3 Typing Rules. Figure 2 defines the typing rules for System Fpw . The judgment Γ ⊢ e : 𝜎 | 𝜖
reads that, under the typing context Γ, the expression e has type 𝜎 and may perform effect 𝜖 .

Values are not effectful and thus the typing judgment takes the form Γ ⊢val v : 𝜎 . The judgment

Γ ⊢ops h : 𝜎 | l | 𝜖 type-checks a handler h for effect l, with result type 𝜎 and effect 𝜖 . For clarity

of presentation we do not maintain an explicit kind environment for type variables; instead, as a

well-formedness condition, we assume that all occurrences of a type variable 𝛼 always have the

same kind 𝜅 (subject to alpha-renaming).
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Most rules are standard. Rule val can take in any effect. In rule abs, the effect annotation from the

lambda is passed to the body derivation, and the rule produces type 𝜎1→ 𝜖 𝜎2, where 𝜖 indicates

the effect that may be performed by the lambda body. In rule app, we require three effects to match:

the effect 𝜖 in the function 𝜎1→ 𝜖 𝜎2, the effect 𝜖 of e1 and of e2. The rules tapp and tabs handle

type application- and abstraction and are mostly standard except that type abstraction requires the

kind is not lab: this ensures that lab types are always a constant (l) which ensures that unification

for row equivalence is decidable [Leijen 2005].

Performing an operation introduces effects. In rule perform, perform op 𝜖 𝜎 first gets the type

of the operation from Σ(l), and adds l to the context effect 𝜖 , generating ⟨l | 𝜖⟩. Dually, handling
eliminates effects. In rule handler, given a handler h for l, the rule takes an action with effect ⟨l | 𝜖⟩,
and produces the result effect 𝜖 . Rule prompt is similar, but directly takes an expression e of effect
⟨l | 𝜖⟩. Rule ops types a handler, where we assume {op

1
, . . ., opn} = Σ(l). Note that all operation

implementations must have the same effect (𝜖) and type result (𝜎).

Rule yield is more subtle. Recall that the operational rule (perform) (in Figure 1) turns perform
into yield, So we expect the result type of yield to match that of perform. Note that the result type

of perform is the same as the argument type of the resumption k, and the type of the resumption k
itself is the argument type of f in yield m f . Therefore, in rule yield, we directly get the result type

from the type of f . To be more precise, we could also set the result effect of yield to match that of

perform. But since yield is an internal frame, the current form is sufficient for type soundness.

As an aside, since markers m are only part of the internal frames, we do not need to type them

explicitly here. However, we could give them types as marker 𝜖 r where 𝜖 and r are the effect

context and answer type of the handler that created the marker. In contrast to shift-reset, this makes

it possible to type multi-prompt delimited control in the simply typed lambda calculus since the

marker gives the answer type (and effect context) explicitly when yielding (while shift-reset needs

a type system with explicit answer types [Asai and Kameyama 2007; Danvy and Filinski 1989]). As

we see in Section 4 we can type prompt and yield for an effect l as:

promptl : ∀𝜇 r . marker 𝜇 r → hndl 𝜇 r → (() → ⟨l | 𝜇⟩ r) → 𝜇 r
yieldl : ∀𝜇 𝜇 ′ 𝛽 r . marker 𝜇 r → ((𝛽 → 𝜇 r) → 𝜇 r) → ⟨l | 𝜇 ′⟩ 𝛽

3.1.4 Correctness, Preservation and Progress. In rule (perform), we refer tow as the current evidence

vector, and we select out the handler from the evidence vector (instead of searching for it in the

evaluation context). This means that for the correctness of evidence passing semantics, the current

evidence vector w must correspond exactly to the actual handlers in the dynamic evaluation context –
so that the handler selected from the evidence vector is indeed exactly the innermost handler that

would be found with the original semantics of algebraic effects.

We use the notation ⌈E⌉ to extract all evidence from an evaluation context E. Specifically, if E is

F0 • prompt m1 h1 • F1 • . . . • prompt mn hn • Fn, where each hi is a handler for li , we have
⌈E⌉ = ⟨⟨ln : (mn, hn, _) | . . . | l1 : (m1, h1, _)⟩⟩ (we ignore the third component as it is not used). In

order to prove correctness, we show that a ↦−→ step can be reasoned in terms of a −→ step, where

for a w ⊢ −→ step, the evidence vector is the original evidence vector extended by all evidence

from the evaluation context:

Lemma 1. (Inversion of ↦−→). If w ⊢ e1 ↦−→ e2, then either

• e1 = E[e′
1
], e2 = E[e′

2
], and e′

1
−→ e′

2
; or

• e1 = E[e′
1
], e2 = E[e′

2
], and ⟨⟨⌈E⌉ | w⟩⟩ ⊢ e′

1
−→ e′

2
.

Based on Lemma 1, we can now show that the marker m and the handler h found by evidence-

passing semantics is indeed the innermost handler found dynamically from the evaluation context.

The following theorem establishes the correctness of evidence passing semantics.
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Expression e ::= . . . | under𝜖,𝜖 l e
Evaluation context E ::= . . . | under𝜖,𝜖 l E

(performt) w ⊢ perform op 𝜖0 𝜎 v −→ (Λ𝛼. 𝜆 ⟨l |𝜖0⟩x :𝜎1. under𝜖0,𝜖 l e) 𝜎 v
with (m, h,w ′) = w.l

(op ↦→ Λ𝛼. 𝜆𝜖x :𝜎1. k :𝜎2→ 𝜖 𝜎. k e) ∈ h ∧ k ̸∈ fv(e)
(underv) under𝜖0,𝜖 l v −→ v

w ′ ⊢ e ↦−→ e′ (m, h,w ′) = w.l

w ⊢ F[under𝜖0,𝜖 l e] ↦−→ F[under𝜖0,𝜖 l e′]
(underw)

Γ ⊢ e : 𝜎 | 𝜖
Γ ⊢ under𝜖0,𝜖 l e : 𝜎 | ⟨l | 𝜖0⟩

under

Fig. 3. Tail resumptive operations

Theorem 1. (Evidence corresponds to the evaluation context).
If ⟨⟨⟩⟩ ⊢ E[perform opl 𝜎 v] ↦−→ E[yield m (𝜆k. f 𝜎 v k)], then ⌈E⌉ .l = (m, h, _) , and (op ↦→ f ) ∈ h.
Preservation and progress do not hold immediately for our system; instead we need to consider

both prompt and yield as strictly internal frames that cannot be written directly by the programmer

(and only occur during evaluation). For example, if we can write yield m ourselves, we can use an

arbitrary m that does not match with any prompt in the context (and thus lose progress); similarly,

we can write a yield m f where the result type of f does not match the type expected by the prompt

m in the context (and lose preservation).

By treating both prompt and yield as strictly internal frames we can ensure by construction

that the previous problematic examples cannot occur, and can prove progress and preservation. In

particular, we use a similar definition as the handle-safe definition from [Xie et al. 2020]:

Definition 1. (Internal expressions). An internal-safe expression is a well-typed closed expression

that either (1) contains no internal construct; or (2) is itself reduced from an internal-safe expression.

Internal-safe expressions maintain two important invariants: (1) each prompt owns a unique m
generated at rule (handler); and (2) when perform generates yield m in (perform), it has found the

handler with the right type (and therefore, yield m will find the right prompt m in rule (prompt)).
We prove that internal-safe System Fpw enjoys preservation and progress.

Theorem 2. (Preservation of Internal-safe System Fpw). If∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-safe,
and ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.
The progress theorem is more tricky, as perform does not find the handler from the evaluation

context but instead from the evidence vector. Fortunately, from Lemma 1, we can show that the

handler found from the evidence vector is always available in the evaluation context.

Theorem 3. (Progress of Internal-safe System Fpw). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-safe,
then either e1 is a value, or ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2.

We can further prove that markers cannot be duplicated in the evaluation context.

Theorem 4. (Uniqueness of Handlers for Internal-safe System Fpw). For any internal-safe Fpw

expression prompt m1 h1 (E2 [prompt m2 h2 e]), we have m1 ≠ m2.

3.2 Tail-Resumptive Optimization
With evidence passing semantics, we are now ready to formalize the tail-resumptive optimization,

which is given in Figure 3. We extend the definition of expressions with under𝜖,𝜖 l e, and the

definition of evaluation contexts with under𝜖,𝜖 l E.
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3.2.1 Operational Semantics. Rule (performt) is the key to apply the tail-resumptive optimization.

First, it gets the handler h from the evidence vector as before. But it then detects that the operation

implementation (Λ𝛼. 𝜆𝜖x :𝜎1. 𝜆.k :𝜎2→ 𝜖𝜎. k e) is tail-resumptive (with k ̸∈ fv(e)), and so instead

of yielding up, it generates under𝜖0,𝜖 l e, which directly evaluates e in-place with the type arguments

𝜎 and value argument v. When the expression evaluates to a value, the value is propagated through

the under frame (rule (underv)).
Importantly, under needs to modify the evidence vector, so that operations happening after it

can find the right handler. In rule (underw), given the current evidence vector w, under first finds
the innermost evidence for l in the evidence vector, i.e., (m, h, w ′), and then passes the evidence

vector w ′, under which h is defined, to e. In other words, under skips the whole evidence fragment

between h to itself, which should not be accessible to e.

3.2.2 Typing. Rule under types an under𝜖0,𝜖 l e expression. Note that the effect 𝜖 corresponds to
the effect of e, while under itself produces ⟨l | 𝜖0⟩. As with yield, in a more refined system, we can

further state that 𝜖0 contains 𝜖 (as when generated in (performt)), but as under is internal, the
current typing rule is sufficient for establishing soundness.

3.2.3 Correctness, Preservation and Progress. In what sense is the tail-resumptive optimization

correct? Only if the optimized expression can produce an equivalent result as of the original

expression. However, the equivalence is not so obvious. To illustrate the subtlety, consider evaluating

the expression (prompt m h • E • perform op 𝜎 v) under the evidence vector w. Assume that

the op operation is handled by prompt m h, where (op ↦→ Λ𝛼. 𝜆x k. k e) ∈ h with k ̸∈ fv(e), i.e.,
the implementation is tail-resumptive. If we evaluate the expression without tail-resumptive

optimization, we get (for clarify we omit w in the derivation):

prompt m h • E • perform op 𝜖0 𝜎 v
↦−→ prompt m h • E • yield m (𝜆k. (Λ𝛼. 𝜆x k. k e) 𝜎 v k)
↦−→∗ (Λ𝛼. 𝜆x k. k e) 𝜎 v (𝜆x . prompt m h E[x])
↦−→∗ (𝜆x . prompt m h E[x]) e[𝛼 :=𝜎, x:=v]
while with tail optimization we end up with:

prompt m h • E • perform opl 𝜖0 𝜎 v
↦−→ prompt m h • E • (Λ𝛼. 𝜆x . under𝜖0,𝜖 l • e) [𝜎] v
↦−→∗ prompt m h • E • under𝜖0,𝜖 l • e[𝛼 :=𝜎, x:=v]
The two expressions are now quite different. Nevertheless, intuitively these two result expressions

are equivalent: they both first evaluate e[𝛼 :=𝜎, x:=v], and then pass the result to prompt m h E, via
beta-reduction and via propagation through under, respectively. The situation is a bit more tricky

though as e[𝛼 :=𝜎, x:=v] may perform an operation. However, even in that case, the operation will

find the same handler: in the first case, it is obvious that the evidence vector passed to e[𝛼 :=𝜎, x:=v]
is w; in the second case, w is first extended by evidence from prompt m h • E, but then under𝜖 l
changes the evidence vector back to w! To capture the observation, we formalize an equivalent

relation e1 � e2 between expressions (and evaluation contexts respectively) where e1 has no under,
and e2 may have under. The relation � is mostly structural, up to renaming of fresh markers, with

the following rule:

e1 � e2 E1 � E2 l ̸∈ bl(E1) ∅ ⊢ops h : 𝜎 | l | 𝜖
(𝜆x . prompt m h E1 [x]) e1 � prompt m h • E2 • under𝜖0,𝜖 l e2

We can prove that evaluation preserves the equivalent relation, except that expressions need to take

several reduction steps to become equivalent again, as evaluating prompt under the two semantics

takes different number of steps to reach the desired equivalent form.
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Expressions e ::= v | e e | e 𝜎 | prompt m h e | yield m v v

(app
1
) v □ • yield m f k −→ yield m f (𝜆x . v (k x))

(app
2
) □ e • yield m f k −→ yield m f (𝜆x . (k x) e)

(under) under l □ • yield m f k −→ yield m f (𝜆x . under l (k x))
(prompt

1
) prompt m h □ • yield m f k −→ f (𝜆x . prompt m h (k x))

(prompt
2
) prompt n h □ • yield m f k −→ yield m f (𝜆x . prompt n h (k x)) iff n ≠ m

(perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆k. f 𝜎 v k) (𝜆x . x)
with (m, h, _) = w.l ∧ (op ↦→ f ) ∈ h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

Lemma 2. (Evaluation Preserves � ). Given two closed internal-safe expressions ∅ ⊢ e1 : 𝜎 | ⟨⟩
and ∅ ⊢ e2 : 𝜎 | ⟨⟩, if e1 � e2, then either e1 and e2 are values, or there exist e′

1
, e′

2
such that

⟨⟨⟩⟩ ⊢ e1 ↦−→+ e′1, ⟨⟨⟩⟩ ⊢ e2 ↦−→+ e′2, and e′
1
� e′

2
.

Based on Lemma 2, we show that the optimized and unoptimized expressions are contextual
equivalent, with the intuition that we cannot tell them apart in any context.

Definition 2. (Contextual Equivalence).
e1 �ctx e2 ≜ ∅ ⊢ e1 : 𝜎 | 𝜖 ∧∅ ⊢ e2 : 𝜎 | 𝜖

∧∀C. ∅ ⊢ C : (𝜎 | 𝜖) → (Int | ⟨⟩) =⇒ (∀n. C[e1] ↦−→∗ n ⇐⇒ C[e2] ↦−→∗ n)
where C is the standard definition of a program context that is under-free, and C[e1] is evalu-
ated under the original semantics while C[e2] is with tail-resumptive optimization. The notation

∅ ⊢ C : (𝜎1 | 𝜖1) → (𝜎2 | 𝜖2) type-checks an program context, so that if∅ ⊢ e : 𝜎1 | 𝜖1, we have
∅ ⊢ C[e] : 𝜎2 | 𝜖2.
Theorem 5. (Tail-resumptive Optimization is Sound). If ∅ ⊢ e : 𝜎 | 𝜖 , then e �ctx e.

The theorem may seem trivial, but given that �ctx uses different evaluation strategies for the left

expression and the right one, the theorem states exactly what we want: starting from the same

expression e, evaluating without and with tail-resumptive optimization produces the same result.

We have also proved that Theorem 2 (Preservation) and Theorem 3 (Progress) remain valid for

internal-safe System Fpw extended with under.

4 TRANSLATION TO POLYMORPHIC LAMBDA CALCULUS
In order to compile to standard lambda calculus from our evidence passing effect handler calculus,

we first need to ensure that all transitions are local and no longer manipulate evaluation contexts

explicitly. The only operation that it is non-local with evidence passing semantics is the yield. As
discussed in Section 2.6 we can make this local by bubbling up the yields step-by-step through the

context while constructing a resumption.

4.1 Bubbling Yields
We briefly introduce System Fpb (Figure 4), which extends the semantics of Fpw where yield builds

the resumption locally and bubbles up to its corresponding prompt frame. In this section, we focus

on the dynamic semantics of System Fpb, with its full typed formalization and preservation and

progress theorems given in Appendix the technical report [Xie and Leijen 2021a].

First, expressions now include a new form of yielding expression yield m v v that takes an extra

argument: the first v is a function that will be applied to the resumption (like before), while the

second v is the current resumption that is extended step-by-step while bubbling up. We replace the

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
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(perform) builds the continuation and initial resumption, which is then bubbled up by the other

rules. In (perform) the yield now gets an extra argument (𝜆x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as

yield bubbles up through every evaluation frame, as in rule (app
1
), (app

2
) and (prompt

2
). In rule

(app
1
), the frame v □ is added to the current partially built resumption k, generating (𝜆x . v (k x)).

Rule (app
2
) is similar. Rule (prompt

2
) compares markers and finds that n ≠ m and adds the prompt

frame to the resumption. The yield keeps bubbling up until it finds its matching handler in rule

(prompt
1
), where we finally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these

semantics using a multi-prompt delimited control monad, where each algebraic effect specific

construct can be implemented directly as a regular function. In this section, we first establish

the multi-prompt delimited control monad and then discuss the type directed translation from

System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to

implement delimited control as a monad. For better readability, throughout this section we use

Haskell-like syntax. First, we define our monad Mon as:

type Mon 𝜇 𝛼 = Evv 𝜇→ Ctl 𝜇 𝛼

The evidence-passing semantics is established by taking an argument of type Evv 𝜇, which corre-

sponds to the current evidence vector for an effect 𝜇, and returning in the control monad Ctl. The
control monad is defined as

4
:

data Ctl 𝜇 𝛼 =

| Pure : 𝛼 → Ctl 𝜇 𝛼
| Yield :∀𝛽 𝜇 ′ r . Marker 𝜇 ′ r → ((𝛽 →Mon 𝜇 ′ r) →Mon 𝜇 ′ r) → (𝛽 →Mon 𝜇 𝛼) → Ctl 𝜇 𝛼

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding

to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to

type equality. When binding a yield, the resumption keeps being extended:

(f ◦ g) x = f (g x) (function composition)

(f ★ g) x = g x ▷ f (Kleisli composition)

e ▷ g = 𝜆w. case e w of Pure x → g x w (monadic bind)

Yield m f k→ Yield m f (g ★ k) ((app
1
), (app

2
) Fig. 4, app Fig. 5)

With the multi-prompt monad, we can now define the monadic translation of types from System

Fpb, where all effectful functions are made monadic:

⌊∀𝛼𝜅 . 𝜎⌋ = ∀𝛼𝜅 . ⌊𝜎⌋ ⌊𝜎1→ 𝜖 𝜎2⌋ = ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎2⌋
⌊𝛼⌋ = 𝛼 ⌊c𝜅 𝜎1 . . . 𝜎n⌋ = c𝜅 ⌊𝜎1⌋ . . . ⌊𝜎n⌋

We then implement prompt as a family of promptl functions for each effect l:

promptl : ∀𝜇 𝛼. Marker 𝜇 𝛼 → Hndl 𝜇 𝛼 →Mon ⟨l | 𝜇⟩ 𝛼 →Mon 𝜇 𝛼

promptl m h e = 𝜆w. case e ⟨⟨l : (m, h,w) | w⟩⟩ of
Pure x → Pure x ((promptv) in Fig. 1)

Yield m′ f k | m ≠ m′→ Yield m′ f (promptl m h ◦ k) ((prompt
2
) in Fig. 4)

Yield m′ f k | m = m′→ f (promptl m h ◦ k) w ((prompt
1
) in Fig. 4)

4
This monad is used exactly in the Mp.Eff library [Xie and Leijen 2021b], but the Ctl is different from that of Ev.Eff [Xie

et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.Eff these return in Ctl (again
because in EPT the evidence vector is statically determined).
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Note how the evidence vector is passed as an explicit argument in the monad. The Pure case returns
the value as is. For Yield, if it yields to another prompt, we keep building the resumption. In the

third case, Yield meets the target prompt and we apply f to the built-up resumption (composed

with promptl m h as we use deep resumptions). Note that to type check this case, the equality of the

markers m = m′ implies that 𝜇 = 𝜇 ′ and 𝛼 = r (as in the definition of Yield). For example, this

can be encoded using explicit equality witnesses [Baars and Swierstra 2002] or equality constraints

in Haskell [Sulzmann et al. 2007; Xie and Leijen 2021b].

The handler function generates prompt with a fresh marker created by a utility function freshm.

handler l : ∀𝜇 𝛼. Hndl 𝜇 𝛼 → (() →Mon ⟨l | 𝜇⟩ 𝛼) →Mon 𝜇 𝛼

handler l h f = freshm (𝜆m→ promptl m h (f ()) ((handler) in Fig. 1)

The type of a handlerHndl is generated for every effect signature l : { op
1
: ∀𝛼1 . 𝜎1→ 𝜎 ′

1
, . . ., opn :

∀𝛼n . 𝜎n→ 𝜎 ′n } ∈ Σ and is a record of operation definitions:

data Hndl 𝜇 r = Hndl (∀𝛼1. Op ⌊𝜎1⌋ ⌊𝜎 ′1⌋ 𝜇 r) . . . (∀𝛼n . Op ⌊𝜎n⌋ ⌊𝜎 ′n⌋ 𝜇 r)
together with a selector for each operation opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l):
selectopi : ∀𝛼 𝜇 r . Hndl 𝜇 r → Op ⌊𝜎1⌋ ⌊𝜎2⌋ 𝜇 r
selectopi (Hndl op

1
. . . opn) = opi

where the Op 𝛼 𝛽 𝜇 r type represents operations from 𝛼 to 𝛽 defined in a handler with effect 𝜇 and

result type r (the answer type). For example for a reader effect we have:

data Hndread 𝜇 r = Hndread (Op () int 𝜇 r)
selectask (Hndread ask) = ask
For operations we distinguish between tail-resumptive operation implementations and normal

implementations in order to do the tail-resumptive optimization:

data Op 𝛼 𝛽 𝜇 r = Tail : (𝛼 →Mon 𝜇 𝛽) → Op 𝛼 𝛽 𝜇 r
| Normal : (𝛼 →Mon 𝜇 ((𝛽 →Mon 𝜇 r) →Mon 𝜇 r)) → Op 𝛼 𝛽 𝜇 r

We can now perform an operation by getting the handler from the evidence vector, and selecting

the right operation from the handler record (e.g. ask). Depending on the operation constructor, we

use under l for tail-resumptive operations or otherwise generate a Yield.

performl
: ∀𝜇 𝛼 𝛽. (∀𝜇 ′ r . Hndl 𝜇 ′ r → Op 𝛼 𝛽 𝜇 ′ r) → 𝛼 →Mon ⟨l | 𝜇⟩ 𝛽

performl select x = 𝜆w : Evv ⟨l | 𝜇⟩. let (m, h,w ′) = w.l in
case select h of Tail f → under l m w ′ (f x) ((performt) in Fig. 3)

Normal f→ Yield m (𝜆y. f x ▷ (𝜆g. g y)) (𝜆x w. Pure x) ((perform) in Fig. 4)

Finally, under can be implemented with two mutually recursive definitions:

under l : ∀𝜇 𝛽 𝜇 ′ r . Marker 𝜇 ′ r → Evv 𝜇 ′→Mon 𝜇 ′ 𝛽 →Mon 𝜇 𝛽

underkl : ∀𝜇 𝛽 𝜇 ′ r . Marker 𝜇 ′ r → (𝛽 →Mon 𝜇 ′ r) → 𝛽 →Mon 𝜇 r
The under function runs the action e under another evidence vector w ′, and ensures that any

resumption is itself continued under the right evidence through underk:

under l m w ′ e = 𝜆w : Evv 𝜇. case e w ′ of ((underw) in Fig. 3)

Pure x → Pure x ((underv) in Fig. 3)

Yield n f k→ Yield n f (underkl m k) ((under) in Fig. 4)
Note that it is easy to make a mistake here: in the Yield case, a well-typed (!) but semantically

wrong implementation of under l is to return Yield n f (𝜆x . under l m w ′ (k x)) – as described in

Section 2.9.2 this wrongly fixes the evidence vector to w ′. Instead, we need to use the underk
function which re-finds the correct evidence vector w ′ from the current evidence vector w to
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val

Γ ⊢val v : 𝜎 ⇝ v ′

Γ ⊢ v : 𝜎 | 𝜖 ⇝ 𝜆w : Evv 𝜖. Pure 𝜖 ⌊𝜎⌋ v ′

app

Γ ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 ⇝ e′
1

Γ ⊢ e2 : 𝜎1 | 𝜖 ⇝ e′
2

Γ ⊢ e1 e2 : 𝜎 | 𝜖 ⇝ e′
1
▷ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . e′

2
▷ f )

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)
Γ ⊢val perform op 𝜖 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎]

⇝ performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r)

perform

Fig. 5. Monadic translation of Fpb (excerpt).

resume under:

underkl m k x = 𝜆w : Evv 𝜇. let (m′, h,w ′ : evv 𝜖) = w.l in
if (m = m′) then under m w ′ (k x) w ((underw) in Fig. 3)

The marker is passed to underl and underkl in order to get the type equality from m = m′ (which
should always hold for internal-safe expressions).

4.3 Monadic Translation
Using the multi-prompt monad definition, we can define a type-directed translation of System Fpb

into a polymorphic lambda calculus (see Appendix the technical report [Xie and Leijen 2021a]).

The translation takes the form Γ ⊢ e : 𝜎 | 𝜖 ⇝ e′ , where under Γ, the expression e with type

𝜎 and effect 𝜖 is translated to e′. Based on the multi-prompt monad, the translation is mostly

straightforward where each construct translates directly to its corresponding function: prompt
translates to prompt, handler translates to handler , etc. Figure 5 shows an excerpt of the translation

rules, while the full translation is shown in Appendix the technical report [Xie and Leijen 2021a].

During translation, we have made type applications explicit. Rule val simply wraps the value

translation inside Pure. Rule app first evaluates e′
1
, binds the result to f , and then evaluates e′

2

and passes the result to f . If any of the expressions evaluates to Yield, the monadic binding (▷)
will bubble it up (according to the rules (app

1
) and (app

2
) in Figure 4). Rule perform shows how

perform is translated using our monadic implementation of performl
and selectop.

We prove that our translation is sound, where we use the notation ⊢F for the typing judgment in

the target polymorphic lambda calculus, whose full definition can be found in the appendix.

Theorem 6. (Monadic Translation is Sound). If∅ ⊢ e : 𝜎 | ⟨⟩ ⇝ e′, then∅ ⊢F e′ : Mon ⟨⟩ ⌊𝜎⌋.

4.4 Semantics Preserving
We now show that our sequence of refinements preserve the original semantics of polymorphic

algebraic effect handlers in System F𝜖 [Xie et al. 2020]. In particular, consider a user-provided

expression e in F𝜖 . As our initial multi-prompt delimited control semantics shares the same source
language (i.e., without internal frames) with System F𝜖 , we have two possible dynamic semantics

for e: (1) the original direct semantics defined in System F𝜖 ; and (2) the multi-prompt delimited

control semantics described in 2.3. We can prove that these two semantics always give the same

result; that is, the multi-prompt delimited control preserves the original algebraic effects semantics.

In fact, each of our further refinement steps is also semantics preserving: (1) the evidence passing

semantics preserves the multi-prompt delimited control semantics; (2) the bubbling semantics Fpb

preserves the evidence passing semantics; and (3) the monadic translation semantics preserves the

bubbling semantics. Detailed lemma statements and their proofs are included in in the technical

report [Xie and Leijen 2021a].
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Building on top of the semantics preserving lemmas of each refinement step, we can show that

the final monadic translation preserves the semantics of System F𝜖 . Specifically, for a user-provided
total expression e of type int, if e evaluates to n in System F𝜖 , then its monadic translation evaluates

to n in the polymorphic lambda calculus; we use e ⇑ to denote the case when e diverges.

Theorem7. (Semantics Preserving). Given∅ ⊢ e : int | ⟨⟩ ⇝ e′, if e ↦−→∗ n in F𝜖 , then e′ ⟨⟨⟩⟩ ↦−→∗
Pure ⟨⟩ int n in the polymorphic lambda calculus, and if e ⇑ in F𝜖 , then e′ ⟨⟨⟩⟩ ⇑ in the polymorphic

lambda calculus.

5 BENCHMARKS
In this section we benchmark five implementations of effect handlers [Leijen 2021].

(1) Koka: We have a full implementation of our techniques in the Koka compiler [Leijen 2020]

which compiles via standard C code. This uses generalized evidence passing with canonical

evidence vectors, short-cut resumptions, bind-inlining and join-point sharing.

(2) multi-core OCaml: This is a fork of standard OCaml with the current state-of-the-art direct
implementation of effect handlers based on segmented stacks [Sivaramakrishnan et al. 2021]

(but without direct support for multi-shot resumptions).

(3) Mp.Eff : This is our implementation of generalized evidence passing effect handlers as

a monadic library in Haskell [Xie and Leijen 2021b]. The library uses insertion-ordered

evidence vectors and does not use short-cut resumptions.

(4) Ev.Eff : A Haskell monadic effect handler library by Xie and Leijen [2020] based on evidence

translation (and cannot handle non-scoped resumptions). They have shown that this library

performs very well with respect to other effect handler implementations [Kiselyov and

Ishii 2015; Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014] and monad

transformers.

(5) libhandler : a C library that implements effect handlers on top of the regular C stack and uses

longjmp to transfer control [Leijen 2017a]. This is a direct implementation where capturing-

and resuming is linear in the stack size as it copies and restores pieces of the C stack directly.

It uses the tail-resumptive optimization and insertion ordered “evidence” where it searches

through the handler frames on the stack.

Comparing across systems is always difficult as many parts differ – for example, Koka uses Perceus

compiler guided reference counting [Reinking et al. 2021] while multi-core OCaml and Haskell use a

generational tracing collector, Koka has few standard optimizations while both OCaml and Haskell

are sophisticated compilers with decades of development, etc. We selected current best-in-class

implementations that compile to native code
5
so execution times are somewhat comparable. As

such, the results are meant to establish if the effect handler compilation strategies described in this

paper are viable and can be competitive, but should not be interpreted as a measure of absolute

performance between systems and languages. Execution times are shown in Figure 6. The execution

times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu

20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe spe-

cific aspects of effect handling implementations with minimal other computation and allocation

overheads:

• counter shows how the most common tail-resumptive effects are handled;

• counter1 and counter10 emphasize the impact of nested handlers;

• mstate demonstrates the use of full first-class resumptions (captured under a lambda);

5
As opposed to using an interpreter, or using JavaScript as a target for example.
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Fig. 6. Execution time averaged over 10 runs

• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.

• counter . This benchmark implements a state effect using a mutable reference such that both

get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in

OCaml seem to perform similarly and the execution times are very close. The libhandler C

implementation is 1.5× faster than Koka – we believe this is because it does no allocation at

all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml

allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).

Moreover,Mp.Eff is about 4× slower as Koka, but Ev.Eff is 4× faster! This is because GHC is

able to fully inline the handler and operations and optimizes almost all effect handling code

away. When we remove the inline pragma on the state handler definition, the benchmark

takes about 2.02s which is more in line with the results seen in counter1 and counter10.
We also ran this benchmark with the tail-resumption optimization turned off; this causes

Koka to always allocate a resumption and take the slow path through the monadic bindings

making it 10× slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader effect handler in between.

This time Koka is 1.5× faster than OCaml: due to evidence passing, the execution times

of the tail-resumptive get and set operations are independent of any other handlers that

are in the context (as the handler is found at a constant offset in the canonical evidence

vectors). In contrast, multi-core OCaml always yields up one handler stack segment at a

time and thus each get and set operation needs to pass through the reader handler incurring

a runtime cost.

• counter10. Same as counter1 but now with 10 reader handlers under the state handler. Again

Koka execution is (almost) the same as for counter1 but we can see that all implementations

without tail-resumptive optimization or evidence-passing get slower with each added

handler due to the linear search at each operation call.
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The counter10 benchmark may seem artificial but we believe this pattern to be common in

practice. Many uses of effect handlers are to provide contextual state and environments; for

example, a type checker may have a current substitution, the type environment, a unique

identifier generator, etc. Such nested handlers may thus be quite common in general.

• mstate. This is the same as counter but now implements the state effect in a monadic way

as shown in Section 2.1.1. This means that the operations are no longer tail-resumptive

since the resumption is captured under a lambda. To reduce the execution time, mstate
only performs 20M get and set operations (versus 200M in the tail-resumptive counter
benchmark). This is a worst-case for Koka as it needs to allocate a fresh resumption for each

operation call, and it is about 5× slower than multi-core OCaml here. Surprisingly, both

Mp.Eff and Ev.Eff are faster than Koka here – again, the small benchmark can be optimized

impressively well by GHC.

• nqueens. Calculates all solutions to the queens problem of size 12 using a choice effect to
elegantly express backtracking similar to the non-determinism example in Section 2.1.1.

Multiple resumptions are not directly supported in multi-core OCaml but we can use

Obj.clone_continuation to manually copy resumptions
6
. Here OCaml is about 5× slower

than Koka. We think that this is mostly due to the need to clone a resumption for all but

the last resume in OCaml while in Koka (and Haskell) the resumption function is shared

over multiple resumes.

• triple. Finds Pythogorean triples by using multi-shot resumptions for backtracking, and the

performance is therefore very similar to that of nqueens.
To better quantify the impact of each optimization individually, we also measured the performance

of Koka with various optimizations disabled: (1) Koka using insertion ordered evidence (Section 2.4),

(2) without fast path bind inlining (Section 2.7.1), (3) without short-cut resumptions (Section 2.6.1),

and (4) without tail-resumptive optimization (Section 2.5).

As we can see in Figure 6, insertion-order shows the high linear search overhead in counter1 and
counter10, while short-cut resumptions offer a modest 10% improvement in mstate and nqueens.
Bind-inlining speeds up the counter benchmarks by 25% but has less effect on more allocation

intensive benchmarks. Finally, tail-resumptive optimization speeds up the counter benchmarks by

10×. As we argued before, most operations in practice are tail-resumptive and we consider this an

important optimization.

Overall, the results look promising and show our compilation strategy can be competitive with

specialized runtime implementations. With respect to evidence translation versus evidence passing,

it seems evidence translation can have the advantage in performance: even though Mp.Eff and

Ev.Eff have very similar implementations, the generalized evidence passing library is about twice

as slow as the Ev.Eff library over our benchmarks. We believe this is partly caused by the more

static nature of evidence in Ev.Eff and which makes it more amenable to compiler optimizations.

6 RELATEDWORK
Throughout the paper, we compare with the most directly related work [Sivaramakrishnan et

al. 2021; Xie et al. 2020; Xie and Leijen 2020] inline. Here we briefly discuss other related work.

In contrast to the monadic translation, Hillerström et al. [2017] describe a CPS based translation

of effect handlers. Similar to bubbling and evidence passing, this avoids capturing the evaluation

context by making all continuations explicit. Forster et al. [2019] show how delimited control,

6
It works for our particular benchmark, but generally multiple resumptions do not work reliably (as currently implemented)

for two reasons: the optimizer is not aware of multiple resumptions and may generate invalid code when optimizing across

function calls (this is a problem for libhandler as well [Leijen 2017a]), and cloning a continuation does not compose with

other operations that may not clone their own continuation (leading to a runtime crash).
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monads, and effect handlers can all be expressed in terms of each other in an untyped setting.

However, their encoding of effect handlers in terms of shift-reset does not preserve typeability (due

to the lack of answer type polymorphism [Asai and Kameyama 2007; Danvy and Filinski 1989]).

In our work typing is preserved by using multi-prompt control with explicitly typed markers.

Kiselyov and Sivaramakrishnan [2017] present a direct embedding of effect handlers in OCaml

based on shift-reset (using the delimcc library), where they use an out-of-band technique [Kiselyov

et al. 2006] to work around the lack of answer type polymorphism. Kammar et al. [2013] also embed

effect handlers in OCaml using shift-reset, where they use a global mutable variable to hold the

current stack of handlers (which can be considered as the insertion-ordered evidence vector).

Capability passing [Brachthäuser et al. 2020; Schuster et al. 2020] is related to algebraic effect

handlers. It has the concept of handlers but each handler must be passed explicitly by name and

there is no search for the innermost handler when an operation is performed (but the handler

is an explicit argument). Schuster et al. [2020] show that capability based handlers can be effi-

ciently compiled using iterated CPS translation (however, the translation requires whole-program

monomorphisation). Generally, with capability passing, handler names are captured statically in a

resumption and, similar to evidence translation (EPT), one gets either stuck or the “wrong” results

for the examples in Section 2.9. Evidence passing avoids this problem by keeping the evidence

vector separate from general expressions and not capturing it as part of a resumption.

Zhang and Myers [2019] and Brachthäuser et al. [2020] (using capability passing as a target

calculus) develop “lexically scoped effect handlers”. It is argued that such handlers avoid accidental

capture of operations, and allow better modular reasoning for higher-order abstractions. However,

this approach deviates from the semantics of algebraic effect handlers as originally defined by Plotkin

and Pretnar [2013]. In particular, common source-to-source transformations are not always valid

in this setting. For example, inlining a lambda expression instead of passing it by argument may

change the semantics of an operation. In contrast to algebraic effect handlers there is also no

untyped dynamic semantics, and types are required to give semantics to a program.

Flatt and Dybvig [2020] extended Racket (and the Chez Scheme runtime) with support for

continuationmarks. These provide efficient access to key-valuemaps that are bound in the evaluation

context. As such, we can view these as a kind of built-in (tail-resumptive) state effect handler.

7 CONCLUSION
Generalized evidence passing is a promising technique for compiling effect handlers to standard

target platforms, and can offer competitive performance relative to specialized runtimes. Moreover,

our formalization explores the design space of implementation techniques and their trade-offs. We

hope our study will lead to further improvements of effect handlers implementations in the future.
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Expression e ::= v | e e | e 𝜎 | handle h e
Value v ::= x | 𝜆𝜖x :𝜎. e | Λ𝛼𝜅 . v

| handler h | perform op 𝜖 𝜎
Handler h ::= { opi ↦→ fi }

Type 𝜎 ::= 𝛼𝜅 | c𝜅 𝜎 | 𝜎 → 𝜖 𝜎 | ∀𝛼𝜅 . 𝜎
Effect row 𝜖 ::= ⟨⟩ | ⟨l | 𝜖⟩ | 𝛼eff

Kind 𝜅 ::= ∗ | 𝜅 → 𝜅 | lab | eff

Term context Γ ::= ∅ | Γ, x :𝜎
Effect context Σ ::= { li : sigli }
Effect sig. sigl ::= { opi : ∀𝛼

𝜅i
i . 𝜎i → 𝜎 ′i }

Evaluation ctx. E ::= □ | E e | v E | E 𝜎

| handle h E
F ::= □ | F e | v F | F 𝜎

(app) (𝜆𝜖x :𝜎. e) v −→ e[x:=v]
(tapp) (Λ𝛼𝜅 . v) 𝜎 −→ v [𝛼 :=𝜎]
(handler) handler h v −→ handle h (v ())
(return) handle h v −→ v
(perform) handle h E[perform op 𝜖0 𝜎 v] −→ f 𝜎 v (𝜆𝜖x :𝜎2 [𝛼 :=𝜎] . handle h E[x]) iff op ̸∈ bop(E)

∧ (op : (∀𝛼. 𝜎1→ 𝜎2) → f ) ∈ h : 𝜎 | l | 𝜖

e1 −→ e2
E[e1] ↦−→ E[e2]

(step)

Fig. 7. System F𝜖 : explicitly typed algebraic effect handlers.

APPENDICES
A BACKGROUND: POLYMORPHIC ALGEBRAIC EFFECT CALCULUS F𝜖

This section briefly introduces System F𝜖 [Xie et al. 2020], a polymorphic algebraic effect calculus,

which essentially extends the polymorphic lambda calculus with algebraic effects and row-based

effect types. The system is used for later transformation and optimization.

A.1 Syntax
Figure 7 defines the syntax of System F𝜖 . Expressions include algebraic effects specific expressions
handler h, perform op 𝜖 𝜎 , and handle h e.
The types 𝜎 include type variables 𝛼𝜅 of kind 𝜅, type constructors c𝜅 𝜎 where c𝜅 of kind 𝜅

is applied to the arguments 𝜎 , function types 𝜎 → 𝜖 𝜎 annotated with the effect 𝜖 that may be

performed when the function is applied, and polymorphic types ∀𝛼𝜅 . 𝜎 .
As before, types of kind eff are called effect rows and we write them as 𝜖 . Such row can be either

empty ⟨⟩ (i.e. the type constructor ⟨⟩eff) which denotes the total effect, an extension ⟨l | 𝜖⟩ (i.e. the
type constructor ⟨_ | _⟩lab → eff → eff

), which extends 𝜖 with effect label l (i.e. a type constructor
llab), or a type variable 𝛼eff

(often written as 𝜇).

A.2 Operational Semantics
The operational semantics of System F𝜖 is given at the bottom of Figure 7. Rule (app) is the
standard call-by-value beta reduction rule, and rule (tapp) is the standard type reduction rule.

We have seen rule (handler), (return), and (perform) at the beginning of Section 2.1. The main

difference here is that rule (perform) is explicitly typed. In particular, perform passes to the operation

implementation f the type arguments 𝜎 along with the value argument v and the resumption

(𝜆𝜖x :𝜎2 [𝛼 :=𝜎] . handle h E[x]), which is explicitly annotated with the type and effect annotation.

The notation (op : (∀𝛼. 𝜎1→ 𝜎2) → f ) ∈ h : 𝜎 | l | 𝜖 is a syntactic sugar for three conditions: (1)

(op→ f ) ∈ h, which gets the operation implementation f from h; (2) op : (∀𝛼. 𝜎1→ 𝜎2) ∈ Σ(l),
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Γ ⊢ e : 𝜎 | 𝜖 Γ ⊢val v : 𝜎 Γ ⊢ops h : 𝜎 | l | 𝜖

x :𝜎 ∈ Γ
Γ ⊢val x : 𝜎

var

Γ ⊢val v : 𝜎

Γ ⊢ v : 𝜎 | 𝜖
val

Γ, x :𝜎1 ⊢ e : 𝜎2 | 𝜖
Γ ⊢val 𝜆𝜖 x :𝜎1. e : 𝜎1→ 𝜖 𝜎2

abs

Γ ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 Γ ⊢ e2 : 𝜎1 | 𝜖
Γ ⊢ e1 e2 : 𝜎 | 𝜖

app

Γ ⊢val v : 𝜎 𝜅 ≠ lab 𝛼 ̸∈ ftv(Γ)
Γ ⊢val Λ𝛼𝜅 . v : ∀𝛼𝜅 . 𝜎

tabs

Γ ⊢ e : ∀𝛼𝜅 . 𝜎1 | 𝜖 ⊢wf 𝜎 : 𝜅

Γ ⊢ e 𝜎 : 𝜎1 [𝛼 :=𝜎] | 𝜖
tapp

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)
Γ ⊢val perform op 𝜖 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎]

perform

Γ ⊢ops h : 𝜎 | l | 𝜖
Γ ⊢val handler h : (() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎

handler

Γ ⊢ops h : 𝜎 | l | 𝜖 Γ ⊢ e : 𝜎 | ⟨l | 𝜖⟩
Γ ⊢ handle h e : 𝜎 | 𝜖

handle

opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) 𝛼 ̸∩ ftv(𝜖, 𝜎) Γ ⊢val fi : ∀𝛼. 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎)
Γ ⊢ops { op1→ f1, . . ., opn→ fn } : 𝜎 | l | 𝜖

ops

Fig. 8. Typing Rules for System F𝜖 .

which gets the type of the operation op from the global effect context Σ; and (3)∅ ⊢ops h : 𝜎 | l | 𝜖 .

A.3 Typing Rules
Figure 8 defines the typing rules for System F𝜖 .
Most rules are standard. In rule handler, given a handler h for l, the rule takes an action with

effect ⟨l | 𝜖⟩, and handles l, leaving effect 𝜖 . Rule handle is similar, but directly takes an expression

e of effect ⟨l | 𝜖⟩.

A.4 Preservation and Progress
Xie et al. [2020] have proved that System F𝜖 enjoys progress and preservation. Progress implies

that in any well-typed total expression, all operations are handled properly.

Theorem 8. (Progress). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ then either e1 is a value, or e1 ↦−→ e2.

Theorem 9. (Preservation). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

B MULTI-PROMPT
Figure 9 presents System Fp, which applies the multi-prompt semantics to algebraic effects.

B.1 Syntax
Expressions e include all expressions from System F𝜖 , except for handle, which is replaced by two

internal multi-prompt constructs, prompt m h e and yield m v. Similarly, the evaluation context

frame handle is replaced by prompt. Notably, prompt and yield both carry a marker: a marker

identifies a specific prompt, which can be used for searching as in yield. yield further carries a

value v, which is a continuation that waits for the resumption, as we will see in the operational

semantics rules.
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Expression e ::= v | e e | e 𝜎
| prompt m h e | yield m v

Evaluation context E ::= □ | E e | v E | prompt m h E

(a) Syntax

(handler) handler h v −→ prompt m h (v ()) with unique m
(promptv) prompt m h v −→ v
(prompt) prompt m h E[yield m f ] −→ f (𝜆𝜖x :𝜎2 . prompt m h E[x])

∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎

(perform) prompt m h E[perform op 𝜖0 𝜎 v] −→ prompt m h E[yield m (𝜆𝜖k :𝜎k . f 𝜎 v k)]
iff op ̸∈ bop(E)

(op : (∀𝛼. 𝜎1→ 𝜎2) → f ) ∈ h : 𝜎 | l | 𝜖
𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎

(b) Operational semantics

Γ ⊢ops h : 𝜎 | l | 𝜖 Γ ⊢ e : 𝜎 | ⟨l | 𝜖⟩
Γ ⊢ prompt m h e : 𝜎 | 𝜖

prompt

Γ ⊢val f : (𝜎 → 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′

Γ ⊢ yield m f : 𝜎 | 𝜖
yield

(c) Typing rules

Fig. 9. Fp: Explicitly typed with multi-prompt delimited control.

B.2 Operational Semantics
Figure 9b defines the operational semantics rules. In rule (handler), handler this time installs a

prompt m frame, with a fresh unique marker m, so that the marker can later be used to find the

specific prompt. As before, values are propagated through the prompt frame (rule (promptv)).
As this system models the multi-prompt semantics, we split performing an operation into two

parts: searching for a handler (rule (perform)), and capturing and restoring a resumption (rule

(prompt)). In rule (perform), perform finds the corresponding prompt. But instead of directly

capturing the resumption, the rule produces yield m, with a continuation (𝜆𝜖k :𝜎k . f 𝜎 v k), which,
when applied to the resumption k, applies the operation implementation f to the type arguments

𝜎 , value argument v and the resumption k. Then, in rule (prompt), yield captures the resumption

(𝜆𝜖x :𝜎2 . prompt m hE[x]), to which f is applied.

B.3 Typing Rules
Figure 9c gives the typing rules for the two multi-prompt constructs. Rule prompt is similar as rule

handle, which handles l from the effect ⟨l | 𝜖⟩. Rule yield is more subtle. Recall that the operational

rule (perform) (in Figure 9b) turns perform op 𝜖0𝜎 v into yield, so the type of yield should match

the result type of perform op 𝜖0 𝜎 v. According to the typing rule for perform, the result type of

perform op 𝜖0 𝜎 v is 𝜎2 [𝛼 :=𝜎] (as in rule (perform)), which is the argument type of the resumption

k. Thus in yield, we get the result type from the argument type of f ’s argument. To be more precise,

we could also set the result effect of yield to match that of perform op 𝜖0 𝜎 v. But since yield is an

internal frame, as we will see in the next section, the current form is sufficient for type soundness.
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Expressions e ::= . . . (non-yield expressions from Fp (Fig. 1))
| yield m v v (yield with bubbling)

(a) Expressions

(app
1
) v □ • yield m f k −→ yield m f (𝜆𝜖x :𝜎2. v (k x)) ∅ ⊢val k : 𝜎2→ 𝜖 𝜎

(app
2
) □ e • yield m f k −→ yield m f (𝜆𝜖x :𝜎2. (k x) e) ∅ ⊢val k : 𝜎2→ 𝜖 𝜎

(under) under𝜖0,𝜖 l □ • yield m f k −→ yield m f (𝜆𝜖0x :𝜎2. under𝜖0,𝜖 l (k x))
∅ ⊢val k : 𝜎2→ 𝜖 𝜎

(prompt
1
) prompt m h □ • yield m f k −→ f (𝜆𝜖x :𝜎2. prompt m h (k x)) ∅ ⊢val k : 𝜎2→ ⟨l | 𝜖⟩ 𝜎

(prompt
2
) prompt n h □ • yield m f k −→ yield m f (𝜆𝜖x :𝜎2. prompt n h (k x)) iff n ≠ m

∅ ⊢val k : 𝜎2→ ⟨l | 𝜖⟩ 𝜎

(perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆𝜖k :𝜎k . f 𝜎 v k) (𝜆 ⟨l |𝜖0⟩x :𝜎2 [𝛼 :=𝜎] . x)
with (m, h, _) = w.l ∧ (op→ f ) ∈ h

𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎

∅ ⊢ h : 𝜎 | l | 𝜖 (op :∀𝛼. 𝜎1→ 𝜎2) ∈ Σ(l)
(b) Operational Semantics

Γ ⊢val f : (𝜎2→ 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′ Γ ⊢val k : 𝜎2→ 𝜖 𝜎

Γ ⊢ yield m f k : 𝜎 | 𝜖
yieldb

(c) Typing rule

Fig. 10. Fpb: Multi-prompt with bubble semantics.

B.4 Preservation and Progress

Theorem 10. (Preservation of Internal-safe System Fp). If∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-safe,
and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

Theorem 11. (Progress of Internal-safe System Fp). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-safe,
then either e1 is a value, or e1 ↦−→ e2.

C TYPED BUBBLE SEMANTICS
Figure 10 gives the full typed formalization of the bubble semantics given in Section 4.1.

C.1 Typing
The rule yieldb type-checks the new yield form where the argument type 𝜎2 of k always matches

the expected operation result type 𝜎2 in f . The result type and effect of yield are the same as that of

k. Note how the result type and effect of the partially built resumption change during each bubbling

step in the operational semantics.

C.2 Preservation and Progress
Like before, we prove the preservation and the progress theorem of internal-safe System Fpb. The
main challenge in the proof is to show that when the continuation f is applied to the complete

resumption k, the type of k matches the argument type of f ; that is, at that moment, we have

𝜎 = 𝜎 ′ and 𝜖 = 𝜖 ′ (as in rule yieldb).
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Theorem 12. (Preservation of Internal-safe System Fpb). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-
safe, and ⟨⟨⟩⟩ | e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

Theorem 13. (Progress of Internal-safe System Fpb). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-safe,
then either e1 is a value, or ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2.

C.3 Monadic Translation
The full monadic translation is given in Figure 11.

The translation makes use of the following helper functions:

pure : ∀𝜇 𝛼. 𝛼 →Mon 𝜇 𝛼

pure x = 𝜆w : Evv 𝜇. Pure 𝜇 𝛼 x

yield : ∀𝜇 𝛼 𝛽 𝜇 ′ r . Marker 𝜇 ′ r → ((𝛽 →Mon 𝜇 ′ r) →Mon 𝜇 ′ r) → (𝛽 →Mon 𝜇 𝛼) →Mon 𝜇 𝛼

yield m clause k = 𝜆w : Evv 𝜇. Yield 𝜇 𝛼 𝛽 𝜇 ′ r m clause k

We assume the type for evidence is Ev, and we use let x : 𝜎 = e1 in e2 as the syntactic sugar for
(𝜆x : 𝜎. e2) e1.

D POLYMORPHIC LAMBDA CALCULUS
Figure 12 presents System Fv , an explicitly typed (higher kinded) polymorphic lambda calculus

with strict evaluation [Xie et al. 2020]. Types as in Figure 7 with no effects on the arrows.

E FULL RULES
E.1 Well-formed Types
The kinding rules for types are shown in Figure 13. The rules are standard mostly standard except

we do not allow type abstraction over effect labels – or otherwise equivalence between types cannot

be decided statically. The rules kind-total, kind-row, and kind-arrow are not strictly necessary

and can be derived from kind-app.

E.2 Evaluation Context Typing
The evaluation context typing rules is given in Figure 14.

E.3 Program Context Typing
The definition of the program context in System Fpw is defined as follows, with its typing rules

given in Figure 15. The notation ∅ ⊢ C : (𝜎 | 𝜖) → (Int | ⟨⟩) used in the paper can be expressed

as ∅ ⊢ C : 𝜎 → Int | ⟨⟩ and ⌈⌈E⌉⌉ = 𝜖 , where ⌈⌈C⌉⌉ gets all labels of the handlers in C.
Program ctx. C ::= □ | C e | e C | C 𝜎

| prompt m h C | yield m C
| 𝜆𝜖x :𝜎. C | Λ𝛼𝜅 . C

F PROOFS
F.1 System F𝜖

Here we show a list of lemmas of System F𝜖 from [Xie et al. 2020] that will be used in later proofs.

Most of the lemmas can be extended trivially to support the new forms.

Lemma 3. (Evaluation context typing). If ∅⊢ec E : 𝜎1→ 𝜎 | 𝜖 and ∅ ⊢ e : 𝜎1 | ⟨⌈⌈E⌉⌉ | 𝜖⟩, then
∅ ⊢ E[e] : 𝜎 | 𝜖 .
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Γ
↑
⊢ e
↑
Fpb

: 𝜎
↓
| 𝜖
↑
⇝ e′
↓
Fv

Γ
↑
⊢val v

↑
Fpb

: 𝜎
↓
⇝ v ′

↓
Fv

Γ
↑
⊢ops h

↑
Fpb

: 𝜎
↓
| l
↓
| 𝜖
↓
⇝ h′

↓
Fv

x :𝜎 ∈ Γ
Γ ⊢val x : 𝜎 ⇝ x

var

Γ ⊢val v : 𝜎 ⇝ v ′

Γ ⊢ v : 𝜎 | 𝜖 ⇝ pure 𝜖 ⌊𝜎⌋ v ′
val

Γ, x :𝜎1 ⊢ e : 𝜎2 | 𝜖 ⇝ e′

Γ ⊢val 𝜆𝜖 x :𝜎1 . e : 𝜎1→𝜖 𝜎2 ⇝ 𝜆x : ⌊𝜎1⌋ . e′
abs

Γ ⊢val v : 𝜎 ⇝ v ′ 𝜅 ≠ lab

Γ ⊢val Λ𝛼𝜅 . v : ∀𝛼𝜅 . 𝜎 ⇝ Λ𝛼𝜅 . v ′
tabs

Γ ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 ⇝ e′
1

Γ ⊢ e2 : 𝜎1 | 𝜖 ⇝ e′
2

Γ ⊢ e1 e2 : 𝜎 | 𝜖 ⇝ e′
1
▷ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . e′

2
▷ f )

app

Γ ⊢ e : ∀𝛼𝜅 . 𝜎1 | 𝜖 ⇝ e′ ⊢wf 𝜎 : 𝜅

Γ ⊢ e 𝜎 : 𝜎1 [𝛼 :=𝜎] | 𝜖 ⇝ e′ ▷ (𝜆x : ⌊∀𝛼𝜅 . 𝜎1⌋ . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋))
tapp

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)
Γ ⊢val perform op 𝜖 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎]

⇝ performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r)

perform

opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) 𝛼 ̸∩ ftv(𝜖 𝜎)
Γ ⊢val fi : ∀𝛼. 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎) ⇝ f ′i

Γ ⊢ops { op1→ f1, . . ., opn→ fn } : 𝜎 | l | 𝜖 ⇝ Hndl (∀𝛼. Normal ⌊𝜎1⌋ ⌊𝜎2⌋ 𝜖 ⌊𝜎⌋ f ′i ) }
ops

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′

Γ ⊢val handler h : (() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎 ⇝ handler l 𝜖 ⌊𝜎⌋ h′
handler

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′ Γ ⊢ e : 𝜎 | ⟨l | 𝜖⟩ ⇝ e′

Γ ⊢ prompt m h e : 𝜎 | 𝜖 ⇝ promptl 𝜖 ⌊𝜎⌋ m h′ e′
prompt

Γ ⊢val f : (𝜎2→ 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′ ⇝ f ′ Γ ⊢val k : 𝜎2→ 𝜖 𝜎 ⇝ k′

Γ ⊢ yield m f k : 𝜎 | 𝜖 ⇝ yield 𝜖 ⌊𝜎⌋ ⌊𝜎2⌋ 𝜖 ′ ⌊𝜎 ′⌋ m f ′ k′
yieldb

Γ ⊢ e : 𝜎 | 𝜖 ⇝ e′

Γ ⊢ under𝜖0,𝜖 l e : 𝜎 | ⟨l | 𝜖0⟩ ⇝ 𝜆w : Evv ⟨l | 𝜖0⟩. let (m, _, w ′) : Ev 𝜖 r = w.l
in under l ⟨l | 𝜖0⟩ ⌊𝜎⌋ 𝜖 r m w ′ e′ w

under

Fig. 11. Monadic translation of Fpb.

Lemma 4. (Effect corresponds to the evaluation context). If ∅ ⊢ E[e] : 𝜎 | 𝜖 then there exists 𝜎1
such that ∅ ⊢ec E : 𝜎1→ 𝜎 | 𝜖 , and ∅ ⊢ e : 𝜎1 | ⟨⌈⌈E⌉⌉ | 𝜖⟩ .
The following two lemmas are corollaries.

Lemma 5. (Well typed operations are handled). If ∅ ⊢ E[perform op 𝜎 v] : 𝜎 | ⟨⟩ then E has the

form E1 • handle h • E2 with op ̸∈ bop(E2) and op→ f ∈ h.
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Expression e ::= v | e e | e[𝜎]
Values v ::= x | 𝜆x :𝜎. e | Λ𝛼𝜅 . v

Evaluation context F ::= □ | F e | v F | F [𝜎]
E ::= F

(fapp) (𝜆𝜖x :𝜎. e) v −→ e[x:=v]
(ftapp) (Λ𝛼𝜅 . v) [𝜎] −→ v [𝛼 :=𝜎]

x : 𝜎 ∈ Γ
Γ ⊢F x : 𝜎

fvar

Γ ⊢F v : 𝜎

Γ ⊢F Λ𝛼𝜅 . v : ∀𝛼𝜅 . 𝜎
ftabs

Γ, x :𝜎1 ⊢F e : 𝜎2

Γ ⊢F 𝜆x :𝜎1 . e : 𝜎1→ 𝜎2
fabs

Γ ⊢F e1 : 𝜎1→ 𝜎 Γ ⊢ e2 : 𝜎

Γ ⊢F e1 e2 : 𝜎
fapp

Γ ⊢F e : ∀𝛼𝜅 . 𝜎1 ⊢wf 𝜎 : 𝜅

Γ ⊢F e[𝜎] : 𝜎1 [𝛼 :=𝜎]
ftapp

Fig. 12. System Fv : explicitly typed (higher kinded) polymorphic lambda calculus.

⊢wf 𝛼𝜅 : 𝜅
kind-var

⊢wf c𝜅 : 𝜅
kind-con

⊢wf ⟨⟩ : eff
kind-total

⊢wf 𝜎 : ∗ 𝜅 ≠ lab

⊢wf ∀𝛼𝜅 . 𝜎 : ∗
kind-qant

⊢wf 𝜎1 : 𝜅2→ 𝜅 ⊢wf 𝜎2 : 𝜅2

⊢wf 𝜎1 𝜎2 : 𝜅
kind-app

⊢wf 𝜖 : eff ⊢wf l : lab

⊢wf ⟨l | 𝜖⟩ : eff
kind-row

⊢wf 𝜎1 : ∗ ⊢wf 𝜎2 : ∗ ⊢wf 𝜖 : eff

⊢wf 𝜎1→ 𝜖 𝜎2
kind-arrow

Fig. 13. Well-formedness of types.

Lemma 6. (Effects types are meaningful). If ∅ ⊢ E[perform op 𝜎 v] : 𝜎 | 𝜖 with op ̸∈ bop(E),
then op ∈ Σ(l) and l ∈ 𝜖 , i.e. effect types cannot be discarded without a handler.

F.2 System Fp: Multi-prompt Semantics

F.2.1 Preservation.
Lemma 7. (Values can have any effect). If Γ ⊢ v : 𝜎 | 𝜖1 , then Γ ⊢ v : 𝜎 | 𝜖2 .

Proof. (Of Lemma 7) Follows directly by val. □

Definition 3. (m-mapping). We say an expression e is m-mapping, if every m in e can uniquely

determine its h (i.e. for any occurrences of prompt m h1 and prompt m h2 in e we have h1 = h2).

Lemma 8. (Internal-safe expressions arem-mapping). Any internal-safe expression e ism-mapping.

Proof. (Of Lemma 8) For the base case, there is no internal construct in the expression, and so

the goal is trivially true. In the inductive case, the expression is evaluated from an m-mapping
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Γ ⊢ec E : 𝜎 → 𝜎 ′ | 𝜖

Γ ⊢ec □ : 𝜎 → 𝜎 | 𝜖 ⇝ 𝜆x :Mon 𝜖 ⌊𝜎⌋ . x
cempty

Γ ⊢ e : 𝜎2 | 𝜖 ⇝ e′

Γ ⊢ec E : 𝜎1→ (𝜎2→𝜖 𝜎3) | 𝜖 ⇝ g

Γ ⊢ec E e : 𝜎1→ 𝜎3 | 𝜖 ⇝ (𝜆f . e′ ▷ f ) ★ g
capp1

Γ ⊢val v : 𝜎2→𝜖 𝜎3 ⇝ v ′

Γ ⊢ec E : 𝜎1→ 𝜎2 | 𝜖 ⇝ g

Γ ⊢ec v E : 𝜎1→ 𝜎3 | 𝜖 ⇝ v ★ g
capp2

Γ ⊢ec E : 𝜎1→∀𝛼. 𝜎2 | 𝜖 ⇝ g

Γ ⊢ec E 𝜎 : 𝜎1→ 𝜎2 [𝛼 :=𝜎] | 𝜖 ⇝ (𝜆x : ⌊∀𝛼. 𝜎2⌋ . pure 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) ★ g
ctapp

Γ ⊢ops h : 𝜎 | l | 𝜖
Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨l | 𝜖⟩

Γ ⊢ec handle h E : 𝜎1→ 𝜎 | 𝜖
chandle

For System Fp,Fpw ,Fpb

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′

Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨l | 𝜖⟩ ⇝ g

Γ ⊢ec prompt m h E : 𝜎1→ 𝜎 | 𝜖 promptl 𝜖 ⌊𝜎⌋ m h′ ◦ g
cprompt

Γ ⊢ec E : 𝜎1→ 𝜎 | 𝜖 ⇝ g

Γ ⊢ec under⟨𝜖
′,𝜖⟩ l E : 𝜎1→ 𝜎 | ⟨l | 𝜖 ′⟩ ⇝ 𝜆x :Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ . 𝜆w : Evv ⟨l | 𝜖 ′⟩.

let (m, h′,w ′) : Ev 𝜖 r = w.l in under l ⟨l | 𝜖 ′⟩ ⌊𝜎⌋ 𝜖 r m w ′ (g x) w

cunder

Fig. 14. Evaluation context typing

internal-safe expressions. As every time a new prompt is generated, it owns a unique marker, and

in any other reduction rules we cannot change existing markers, the goal holds. □.

Lemma 9. (Small Step Preservation). If ∅ ⊢ e1 : 𝜎 | 𝜖 where e1 is internal-safe, and e1 −→ e2,
then ∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (Of Lemma 9) By induction on e1 −→ e2. We only discuss new case.

case (handler) handler h v −→ prompt m h (v ()) with unique m with ∅ ⊢ h : 𝜎 | l | 𝜖 .

∅ ⊢ handler h v : 𝜎 | ⟨⟩ given

∅ ⊢val handler h : (() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎 (app) and (val)
∅ ⊢ v : (() → ⟨l | 𝜖⟩ 𝜎) (app)
∅ ⊢ops h : 𝜎 | l | 𝜖 (handler)
∅ ⊢ v () : 𝜎 | ⟨l | 𝜖⟩ (app)
∅ ⊢ prompt m h (v ()) : 𝜎 | 𝜖 (prompt)
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Γ ⊢ C : 𝜎 → 𝜎 ′ | 𝜖

Γ ⊢ □ : 𝜎 → 𝜎 | 𝜖
pempty

Γ ⊢ e : 𝜎2 | 𝜖
Γ ⊢ C : 𝜎1→ (𝜎2→𝜖 𝜎3) | 𝜖

Γ ⊢ C e : 𝜎1→ 𝜎3 | 𝜖
papp1

Γ ⊢val e : 𝜎2→𝜖 𝜎3
Γ ⊢ C : 𝜎1→ 𝜎2 | 𝜖
Γ ⊢ e C : 𝜎1→ 𝜎3 | 𝜖

papp2

Γ ⊢ C : 𝜎1→∀𝛼. 𝜎2 | 𝜖
Γ ⊢ C 𝜎 : 𝜎1→ 𝜎2 [𝛼 :=𝜎] | 𝜖

ptapp

Γ ⊢ops h : 𝜎 | l | 𝜖
Γ ⊢ C : 𝜎1→ 𝜎 | ⟨l | 𝜖⟩

Γ ⊢ prompt m h C : 𝜎1→ 𝜎 | 𝜖
pprompt

Γ ⊢ C : 𝜎1→ (𝜎 → 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′

Γ ⊢ yield m C : 𝜎1→ 𝜎 | 𝜖
pyield

Γ, x : 𝜎 ⊢ C : 𝜎1→ 𝜎2 | 𝜖
Γ ⊢ 𝜆𝜖 x :𝜎. C : 𝜎1→ (𝜎 → 𝜖 𝜎2) | 𝜖 ′

pabs

Γ, x : 𝜎 ⊢ C : 𝜎1→ 𝜎2 | 𝜖 𝜅 ≠ lab

Γ ⊢ Λ𝛼𝜅 . C : 𝜎1→∀𝛼𝜅 . 𝜎2 | 𝜖 ′
ptabs

Fig. 15. Program context typing

case (promptv) prompt m h v −→ v.

∅ ⊢ prompt m h v : 𝜎 | 𝜖 given

∅ ⊢ v : 𝜎 | ⟨l | 𝜖⟩ (app)
∅ ⊢ v : 𝜎 | 𝜖 Lemma 7

case (prompt) prompt m h E[yield m f ] −→ f (𝜆x𝜖 : 𝜎2. prompt m h E[x])
with ∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 .

By Lemma 8, we know that each m maps to a unique handler, so the handler h is indeed what

yield m is looking for. So h must be of the right type.
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∅ ⊢ prompt m h E[yield m f ] : 𝜎 | 𝜖 given

∅ ⊢ops h : 𝜎 | l | 𝜖 (prompt)
∅ ⊢ E[yield m f ] : 𝜎 | ⟨l | 𝜖⟩ above

∅ ⊢ec E : 𝜎2 | 𝜖 ′→ 𝜎 | ⟨l | 𝜖⟩ Lemma 4

∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 given

x :𝜎2 ⊢ec E : 𝜎2 | 𝜖 ′→ 𝜎 | ⟨l | 𝜖⟩ weakening

x :𝜎2 ⊢ x : 𝜎2 | 𝜖 (var) and (val)
x :𝜎2 ⊢ E[x] : 𝜎 | ⟨l | 𝜖⟩ weakening

x :𝜎2 ⊢ prompt m h E[x] : 𝜎 | 𝜖 (prompt)
∅ ⊢ (𝜆x𝜖 : 𝜎2. prompt m h E[x]) : 𝜎 | 𝜖 (abs)
case (perform) prompt m h E[perform op 𝜖 ′ 𝜎 v] −→ prompt m h E[yield m (𝜆𝜖 k :𝜎k . f 𝜎 v k)]

iff op ̸∈ bop(E) ∧ (op→ f ∈ h), with𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 ,∅ ⊢ h : 𝜎 | l | 𝜖 , op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l).
∅ ⊢ prompt m h E[perform op 𝜖 ′ 𝜎 v] : 𝜎 | 𝜖 given

∅ ⊢ops h : 𝜎 | l | 𝜖 (prompt)
∅ ⊢ E[perform op 𝜖 ′ 𝜎 v] : 𝜎 | ⟨l | 𝜖⟩ above

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) given

∅ ⊢ec E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | ⟨l | 𝜖⟩ Lemma 4

∅ ⊢ perform op 𝜖 ′ 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⟨⌈⌈E⌉⌉ | l | 𝜖⟩ above and (perform)
∅ ⊢ perform op 𝜖 ′ 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⟨ l | ⌈⌈E⌉⌉ | 𝜖⟩ op ̸∈ bop(E)
∅ ⊢ perform op 𝜖 ′ 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨ l | ⌈⌈E⌉⌉ | 𝜖⟩ 𝜎2 [𝛼 :=𝜎] | ⟨ l | ⌈⌈E⌉⌉ | 𝜖⟩ (app)
∅ ⊢val v : 𝜎1 [𝛼 :=𝜎] above and (val)
(op→ f ∈ h) given

∅ ⊢val f :∀𝛼. 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎) (ops)
𝛼 ̸∈ ftv(𝜎) above

∅ ⊢ f :∀𝛼. 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎) | 𝜖 (val)
∅ ⊢ f 𝜎 : 𝜎1 [𝛼 :=𝜎] → 𝜖 ((𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎) | 𝜖 (tapp)
∅ ⊢ f 𝜎 v : ((𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎) | 𝜖 (app)
k :𝜎k ⊢ f 𝜎 v : ((𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎) | 𝜖 weakening

k :𝜎k ⊢ f 𝜎 v k : 𝜎k → 𝜖 𝜎 | 𝜖 (app)
∅ ⊢val (𝜆𝜖 k :𝜎k . f 𝜎 v k) : 𝜎k → 𝜖 𝜎 (abs)
∅ ⊢val (𝜆𝜖 k :𝜎k . f 𝜎 v k) : (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎

∅ ⊢ yield m (𝜆𝜖 k :𝜎k . f 𝜎 v k) : 𝜎2 [𝛼 :=𝜎] | ⟨⌈⌈E⌉⌉ | l | 𝜖⟩ (yield)
∅ ⊢ E[yield m (𝜆𝜖 k. f 𝜎 v k)] : 𝜎 | ⟨l | 𝜖⟩ Lemma 3

∅ ⊢ prompt m h E[yield m (𝜆𝜖 k. f 𝜎 v k) ] : 𝜎 | 𝜖 (prompt)
□

Proof. (Of Theorem 10)

e1 = E[e′
1
] (step)

e′
1
−→ e′

2
above

e2 = E[e′
2
] above

∅ ⊢ E[e′
1
] : 𝜎 | ⟨⟩ given

∅ ⊢ e′
1
: 𝜎1 | ⌈⌈E⌉⌉ Lemma 4

∅ ⊢ E : 𝜎1→ 𝜎 | ⟨⟩ above

∅ ⊢ e′
2
: 𝜎1 | ⌈⌈E⌉⌉ Lemma 9

∅ ⊢ E[e′
2
] : 𝜎 | ⟨⟩ Lemma 3

□
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F.2.2 Progress.
Lemma 10. (Progress with effects). If ∅ ⊢ e1 : 𝜎 | 𝜖 then either (1) e1 is a value; or (2) e1 ↦−→ e2;
or (3) e1 = E[perform op 𝜖 𝜎 v], where op ̸∈ bop(E); or (4) e1 = E[yield m f ], wherem ̸∈ bm(E).

Proof. (Of Lemma 10) By induction on typing. Based on the progress theorem of System F𝜖 , here
we only discuss the new cases.

case ∅ ⊢ prompt m h e : 𝜎 | 𝜖 . By I.H., we know that either e is a value, or e ↦−→ e′,
or e = E[perform op 𝜖 𝜎 v], or e = E[yield m′ f ] where m′ ̸∈ bm(E).
• If e is a value, then by (promptv) we have prompt m h e ↦−→ e
• If e ↦−→ e′, then by (step) we have prompt m h e ↦−→ prompt m h e′.
• If e = E[perform op 𝜖 𝜎 v]. We discuss whether op is bound in h.

– op→ f ∈ h. Then by (perform) we have
prompt m h E[perform op 𝜖 𝜎 v] ↦−→ prompt m h E[yield m (𝜆k. f 𝜎 v k)].

– op ̸∈ h. Let E′ = prompt m h E, then we have e1 = E′[perform op 𝜖 𝜎 v].
• If e = E[yield m′ f ].

– m = m′. Then by (prompt), we have prompt m h E[yield m f ] ↦−→ f (𝜆x . prompt m h E[x]).
– m ≠ m′. Let E′ = prompt m h E, then we have e1 = E′[yield m′ f ].

case ∅ ⊢ yield m f : 𝜎 | 𝜖 . The goal follows trivially. □.

Proof. (Of Theorem 11) Apply Lemma 10, then we know that either e1 is a value, or e1 ↦−→ e2, or
e1 = E[perform op 𝜖 𝜎 v] where op ̸∈ bop(E), or e = E[yield m f ], where m ̸∈ bm(E).

For the first two cases, we have proved the goal. For the third case, we prove it by contradiction.

∅ ⊢ E[perform op 𝜖 𝜎 v] : 𝜎 | ⟨⟩ given

l ̸∈ bop(E) given

l ∈ ⟨⟩ Lemma 6

Contradiction

The last case is an impossible case as for internal-safe expressions, yield cannot appear without the

corresponding prompt. This is because (1) initially yield only appears after applying rule (perform);
(2) it is then directly followed by rule (prompt) so there is no way to pass it around. Thus there is

no possible evaluation that can construct a standalone yield.
□

F.2.3 Simulation.
Definition 4. (⌈e⌉𝜖⇓𝑝 and ⌈e⌉𝜖⇑𝑝 ). ⌈e⌉𝜖⇓𝑝 turns an expression from F𝜖 to Fp by turning handle h
into prompt m h with fresh m of the correct type; and ⌈e⌉𝜖⇑𝑝 turns a yield-free expression from Fp

into F𝜖 by turning back prompt m h into handle h. The definition can be lifted straightforward to

handlers and evaluation contexts.

Lemma 11. (Simulation (small step)). If e1 −→ e2 in System F𝜖 , then there exists e′
2
such that

⌈e1⌉𝜖⇓𝑝 −→∗ e′2 in System Fp, and ⌈e′
2
⌉𝜖⇑𝑝 = e2.

Proof. (Of Lemma 11) By induction on e1 −→ e2. Most cases are straightforward. The only interest-

ing case is

(handler) handler h E[perform op 𝜖0 𝜎 v] −→ f 𝜎 v (𝜆x . handle h E[x])with op ̸∈ bop(E), (op→ f ) ∈ h.
In this case, we have

⌈handler h E[perform op 𝜖0 𝜎 v]⌉𝜖⇓𝑝 = prompt m ⌈h⌉𝜖⇓𝑝 (⌈E⌉𝜖⇓𝑝 [perform op 𝜖0 𝜎 ⌈v⌉𝜖⇓𝑝 ])with a
fresh m. Since ⌈⌉𝜖⇓𝑝 does not change handlers in an evaluation context, obviously we have
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op ̸∈ bop(⌈E⌉𝜖⇓𝑝 ).
prompt m ⌈h⌉𝜖⇓𝑝 (⌈E⌉𝜖⇓𝑝 [perform op 𝜖0 𝜎 ⌈v⌉𝜖⇓𝑝 ])
−→ (perform)
prompt m ⌈h⌉𝜖⇓𝑝 ⌈E⌉𝜖⇓𝑝 [yield m (𝜆k. ⌈f ⌉𝜖⇓𝑝 𝜎 ⌈v⌉𝜖⇓𝑝 k)]
−→ (prompt)
(𝜆k. ⌈f ⌉𝜖⇓𝑝 𝜎 ⌈v⌉𝜖⇓𝑝 k) (𝜆x . prompt m ⌈h⌉𝜖⇓𝑝 ⌈E⌉𝜖⇓𝑝 [x])
−→ (app)
⌈f ⌉𝜖⇓𝑝 𝜎 ⌈v⌉𝜖⇓𝑝 (𝜆x . prompt m ⌈h⌉𝜖⇓𝑝 ⌈E⌉𝜖⇓𝑝 [x])

We have ⌈⌈f ⌉𝜖⇓𝑝 𝜎 ⌈v⌉𝜖⇓𝑝 (𝜆x . prompt m ⌈h⌉𝜖⇓𝑝 ⌈E⌉𝜖⇓𝑝 [x])⌉𝜖⇑𝑝 = f 𝜎 v (𝜆x . handle h E[x]).
□

Theorem 14. (Simulation). If e1 ↦−→ e2 in System F𝜖 , then there exists e′
2
such that ⌈e1⌉𝜖⇓𝑝 ↦−→∗ e′2

in System Fp, and ⌈e′
2
⌉𝜖⇑𝑝 = e2.

Proof. (Of Theorem 14) Follows directly by Lemma 11 and (step). □

F.3 System Fpw : Multi-prompt with Evidence Passing Semantics

F.3.1 Preservation.
Lemma 12. (Small Step Preservation). 1. If ∅ ⊢ e1 : 𝜎 | 𝜖 where e1 is internal-safe, and e1 −→ e2,
then ∅ ⊢ e2 : 𝜎 | 𝜖 .
2. If∅ ⊢ e1 : 𝜎 | 𝜖 where e1 is internal-safe, andw ⊢ e1 −→ e2, wherew : evv 𝜖 , then∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (Of Theorem 9) The e1 −→ e2 is the same as before (Lemma 9). So here we only discuss the

case for w ⊢ e1 −→ e2.
(perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆𝜖k :𝜎k . f 𝜎 v k)with (m, h, _) = w.l, and (op→ f ) ∈ h,

and op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l), and ∅ ⊢ h : 𝜎 | l | 𝜖 , and 𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 .

∅ ⊢ h : 𝜎 | l | 𝜖 given

(op→ f ) ∈ h given

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) given

∅ ⊢val f : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 ops

𝛼 ̸∩ tv(𝜖, 𝜎) above

∅ ⊢ f : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 val

∅ ⊢ f 𝜎 : 𝜎1 [𝛼 :=𝜎] → 𝜖 (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 tapp

∅ ⊢val perform op 𝜖0 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖0⟩ 𝜎2 [𝛼 :=𝜎] perform

∅ ⊢ perform op 𝜖0 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖0⟩ app

∅ ⊢val v : 𝜎1 [𝛼 :=𝜎] above

∅ ⊢ f 𝜎 v : (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 app

k :𝜎k ⊢ f 𝜎 v : (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 weakening

k :𝜎k ⊢ f 𝜎 v k : 𝜎 | 𝜖 app

∅ ⊢val 𝜆k :𝜎k . f 𝜎 v k : 𝜎k → 𝜖 𝜎 | 𝜖 abs

∅ ⊢ yield m (𝜆k :𝜎k . f 𝜎 v k) : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖0⟩ yield

□

Lemma 13. (Preservation). If ∅ ⊢ e1 : 𝜎 | 𝜖 where e1 is internal-safe, and w ⊢ e1 ↦−→ e2 where
w : evv 𝜖 , then ∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (Of Lemma 13) By induction on w ⊢ e1 ↦−→ e2.
case (step)
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e1 = F[e′
1
] (step)

e′
1
−→ e′

2
above

e2 = F[e′
2
] above

∅ ⊢ F[e′
1
] : 𝜎 | ⟨⟩ given

∅ ⊢ e′
1
: 𝜎1 | ⌈⌈F⌉⌉ Lemma 4

∅ ⊢ F : 𝜎1→ 𝜎 | ⟨⟩ above

∅ ⊢ e′
2
: 𝜎1 | ⌈⌈F⌉⌉ Lemma 12

∅ ⊢ F[e′
2
] : 𝜎 | ⟨⟩ Lemma 3

case (stepw)

e1 = F[e′
1
] (step)

w ⊢ e′
1
−→ e′

2
above

e2 = F[e′
2
] above

∅ ⊢ F[e′
1
] : 𝜎 | ⟨⟩ given

∅ ⊢ e′
1
: 𝜎1 | ⌈⌈F⌉⌉ Lemma 4

∅ ⊢ F : 𝜎1→ 𝜎 | ⟨⟩ above

∅ ⊢ e′
2
: 𝜎1 | ⌈⌈F⌉⌉ Lemma 12

∅ ⊢ F[e′
2
] : 𝜎 | ⟨⟩ Lemma 3

case (promptw)

e1 = F[prompt m h e′
1
] (promptw)

⟨⟨l : (m, h,w) | w⟩⟩ | e′
1
−→ e′

2
above

e2 = F[prompt m h e′
2
] above

∅ ⊢ F[prompt m h e′
1
] : 𝜎 | ⟨⟩ given

∅ ⊢ e′
1
: 𝜎1 | ⌈⌈F (prompt m h □)⌉⌉ Lemma 4

∅ ⊢ F (prompt m h □]) : 𝜎1→ 𝜎 | ⟨⟩ above

∅ ⊢ e′
2
: 𝜎1 | ⌈⌈F (prompt m h □)⌉⌉ I.H.

∅ ⊢ F[prompt m h e′
2
] : 𝜎 | ⟨⟩ Lemma 3

□

Proof. (Of Theorem 2) Follows directly by Lemma 13. □

F.3.2 Progress.
Lemma 14. (Progress with effects). If ∅ ⊢ e1 : 𝜎 | 𝜖 , then for any w : evv 𝜖 , we have either (1)
e1 is a value; or (2) w ⊢ e1 ↦−→ e2; or (3) e1 = E[yield m f ] where m ̸∈ bm(E).

Proof. (Of Lemma 14) By induction on typing.

First, notice that the type ofw is always correctly updates through (step), (stepw) and (promptw).
Most cases follow the progress theorem of System Fp, so here we only discuss the new cases.

case∅ ⊢ prompt m h e : 𝜎 | 𝜖 . By I.H., we know that either e is a value, or ⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e ↦−→ e′,
or e = E[yield m′ f ], where m′ ̸∈ bm(E).

• If e is a value, then by (promptv) we have prompt m h e ↦−→ e.
• If ⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e ↦−→ e′. Then by (promptw), prompt m h e ↦−→ prompt m h e′.
• If e = E[yield m′ f ] where m′ ̸∈ bm(E).

– m = m′. Then by (prompt), we have prompt m h E[yield m f ] ↦−→ f (𝜆x . prompt m h E[x]).
– m ≠ m′. Let E′ = prompt m h E, then we have e1 = E′[yield m′ f ].
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case ∅ ⊢ yield m f : 𝜎 | 𝜖 . The goal follows trivially.
case∅ ⊢ perform op 𝜖 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖⟩where op :∀𝛼. 𝜎1→𝜎2 ∈ Σ(l),∅ ⊢val v : 𝜎1 [𝛼 :=𝜎].
The main difference between the progress theorem for System Fpw from System Fp is that perform

can always reduce in System Fpw under the evidence vector with the right type. The case when

the operation argument is not a value can follow the existing standard proof steps for previous

progress lemmas, so here we only discuss when it is a value.

Given w : evv ⟨l | 𝜖⟩, we can get (m, h, _) = w.l where h is a handler for effect l, and thus

(op→ f ) ∈ h.
So by (perform), we have
w ⊢ perform op 𝜖 𝜎 v : 𝜎2 [𝛼 :=𝜎] −→ yield m (𝜆k. f 𝜎 v k) . □

Proof. (Of Theorem 3) Apply Lemma 14, then we know that either e1 is a value, or ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2,
or e = E[yield m f ], where m ̸∈ bm(E).

For the first two cases, we have proved the goal.

The last case is an impossible case. For internal-safe expressions, yield can only appear under

(perform). By Lemma 1, we know that (perform) is applied under the evidence vector ⟨⟨⌈E⌉ | ⟨⟨⟩⟩⟩⟩.
And thus the corresponding prompt m must be in E.

□

F.3.3 Correspondence.
Proof. (Proof for Lemma 1) By induction on ↦−→.

case (step).

e1 = F[e′
1
] (step)

e2 = F[e′
2
] above

e′
1
−→ e′

2
above

case (stepw).

e1 = F[e′
1
] (step)

e2 = F[e′
2
] above

w ⊢ e′
1
−→ e′

2
above

⟨⟨⌈F⌉ | w⟩⟩ = w by definition

case (promptw).

e1 = F[prompt m h e′
1
] (step)

e2 = F[prompt m h e′
2
] above

⟨⟨l : (m, h) | w⟩⟩ ⊢ e′
1
↦−→ e′

2
above

By I.H., we have

subcase

e′
1
= E′[e′′

1
] I.H.

e′
2
= E′[e′′

2
]

e′′
1
−→ e′′

2

E = F (prompt m h E′) Let

subcase

44



Generalized Evidence Passing for Effect Handlers MSR-TR-2021-5

e′
1
= E′[e′′

1
] I.H.

e′
2
= E′[e′′

2
]

⟨⟨⌈E′⌉ | l : (m, h, _) | w⟩⟩ ⊢ e′′
1
−→ e′′

2

⟨⟨⌈F (prompt m h E′)⌉ | w⟩⟩ = ⟨⟨⌈E′⌉ | l : (m, h, _) | w⟩⟩ by definition

□

Proof. (Of Theorem 1) Follows directly by Lemma 1 and (perform). □

F.3.4 Simulation.
Lemma 15. (Simulation (small step)). Given ∅ ⊢ e1 : 𝜎 | 𝜖 , if e1 −→ e2 in System Fp, then for

w : evv 𝜖 , we have w ⊢ e1 ↦−→ e2 in System Fpw .

Proof. (Of Lemma 15) By induction on e1 −→ e2 in System Fp . Most cases are straightforward. The

only interesting case is

(perform) prompt m h E[perform op 𝜖0 𝜎 v] −→ prompt m h E[yield m (𝜆𝜖k :𝜎k . f 𝜎 v k)]
iff op ̸∈ bop(E) ∧ (op→ f ∈ h), op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l),∅ ⊢ h : 𝜎 | l | 𝜖 ,𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 .

In System Fpw then, we know that

reducing

w ⊢ prompt m h E[perform op 𝜖 𝜎 v]
means (by (promptw)) reducing
⟨⟨l : (m, h,w) | w⟩⟩ ⊢ E[perform op 𝜖 𝜎 v]
which then means (by ↦−→) reducing

⟨⟨⌈E⌉ | ⟨⟨l : (m, h,w) | w⟩⟩⟩⟩ ⊢ perform op 𝜖 𝜎 v
Since op ̸∈ bop(E), we know that ⟨⟨⌈E⌉ | ⟨⟨l : (m, h,w) | w⟩⟩⟩⟩.l = (m, h, _). We then have by

(perform),
⟨⟨⌈E⌉ | ⟨⟨l : (m, h,w) | w⟩⟩⟩⟩ ⊢ perform op 𝜖 𝜎 v ↦−→ yield m (𝜆k. f 𝜎 v k)
Therefore

w ⊢ prompt m h E[perform op 𝜖 𝜎 v] ↦−→ prompt m h E[yield m (𝜆k. f 𝜎 v k)]
□

Lemma 16. (Evaluation Step (II)). 1. If e1 −→ e2, then w ⊢ E[e1] ↦−→ E[e2].
2. If ⟨⟨⌈E⌉ | w⟩⟩ ⊢ e1 −→ e2, then w ⊢ E[e1] ↦−→ E[e2].

Proof. (Of Lemma 16) Both cases can be easily proved by induction on E. We take the first case as

an example. case E = □. The goal follows directly by (step).
case E = E′ e. By I.H., we havew ⊢ E′[e1] ↦−→ E′[e2]. By (stepw), we have (E′ e) [e1] ↦−→ (E′ e) [e2].
case The case for v E′ and E′ 𝜎 are similar as the case for E′ e, following directly by I.H. and (stepw).
case E = prompt m h E′. By I.H., we have ⟨⟨l : (m, h,w) | w⟩⟩ ⊢ E′[e1] −→ E[e2]. By (promptw),
we have (prompt m h E′) [e1] −→ (prompt m h E′) [e2]. □

Lemma 17. (Evaluation Step (III)). If ⟨⟨⌈E⌉ | w⟩⟩ ⊢ e1 ↦−→ e2, then w ⊢ E[e1] ↦−→ E[e2].

Proof. (Of Lemma 17) Given ⟨⟨⌈E⌉ | w⟩⟩ ⊢ e1 ↦−→ e2, by Lemma 1, we know that there are two cases

• e1 = E′[e′
1
], e2 = E′[e′

2
], and e′

1
−→ e′

2
.

By Lemma 16 (1), we have that w ⊢ (E • E′) [e′
1
] ↦−→ (E • E′) [e′

2
]. That is, w ⊢ E[e1] ↦−→ E[e2].

• e1 = E′[e′
1
], e2 = E′[e′

2
], and ⟨⟨⌈E′⌉ | ⟨⟨⌈E⌉ | w⟩⟩⟩⟩ ⊢ e′

1
−→ e′

2
.

By Lemma 16 (2), we have that w ⊢ (E • E′) [e′
1
] ↦−→ (E • E′) [e′

2
]. That is, E[e1] ↦−→ E[e2].

□
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Theorem 15. (Simulation). Given ∅ ⊢ e1 : 𝜎 | 𝜖 , if e1 ↦−→ e2 in System Fp, then for w : evv 𝜖 ,
we have w ⊢ e1 ↦−→ e2 in System Fpw .

Proof. (Of Theorem 15) In System Fp, e1 ↦−→ e2 means that, by (step), e1 = E[e′
1
], and e2 = E[e′

2
],

and e′
1
−→ e′

2
.

From Lemma 15, we have that ⟨⟨⌈E⌉ | w⟩⟩ ⊢ e′
1
↦−→ e′

2
.

By Lemma 17, we have w ⊢ E[e′
1
] ↦−→ E[e′

2
]. That is, w ⊢ e1 ↦−→ e2.

□

F.3.5 Uniqueness.
Proof. (Of Theorem 4) We prove the theorem by contradiction.

From Lemma 8, we know that internal-safe expressions are m-mapping.

Then suppose there is an internal-safe expression of form

prompt m h • E • prompt m h • e
where the marker m is duplicated, and these two ms, as the expression is m-mapping, have the

same handler h, and h is a handler for effect l.
Since it is internal-safe, we know it is closed and well-typed. So we have

∅ ⊢ prompt m h • E • prompt m h • e : 𝜎 | 𝜖 known

∅ ⊢ops h : 𝜎 | l | 𝜖 prompt

∅ ⊢ E • prompt m h • e : 𝜎 | ⟨l | 𝜖⟩ prompt

∅ ⊢ec E : 𝜎1→ 𝜎 | ⟨l | 𝜖⟩ Lemma 4

∅ ⊢ prompt m h • e : 𝜎1 | ⟨⌈⌈E⌉⌉ | l | 𝜖⟩ Lemma 4

∅ ⊢ops h : 𝜎1 | l | ⟨⌈⌈E⌉⌉ | l | 𝜖⟩ prompt

𝜎 = 𝜎1
𝜖 = ⟨⌈⌈E⌉⌉ | l | 𝜖⟩
contradiction

We have a contradiction because ⟨⌈⌈E⌉⌉ | l | 𝜖⟩ contains at least one more label than 𝜖 , so they cannot

be equivalent. □

F.4 Tail Resumptive Operation

F.4.1 Preservation.
Lemma 18. (Small Step Preservation). 1. If∅ ⊢ e1 : 𝜎 | 𝜖 , where e1 is internal-safe, and e1 −→ e2,
then ∅ ⊢ e2 : 𝜎 | 𝜖 .
2. If∅ ⊢ e1 : 𝜎 | 𝜖 , where e1 is internal-safe, andw ⊢ e1 −→ e2, wherew : evv 𝜖 , then∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (Of Theorem 9) Based on the preservation lemma for System Fpw (Lemma 12), here we only

discuss the new cases for under.
case (performt) w | perform op 𝜖0 𝜎 v −→ (Λ𝛼.𝜆 ⟨l |𝜖0⟩x :𝜎1. under𝜖0,𝜖 l e) 𝜎 vwhere (m, h,w ′) = w.l
and op :∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l), and (op→ Λ𝛼. 𝜆𝜖x :𝜎1 k :𝜎2→𝜎. k e) ∈ h with k ̸∈ fv(e)
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w : evv 𝜖 given

(m, h,w ′) = w.l given

∅ ⊢ops h : l | 𝜎 | 𝜖 follows

op :∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) given

(op→ Λ𝛼. 𝜆𝜖x :𝜎1 k :𝜎2→𝜎. k e) ∈ h given

∅ ⊢ (Λ𝛼. 𝜆𝜖x :𝜎1 k :𝜎2→𝜎. k e) : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) →𝜖 𝜎 ops

x :𝜎1, k : 𝜎2→𝜎 ⊢ k e : 𝜎 | 𝜖 tabs and abs

x :𝜎1, k : 𝜎2→𝜎 ⊢ e : 𝜎2 | 𝜖 app

k ̸∈ fv(e) given

x :𝜎1 ⊢ e : 𝜎2 | 𝜖 strengthening

x :𝜎1 ⊢ under𝜖0, 𝜖 l e : 𝜎2 | ⟨l | 𝜖0⟩ under

∅ ⊢ Λ𝛼. 𝜆x :𝜎1. under𝜖0, 𝜖 l e : ∀𝛼. 𝜎1→ ⟨l | 𝜖0⟩ 𝜎2 | ⟨l | 𝜖0⟩ tabs and abs

∅ ⊢ perform op 𝜖0 𝜎 v : 𝜎2 [𝛼 :=𝜎] given and perform

∅ ⊢ v : 𝜎1 [𝛼 :=𝜎] | ⟨l | 𝜖0⟩
∅ ⊢ (Λ𝛼. 𝜆x :𝜎1. under𝜖0, 𝜖 l e) 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖0⟩ tapp and app

case (under) under𝜖0, 𝜖 l v −→ v.
Given that ∅ ⊢ under𝜖0, 𝜖 l v : 𝜎 | ⟨l | 𝜖0⟩, by under we have ∅ ⊢ v : 𝜎 | 𝜖 . As Lemma 7, we

have ∅ ⊢ v : 𝜎 | ⟨l | 𝜖0⟩. □

Lemma 19. (Preservation). If ∅ ⊢ e1 : 𝜎 | 𝜖 , where e1 is internal-safe, and w ⊢ e1 ↦−→ e2 where
w : evv 𝜖 , then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

Proof. (Of Theorem 13) By induction on w ⊢ e1 ↦−→ e2. We discuss the only new case (underw).
That is, e1 = F[under𝜖0, 𝜖 l e].

w ′ ⊢ e ↦−→ e′ (m, h,w ′) = w.l

w ⊢ F[under𝜖0,𝜖 l e] ↦−→ F[under𝜖0,𝜖 l e′]
(underw)

Because e1 is internal safe, so under𝜖0, 𝜖 was initially generated by (performt).
w ⊢ perform op 𝜖0 𝜎 v | −→ | (Λ𝛼. 𝜆 ⟨l |𝜖0⟩x :𝜎1 . under𝜖0,𝜖 l e) 𝜎 v, where (m, h,w ′) = w.l, and
(op→ Λ𝛼. 𝜆𝜖x :𝜎1. k :𝜎2→ 𝜖 𝜎. k e) ∈ h with k ̸∈ fv(e).
At that point, we know that the expression is of effect ⟨l | 𝜖0⟩, sow : evv ⟨l | 𝜖0⟩. Given (m, h,w ′) = w.l

and (op→ Λ𝛼. 𝜆𝜖x :𝜎1 . k :𝜎2→ 𝜖 𝜎. k e) ∈ h, we know thatw ′ : evv 𝜖 . That is, effect context of label
l from effect ⟨l | 𝜖0⟩ is 𝜖 .
Back to (underw), we know that w ′ : w 𝜖 . Now we have

∅ ⊢ F[under𝜖0, 𝜖 l e] : 𝜎 | ⟨l | 𝜖0⟩ given

∅ ⊢ec F : 𝜎1→ 𝜎 | ⟨l | 𝜖0⟩ above

∅ ⊢ under𝜖0, 𝜖 l e : 𝜎1 | ⟨l | 𝜖0⟩ Lemma 4

∅ ⊢ e : 𝜎1 | 𝜖 under

∅ ⊢ e′ : 𝜎1 | 𝜖 I.H.

∅ ⊢ under𝜖0, 𝜖 l e′ : 𝜎1 | ⟨l | 𝜖0⟩ under

∅ ⊢ F[under𝜖0, 𝜖 l e] : 𝜎 | ⟨l | 𝜖0⟩ Lemma 3

□

Theorem 16. (Preservation). If ∅ ⊢ e1 : 𝜎 | ⟨⟩, where e1 is internal-safe, and ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2,
then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

Proof. (Of Theorem 16) Follows directly by Lemma 19 with w = ⟨⟨⟩⟩. □
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F.4.2 Progress.
Definition 5. (Well-formed evaluation contexts). We say that an evaluation context is well-formed,

if it is of the following form:

F ::= □ | F e | v F
| prompt m h • E • under𝜖0,𝜖 l F l ̸∈ ⌈⌈E⌉⌉, ∅ ⊢ h : 𝜎 | l | 𝜖

E ::= □ | E e | v E
| prompt m h • E′ • under𝜖0,𝜖 l E l ̸∈ ⌈⌈E′⌉⌉, ∅ ⊢ h : 𝜎 | l | 𝜖
| prompt m h E

Lemma 20. (Internal-safe expressions have well-formed evaluation contexts). If an internal-safe

Fp expressions e, which was initially reduced ( ↦−→) under ⟨⟨⟩⟩, can be written as E[e′], then E is a

well-formed evaluation context.

Proof. (Of Lemma 20) This lemma is to rule out expressions like

prompt m hl1 • prompt m hl2 • under l1 • under l2 e
The term type-checks because l1 and l2 are handled. But it does not evaluate as (skipw) does not

apply: because of under l1, (underw) would remove the prompt m hl2 in the evidence vector, and

thus under l2 would fail to find any l2 evidence in the evidence vector. So skipw for under l2 does
not apply.

The lemma is restricted to internal-safe expressions that are evaluated (↦−→) under ⟨⟨⟩⟩, as we
want to rule out stand-alone under l e, which itself can be an internal-safe expressions as it can

be reduced from perform with a proper non-empty evidence vector, but its evaluation context

under l □ is not well-formed.

We prove our goal by case-analyzing the definition of internal-safe expressions:

• When e contains no under at all, then the goal is trivially true.

• If e is reduced from an internal-safe expression e1, then we need to show that at every step,

the property is preserved.

The key observation is that whenever an under is introduced ((performt)), its l is chosen
from the current available evidence vector w. According to (underw), all existing unders
have already removed all the evidence from their prompt until the corresponding under.
Thus the only possible prompt that the newly introduced under is paired to can only wrap

well-formed evaluation contexts and the new evaluation context is thus also well-formed.

□

Lemma21. (Progress with effects). If∅ ⊢ e1 : 𝜎 | 𝜖 , then for anyw : evv 𝜖 , we have either (1) e1 is
a value; or (2)w ⊢ e1 ↦−→ e2; or (3) e1 = E[yield m f ], wherem ̸∈ bm(E); or (4) e1 = E[under𝜖 l e],
where E is well-formed, and there is no h ∈ E such that∅ ⊢ops h : l | _ | 𝜖 , which we denote using

l𝜖 ̸∈ ⌈E⌉.

Proof. (Of Lemma 21) In the fourth case, it is possible that an expression contains several unders
that cannot be correctly reduced, but here we only need to know the first under that causes the
trouble. That’s why we can still show E is well-formed. For example, under l1 (under l2 e) can be

represented as □[under l1 (under l2 e)].
We first do induction on the size of e1, and then do induction on typing.

Based on the progress theorem of System Fp (Lemma 14), here we only discuss the new cases for

under.
case∅ ⊢ prompt m h e : 𝜎 | 𝜖 . By I.H., we know that either e is a value, or ⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e ↦−→ e′,
or e = E[yield m′ f ], wherem′ ̸∈ bm(E), or e = E[under𝜖 l e′

1
], where E is well-formed and l𝜖 ̸∈ ⌈E⌉.
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We have already talked about the first three cases in Lemma 14. In the last case, we have

e = E[under𝜖 l e′
1
], where l𝜖 ̸∈ ⌈⌈E⌉⌉, and E is well-formed.

• ∅ ⊢ops h : l | _ | 𝜖 . That means under l is paired with the current prompt. Because E is

well-formed, we now have both prompt m h E and prompt m h E[under l □] well-formed.

By I.H. on e′
1
(the size of e′

1
is smaller than prompt m h E[under l e′

1
] ), we have

– e′
1
is a value. Then we know that under l v −→ v by (under). Because prompt m h E is

well-formed, we have prompt m h E[under l v] ↦−→ prompt m h E[v].
– w ⊢ e′

1
↦−→ e′

2
. Because of (underw), under l removes all the evidence vector between

the prompt m and under l, we know that evaluating w ⊢ prompt m h E[under l e′
1
]

reduces to evaluatingw ⊢ e′
1
. The type ofw is of the right type because of preservation.

So we have prompt m h E[under l e′
1
] ↦−→ prompt m h E[under l e′

2
].

– e′
1
= E′[yield m′ f ] where m′ ̸∈ bm(E′). Then again since under l removes all the

evidence vector between the prompt m and under l, we have
e′
1
= (prompt m h E • under l • E′) [yield m1 f ], andm′ ̸∈ bm(prompt m h E • under l • E′).

– e′
1
= E′[under𝜖′ l′ e′

2
] where l

′𝜖′ ̸∈ ⌈⌈E′⌉⌉ and E′ is well-formed. Again since under l
removes all the evidence vector between prompt m and under l, we have
e′
1
= (prompt m h E • under l • E′) [under l′ e′

2
], and l′𝜖′ ̸∈ ⌈prompt m h E • under l • E′⌉.

• h is not a handler for l. Thenwe have (prompt m h E) [under l e′
1
] and l𝜖 ̸∈ ⌈⌈(prompt m h E)⌉⌉.

□

Theorem 17. (Progress of Internal-safe System Fpw with under). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is an
internal-safe expression, we have either e1 is a value, or ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2.

Proof. (Of Theorem 17) Apply Lemma 21, thenwe know that either e1 is a value, or ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2, or
e = E[yield m f ] where m ̸∈ bm(E), or e1 = E[under𝜖 l e] where E is well-formed, and l𝜖 ̸∈ ⌈E⌉.

For the first two cases, we have proved the goal.

For the third case, we can prove it by contradiction, following the proof for System Fp (Theorem 3).

The last case is new. However it is an impossible case. By Lemma 20, we know that internal-

safe expressions can only have well-formed evaluation context. That means E • under𝜖 l □ must

be well-formed. However we already know that l𝜖 ̸∈ ⌈E⌉, and thus E • under𝜖 l □ cannot be

well-formed. So we have a contradiction.

□

F.4.3 Coherence.
Lemma 22. ( � preserves the handler context). Given E1 � E2, and Γ ⊢ E1 : 𝜎1→ 𝜎2 | ⟨⟩ , then
⌈E1⌉ = ⌈E2⌉.

Proof. (Of Lemma 22) Most cases follow directly. The only interesting case is the equivalence

of evaluation contexts lifted by eq-under. In this case we have (𝜆x . prompt m h E1 [x]) E1 �
prompt m h • E2 • under𝜖 l E2, with E1 � E2.
We then have ⌈(𝜆x . prompt m h E1 [x]) E1⌉ = ⌈E1⌉.
Also, since under removes the evidence vector between prompt m h and under, we have
⌈prompt m h • E2 • under𝜖 l E2⌉ = ⌈E2⌉.
By I.H., we have ⌈E1⌉ = ⌈E2⌉.
□

Lemma 23. ( � preserves evaluation (general)). Given e1 � e2 where e1 and e2 are well-typed
non-values, and E1 � E2 where E1 [e1] and E2 [e2] are well-typed internal-expressions with effect
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⟨⟩, there exist e′
1
, e′

2
such that ⟨⟨⟩⟩ ⊢ E1 [e1] ↦−→+ e′1, and ⟨⟨⟩⟩ ⊢ E2 [e2] ↦−→+ e′2, and e′

1
� e′

2
.

Proof. (Of Lemma 23) By induction on e1. We write e1 ↦−→ e2 for ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2.
case e1 = e3 e4, where e3 is not a value.
e2 = e5 e6 by �
e3 � e5 above

e4 � e6 above

E1 • □ e4 • e3 ↦−→+ e′3 I.H.

E2 • □ e5 • e5 ↦−→+ e′5 I.H.

e′
3
� e′

5
I.H.

case e1 = v1 e3, where e3 is not a value.
We discuss the shape of e2.
subcase e2 = v2 e4.

v1 � v2 by �
e3 � e4 above

E1 • v1 □ • e3 ↦−→+ e′3 I.H.

E2 • v2 □ • e4 ↦−→+ e′4 I.H.

e′
3
� e′

4
I.H.

subcase e1 = (𝜆x . prompt m h E′
1
[x]) e3 and e2 = prompt m h • E′

2
• under l e4 with l ̸∈ ⌈⌈E⌉⌉.

e3 � e4 by �
E′
1
� E′

2
by �

E1 • (𝜆x . prompt m h E′[x]) □ • e3 ↦−→+ e′3 I.H.

E2 • prompt m h • E′
2
.under l □ • e4 ↦−→+u e′4 I.H.

e′
3
� e′

4
I.H.

case e1 = (𝜆x . e3) v1.
subcase e2 = (𝜆x . e4) v2.

e3 � e4 by �
v1 � v2 above

E1 [e1] ↦−→ E1 [e3 [x:=v1] ] (app)
E2 [e2] ↦−→ E2 [e4 [x:=v2] ] (app)
e3 [x:=v1] � e4 [x:=v2] by substitution

subcase e1 = (𝜆x . prompt m h E′
1
[x]) v1 and e2 = prompt m h • E′

2
• under𝜖 l v2 with

l ̸∈ ⌈⌈E⌉⌉.
e3 � e4 by �
E′
1
� E′

2
by �

v1 � v2 above

E1 [e1] ↦−→ E1 [prompt m h E′
1
[v1] ] (app)

E2 [e2] ↦−→ E2 [prompt m h E′
2
[v2] ] (under)

E1 [prompt m h E′
1
[v1] ] � E2 [prompt m h E′

2
[v2] ] congruence

case e1 = handler h v1.
e2 = handler h v2 by �
v1 � v2 above

E1 [handler h v1] ↦−→ E1 [prompt m h (v1 ())] (handler)
E2 [handler h v2] ↦−→ E2 [prompt m h (v2 ())] (handler)
E1 [prompt m h (v1 ())] � E1 [prompt m h (v2 ())] congruence

case e1 = perform op 𝜎 v1.
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E1 [perform op 𝜎 v1] ↦−→ E1 [yield m (𝜆k. f [𝜎] v1 k)] (perform)
(m, h, _) = ⌈E1⌉ .l and (op→ f ) ∈ h above

e2 = perform op 𝜎 v2 by �
v1 � v2 above

subcase f is not a tail-resumptive operation.

⌈E1⌉ = ⌈E2⌉ Lemma 22

E2 [perform op 𝜎 v2] ↦−→ E2 [yield m (𝜆k. f [𝜎] v2 k)] (perform)
E1 [yield m (𝜆k. f [𝜎] v1 k)] = E2 [yield m (𝜆k. f [𝜎] v2 k)] congruence

subcase f = Λ𝛼. 𝜆x . k e is a tail-resumptive operation.

As E1 [e1] is internal-safe. According to progress, yield m is going to be handled.

E1 = E′
1
• prompt m h • E′′

1
suppose

E1 [yield m (𝜆k. f [𝜎] v1 k)] ↦−→ E′
1
[(𝜆k. f [𝜎] v1 k) (𝜆x . prompt m h E′′

1
[x])] (prompt)

E1 [yield m (𝜆k. f [𝜎] v1 k)] ↦−→ E′
1
[(𝜆x . prompt m h E′′

1
[x]) e[𝛼 :=𝜎, x:=v1] ] (tapp) and (app)

E2 = E′
2
• prompt m h • E′′

2
by �

E′
1
� E′

2
by �

E′′
1
� E′′

2
by �

E2 [perform op 𝜎 v2] ↦−→ E2 [(Λ𝛼. 𝜆x . under l • e) [𝜎] v2 ] (performt)
E2 [perform op 𝜎 v2] ↦−→ E2 [under l • e[𝛼 :=𝜎, x:=v2] ] (tapp) and (app)
(𝜆x . prompt m h E′′

1
[x]) e[𝛼 :=𝜎, x:=v1] = prompt m h • E′′

2
• under l • e[𝛼 :=𝜎, x:=v2] eq-under

E′
1
[(𝜆x . prompt m h E′′

1
[x]) e[𝛼 :=𝜎, x:=v1] ]

= E′
2
• prompt m h. E′′

2
• under l • e[𝛼 :=𝜎, x:=v2] congruence

= E2 [under l • e[𝛼 :=𝜎, x:=v2] ] by substitution

case e1 = prompt m h e3.
subcase e3 = v1 is a value.

e2 = prompt m h v2 by �
v1 � v2 above

E1 [prompt m h v1] ↦−→ E1 [v1] (promptv)
E2 [prompt m h v2] ↦−→ E2 [v2] (promptv)
v1 � v2 known

subcase e3 is not a value.
e2 = prompt m h e4 by �
e3 � e4 above

E1. prompt m h • e3 ↦−→ e′
1

I.H.

E2. prompt m h • e4 ↦−→ e′
2

I.H.

e′
1
� e′

2
I.H.

case e1 = yield m f1. According to progress, E1 [e1] is going to be handled.

E1 = E′
1
• prompt m h • E′′

1
suppose

E1 [e1] ↦−→ E′
1
[f1 (𝜆x . prompt m h E′′

1
[x])] (prompt)

e2 = yield m f2 by �
f1 � f2 above

E1 � E2 given

E2 = E′
2
• prompt m h • E′′

2
by �

E′
1
� E′

2
by �

E′′
1
� E′′

2
by �

E2 [e2] ↦−→ E′
2
[f2 (𝜆x . prompt m h E′′

2
[x])] (prompt)

E′
1
[f1 (𝜆x . prompt m h E′′

1
[x])] = E′

2
[f2 (𝜆x . prompt m h E′′

2
[x])] congruence
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□

Proof. (Of Lemma 2) If they are both values then we are done.

Otherwise, according to the definition of � , it’s impossible that one is a value and the other is an

expression, so they are both expressions. We then apply Lemma 23 with 𝜖 = ⟨⟩ and, E1 = E2 = □,
and we are done. □

Proof. (Of Theorem 5) If C[e] ↦−→∗ n under the unoptimized semantics, then as C[e] � C[e] and
by Lemma 2, we must have C[e] ↦−→∗ e′ under the tail-resumptive optimization semantics, with

e′ � n.
According to the definition of � , we must have e′ = n.
That means C[e] ↦−→∗ n under the tail-resumptive optimization semantics.

The case from right to left is the same. □

F.5 System Fpb: Bubbling Semantics

F.5.1 Preservation.
Lemma 24. (Small Step Preservation). 1. If ∅ ⊢ e1 : 𝜎 | 𝜖 where e1 is internal-safe, and e1 −→ e2,
then ∅ ⊢ e2 : 𝜎 | 𝜖 .
2. If∅ ⊢ e1 : 𝜎 | 𝜖 where e1 is internal-safe, andw ⊢ e1 −→ e2, wherew : evv 𝜖 , then∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (Of Lemma 24) We case analyze the −→ relation, and only discuss all new cases.

case (app
1
) v □ • yield m f k −→ yield m f (𝜆𝜖′x :𝜎2 . v (k x)), where ∅ ⊢val k : 𝜎2→ 𝜖 ′ 𝜎 ′.

∅ ⊢ v □ • yield m f k : 𝜎0 | 𝜖 ′ given

∅ ⊢val k : 𝜎2→ 𝜖 ′ 𝜎 ′ given

x :𝜎2 ⊢ k : 𝜎2→ 𝜖 ′ 𝜎 ′ | 𝜖 ′ val and weakening

x :𝜎2 ⊢ k x : 𝜎 ′ | 𝜖 ′ app

∅ ⊢ yield m f k : 𝜎 ′ | 𝜖 ′ app

∅ ⊢ v : 𝜎 ′→ 𝜖 ′ 𝜎0 | 𝜖 ′ app

∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 yield

x :𝜎2 ⊢ v : 𝜎 ′→ 𝜖 ′ 𝜎0 | 𝜖 ′ weakening

x :𝜎2 ⊢ v (k x) : 𝜎0 | 𝜖 ′ app

∅ ⊢val 𝜆𝜖
′
x :𝜎2. v (k x) : 𝜎2→ 𝜖 ′ 𝜎0 abs

yield m f (𝜆𝜖′x :𝜎2 . v (k x)) : 𝜎0 | 𝜖 ′ yield

case (app
2
) □ e • yield m f k −→ yield m f (𝜆𝜖′x :𝜎2. (k x) e), where ∅ ⊢val k : 𝜎2→ 𝜖 ′ 𝜎 ′

∅ ⊢ □e • yield m f k : 𝜎 ′
2
| 𝜖 ′ given

∅ ⊢val k : 𝜎2→ 𝜖 ′ 𝜎 ′ given

x :𝜎2 ⊢ k : 𝜎2→ 𝜖 ′ 𝜎 ′ | 𝜖 ′ val and weakening

x :𝜎2 ⊢ k x : 𝜎 ′ | 𝜖 ′ app

𝜎 ′ = 𝜎 ′
1
→ 𝜖 ′ 𝜎 ′

2
app

∅ ⊢ yield m f k : 𝜎 ′
1
→ 𝜖 ′ 𝜎 ′

2
| 𝜖 ′ app

∅ ⊢ e : 𝜎 ′
1
| 𝜖 ′ app

∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 yield

x :𝜎2 ⊢ e : 𝜎 ′
1
| 𝜖 ′ weakening

x :𝜎2 ⊢ (k x) e : 𝜎 ′
2
| 𝜖 ′ app

∅ ⊢val 𝜆𝜖
′
x :𝜎2 . (k x) e : 𝜎2→ 𝜖 ′ 𝜎 ′

2
abs

yield m f (𝜆𝜖′x :𝜎2. (k x) e) : 𝜎 ′
2
| 𝜖 ′ yield

case (under) under𝜖0,𝜖 l □ • yield m f k −→ yield m f (𝜆 ⟨l |𝜖0⟩x :𝜎2. under𝜖0,𝜖 l (k x))∅ ⊢val k : 𝜎2→ 𝜖 𝜎
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∅ ⊢ under𝜖0,𝜖 l □ • yield m f k : 𝜎 | ⟨l | 𝜖0⟩ given

∅ ⊢ yield m f k : 𝜎 | 𝜖 under

∅ ⊢val f : (𝜎2→ 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′ yield

∅ ⊢val k : 𝜎2→ 𝜖 𝜎 given

x :𝜎2 ⊢ k : 𝜎2→ 𝜖 𝜎 | 𝜖 val and weakening

x :𝜎2 ⊢ k x : 𝜎 | 𝜖 app

x :𝜎2 ⊢ under𝜖0,𝜖 l (k x) : 𝜎 | ⟨l | 𝜖0⟩ under

∅ ⊢ 𝜆 ⟨l |𝜖0⟩x :𝜎2. under𝜖0,𝜖 l (k x) : 𝜎2→ ⟨l | 𝜖0⟩ 𝜎 abs

∅ ⊢ yield m f (𝜆𝜖0x :𝜎2. under𝜖0,𝜖 l (k x)) : 𝜎 | ⟨l | 𝜖0⟩ yield

case (prompt
1
) prompt m h □ • yield m f k −→ f (𝜆𝜖x :𝜎2. prompt m h (k x)), where

∅ ⊢val k : 𝜎2→ ⟨l | 𝜖⟩ 𝜎 .
Because it’s internal safe, we know that the type of h indeed matches that of f .

∅ ⊢ prompt m h □ • yield m f k : 𝜎 | 𝜖 given

∅ ⊢val k : 𝜎2→ ⟨l | 𝜖⟩ 𝜎 given

x :𝜎2 ⊢ k : 𝜎2→ ⟨l | 𝜖⟩ 𝜎 | ⟨l | 𝜖⟩ val and weakening

x :𝜎2 ⊢ k x : 𝜎 | ⟨l | 𝜖⟩ app

∅ ⊢ yield m f k : 𝜎 | ⟨l | 𝜖⟩ prompt

∅ ⊢ops h : 𝜎 | l | 𝜖 prompt

∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 yield

x :𝜎2 ⊢ prompt m h (k x) : 𝜎 | 𝜖 prompt

∅ ⊢val 𝜆𝜖
′
x :𝜎2 . prompt m h (k x) : 𝜎2→ 𝜖 𝜎 abs

∅ ⊢ f (𝜆𝜖′x :𝜎2. prompt m h (k x)) : 𝜎 | 𝜖 app

case (prompt
2
) prompt n h □ • yield m f k −→ yield m f (𝜆𝜖′x :𝜎2. prompt n h (k x)), iff n ≠ m,

∅ ⊢val k : 𝜎2→ ⟨l | 𝜖 ′⟩ 𝜎 ′.
∅ ⊢ prompt n h □ • yield m f k : 𝜎 ′ | 𝜖 ′ given

∅ ⊢val k : 𝜎2→ ⟨l | 𝜖 ′⟩ 𝜎 ′ given

x :𝜎2 ⊢ k : 𝜎2→ ⟨l | 𝜖 ′⟩ 𝜎 ′ | ⟨l | 𝜖 ′⟩ val and weakening

x :𝜎2 ⊢ k x : 𝜎 ′ | ⟨l | 𝜖 ′⟩ app

∅ ⊢ yield m f k : 𝜎 ′ | ⟨l | 𝜖 ′⟩ prompt

∅ ⊢ops h : 𝜎 ′ | l | 𝜖 ′ prompt

∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 yield

x :𝜎2 ⊢ prompt m h (k x) : 𝜎 ′ | 𝜖 ′ prompt

∅ ⊢val 𝜆𝜖
′
x :𝜎2 . prompt m h (k x) : 𝜎2→ 𝜖 ′ 𝜎 ′ abs

yield m f (𝜆𝜖′x :𝜎2. prompt n h (k x)) : 𝜎 ′ | 𝜖 ′ yield

case (perform) w ⊢ perform op 𝜖 ′ 𝜎 v −→ yield m (𝜆𝜖k :𝜎k . f 𝜎 v k) (𝜆 ⟨l |𝜖′⟩x :𝜎2 [𝛼 :=𝜎] . x), with
(m, h, _) = w.l, (op : (∀𝛼. 𝜎1→ 𝜎2) → f ) ∈ h : 𝜎 | l | 𝜖 , 𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 .
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∅ ⊢ perform op 𝜖 ′ 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖 ′⟩ given

(op : (∀𝛼. 𝜎1→ 𝜎2) → f ) ∈ h : 𝜎 | l | 𝜖 given

∅ ⊢val f : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 ops

∅ ⊢val f 𝜎 : 𝜎1 [𝛼 :=𝜎] → 𝜖 (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 tapp

∅ ⊢val v : 𝜎1 [𝛼 :=𝜎] perform and val

∅ ⊢ f 𝜎 v : (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 app

k : 𝜎k ⊢ f 𝜎 v : (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 weakening

k : 𝜎k ⊢ f 𝜎 v k : 𝜎 | 𝜖 app

∅ ⊢val 𝜆𝜖k :𝜎k . f 𝜎 v k : 𝜎k → 𝜎 abs

∅ ⊢val 𝜆 ⟨l |𝜖
′⟩x :𝜎2 [𝛼 :=𝜎] . x : 𝜎2 [𝛼 :=𝜎] → ⟨l | 𝜖 ′⟩ 𝜎2 [𝛼 :=𝜎] abs

yield m (𝜆𝜖k :𝜎k . f 𝜎 v k) (𝜆 ⟨l |𝜖′⟩x :𝜎2 [𝛼 :=𝜎] . x) : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖 ′⟩ yield

□

Proof. (Of Theorem 12) The same as preservation for System Fpw (Theorem 2), with Lemma 24. □

F.5.2 Progress.
Lemma 25. (Progress with effects). If ∅ ⊢ e1 : 𝜎 | 𝜖 , then for any w : evv 𝜖 , we have either (1)
e1 is a value; or (2) w ⊢ e1 ↦−→ e2; or (3) e1 = yield m f k.

Proof. (Of Lemma 25) The proof is essentially the same as progress with effects for System Fpw

(Lemma 14). The main difference between progress for System Fpb from System Fpw is that notice

in option (3) we have yield m f k as the outermost instead of E[yield m f ] as in Lemma 14. That is

because under the bubble semantics, yield can always evaluate under (or, bubble out of) the outer

evaluation context.

We take prompt as an example.

case∅ ⊢ prompt m h e : 𝜎 | 𝜖 . By I.H., we know that either e is a value, or ⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e ↦−→ e′,
or e = yield m f e.

• If e is a value, then by (promptv) we have prompt m h e ↦−→ e.
• If ⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e ↦−→ e′. Then by (promptw), prompt m h e ↦−→ prompt m h e′.
• If e = yield m′ f k.

– m = m′. Then by (prompt
1
), we have prompt m h yield m f k ↦−→ f (𝜆x . prompt m h (k x)).

– m ≠ m′. Then by (prompt
2
), we have

prompt m h yield m′ f k ↦−→ yield m′ f (𝜆x . prompt m h (k x)).
□

Proof. (Of Theorem 13) The same as the progress theorem for System Fpw (Theorem 3), with

Lemma 25. □

F.5.3 Simulation.
Definition 6. (⌈e⌉𝑝𝑤⇓𝑝𝑏 and ⌈e⌉𝑝𝑤⇑𝑝𝑏 ). ⌈e⌉𝑝𝑤⇓𝑝𝑏 turns an expression from Fpw to Fpb by turning

yield m f into yield m f (𝜆x . x); and ⌈e⌉𝑝𝑤⇑𝑝𝑏 turns an expression from Fpb into Fpw by turning back

yield m f k into yield m f . The definition can be lifted straightforward to handlers and evaluation

contexts.

Definition 7. (Eta-expansion of evaluation contexts). We define =𝜂 as a congruent relation between

expressions with E[v] =𝜂 (𝜆x . E[x]) v.
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Lemma 26. (Simulation (small step)). Given ∅ ⊢ e1 : 𝜎 | 𝜖 , and w : evv 𝜖 ,
(1) if e1 −→ e2 in internal-safe System Fpw , we have ⌈e1⌉𝑝𝑤⇓𝑝𝑏 ↦−→∗ e′2 in System Fpb, and e′

2
=𝜂 e2 ;

(2) if w ⊢ e1 −→ e2 in internal-safe System Fpw , we have w ⊢ ⌈e1⌉𝑝𝑤⇓𝑝𝑏 ↦−→ e′
2
in System Fpb, and

e′
2
=𝜂 e2.

Proof. (Of Lemma 26) This Lemma is defined for internal-safe System Fpw because when yielding,

in the (prompt) rule in System Fpw , yield non-deterministically finds a marker, while in System Fpb

in terms of the bubble semantics, yield always finds the closest corresponding marker. Therefore we

restrict the lemma to internal-safe System Fpw so that we know markers in the evaluation context

are unique and two semantics coincide.

By induction on e1 −→ e2 and w ⊢ e1 −→ e2 in System Fpb. Most cases are straightforward. Here

we discuss only interesting cases.

case (perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆𝜖k :𝜎k . f 𝜎 v k).
Then by (perform) from System Fpb, we have
w ⊢ perform op 𝜖 ′ 𝜎 ⌈v⌉𝑝𝑤⇓𝑝𝑏 −→ yield m (𝜆𝜖k :𝜎k . ⌈f ⌉𝑝𝑤⇓𝑝𝑏 𝜎 v ⌈k⌉𝑝𝑤⇓𝑝𝑏) (𝜆 ⟨l |𝜖′⟩x :𝜎2 [𝛼 :=𝜎] . x)
Now

⌈yield m (𝜆𝜖k :𝜎k . ⌈f ⌉𝑝𝑤⇓𝑝𝑏 𝜎 v ⌈k⌉𝑝𝑤⇓𝑝𝑏) (𝜆 ⟨l |𝜖′⟩x :𝜎2 [𝛼 :=𝜎] . x)⌉𝑝𝑤⇑𝑝𝑏
= yield m (𝜆𝜖k :𝜎k . f 𝜎 v k)
case (prompt) prompt m h E[yield m f ] −→ f (𝜆𝜖y :𝜎2 . prompt m h E[y])
We have

⌈prompt m h E[yield m f ]⌉𝑝𝑤⇓𝑝𝑏 = prompt m ⌈h⌉𝑝𝑤⇓𝑝𝑏 ⌈E⌉𝑝𝑤⇓𝑝𝑏 [yield m ⌈f ⌉𝑝𝑤⇓𝑝𝑏 (𝜆x . x)]
Now by the operational semantics rules, we know that yield m f (𝜆x . x) will bubble up until

it finds prompt. During this process, suppose ⌈E⌉𝑝𝑤⇓𝑝𝑏 consists of multiple “minimal” evaluation

contexts (E1 • E2 . . . En). By “minimal” evaluation contexts we mean that each Ei cannot be
destruct anymore to non-empty E′i • E′′i .

Note that initially, we have k = (𝜆x . x) which is equivalent to 𝜆x . □[x]. For each bubble rules,

we have

Ei • yield m f k −→ yield m f (𝜆x . (E • k □) [x])
So bubbling through all the evaluation contexts until prompt, we have the final k′ built up as

k′ = (𝜆x1. (E1 • (𝜆x2 . (E2 • (𝜆x3 . (E3 • (. . . (𝜆x . (□) [x])) □) [x3]) □) [x2]) □) [x1])
We then have

prompt m ⌈h⌉𝑝𝑤⇓𝑝𝑏 (yield m f k′) −→ ⌈f ⌉𝑝𝑤⇓𝑝𝑏 (𝜆y. prompt m h (k′ y))
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We have

k′ y
=

(𝜆x1 . (E1 • (𝜆x2. (E2 • (𝜆x3. (E3 • (. . . (𝜆x . (□) [x])) □) [x3]) □) [x2]) □) [x1]) y
=𝜂
(E1 • (𝜆x2. (E • (𝜆x3 . (E • (. . . (𝜆x . (□) [x])) □) [x3]) □) [x2]) □) [y]
=

E [(𝜆x2. (E • ((𝜆x3 . (E3 • (. . . (𝜆x . (□) [x])) □) [x3])) □) [x2]) y]
=𝜂
E1 [(E2 • (𝜆x3. (E3 • (. . . (𝜆x . (□) [x])) □) [x3]) □) [y] ]
=

E1 [E2 [(𝜆x3 . (E3 • (. . . (𝜆x . (□) [x])) □) [x3]) y] ]
=𝜂
E1 [E2 [ (E3 • (. . . (𝜆x . (□) [x])) □) [y] ] ]
=

E1 [E2 [ E3 [(. . . (𝜆x . (□) [x])) y] ] ]
=

. . .

E1 [E2 [ E3 [ . . .[ En [(𝜆x . (□) [x]) y] ] ] ]
=𝜂
E1 [E2 [ E3 [ . . .[ En [y] ] ] ]
That means that

⌈k′ y⌉𝑝𝑤⇑𝑝𝑏 = ⌈E1 [E2 [ E3 [ . . .[ En [y] ] ] ]⌉𝑝𝑤⇑𝑝𝑏 = E[y]
Therefore

⌈⌈f ⌉𝑝𝑤⇓𝑝𝑏 (𝜆y. prompt m h (k′ y))⌉𝑝𝑤⇑𝑝𝑏 = f (𝜆y. prompt m h E[y]) □

Theorem 18. (Simulation). Given ∅ ⊢ e1 : 𝜎 | 𝜖 , if w ⊢ e1 ↦−→ e2 in internal-safe System Fpw ,
we have w ⊢ ⌈e1⌉𝑝𝑤⇓𝑝𝑏 ↦−→∗ e′2 in System Fpb, and e′

2
=𝜂 e2.

Proof. (Of Theorem 18) Follows directly based on Lemma 26. □

F.6 Monadic Translation

F.6.1 Translation Soundness.
Lemma27. (Monadic Translation is Sound). 1. If Γ ⊢ e : 𝜎 | 𝜖 ⇝ e′, then ⌊Γ⌋ ⊢F e′ : Mon 𝜖 ⌊𝜎⌋.
2. If Γ ⊢val v : 𝜎 ⇝ v ′, then ⌊Γ⌋ ⊢F v ′ : ⌊𝜎⌋.
3. If Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′, then ⌊Γ⌋ ⊢ h′ : Hndl 𝜖 ⌊𝜎⌋ .
4. If Γ ⊢ec E : 𝜎1→ 𝜎2 | 𝜖 ⇝ g, then ⌊Γ⌋ ⊢F g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎2⌋.

Proof. (Of Lemma 27) Part 1 By induction on the translation.

case e = v.
Γ ⊢ v : 𝜎 | 𝜖 ⇝ pure 𝜖 ⌊𝜎⌋ v ′ given

Γ ⊢val v : 𝜎 | 𝜖 ⇝ v ′ val

⌊Γ⌋ ⊢F v ′ : ⌊𝜎⌋ Part 2

⌊Γ⌋ ⊢F Pure 𝜖 ⌊𝜎⌋ v ′ : Mon 𝜖 ⌊𝜎⌋ Pure, ftapp and fapp

case e = e 𝜎 .
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Γ ⊢ e 𝜎 : 𝜎1 [𝛼 :=𝜎] | 𝜖 ⇝ e′ ▷ (𝜆x : ⌊∀𝛼𝜅 . 𝜎1⌋ . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) given

Γ ⊢ e : ∀𝛼. 𝜎1 | 𝜖 ⇝ e′ tapp

⌊Γ⌋ ⊢F e′ : Mon 𝜖 (∀𝛼. ⌊𝜎1⌋) I.H.

⌊𝜎1 [𝛼 :=𝜎]⌋ = ⌊𝜎1⌋ [𝛼 :=⌊𝜎⌋] by substitution

⌊Γ⌋, x : ∀𝛼. ⌊𝜎1⌋ ⊢F pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋) : Mon 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ pure, ftapp and fapp

⌊Γ⌋ ⊢F 𝜆x : ⌊∀𝛼. 𝜎1⌋] . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋) : (∀𝛼. ⌊𝜎1⌋) →Mon 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ fabs

⌊Γ⌋ ⊢F e′ ▷ (𝜆x : ⌊∀𝛼. 𝜎1⌋ . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) : Mon 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ▷
case e = e1 e2.

Γ ⊢ e1 e2 : 𝜎 | 𝜖 ⇝ e′
1
▷ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . e′

2
▷ f ) given

Γ ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 ⇝ e′
1

app

Γ ⊢ e2 : 𝜎1 | 𝜖 ⇝ e′
2

above

⌊Γ⌋ ⊢F e′
1
: Mon 𝜖 (⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋) I.H

⌊Γ⌋ ⊢F e′
2
: Mon 𝜖 ⌊𝜎1⌋ I.H

⌊Γ⌋, f : (⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋) ⊢F f : ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋ fvar

⌊Γ⌋, f : (⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋) ⊢F e′
2
: Mon 𝜖 ⌊𝜎1⌋ weakening

⌊Γ⌋, f : (⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋) ⊢F e′
2
▷ f : Mon 𝜖 ⌊𝜎⌋ ▷

⌊Γ⌋ ⊢F (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . e′
2
▷ f ) : (⌊𝜎1⌋ →Mon ⌊𝜎⌋) →Mon 𝜖 ⌊𝜎⌋ fabs

⌊Γ⌋ ⊢F e′
1
▷ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . e′

2
▷ f ) : Mon 𝜖 ⌊𝜎⌋ ▷

case e = prompt m h e.
Γ ⊢ prompt m h e : 𝜎 | 𝜖 ⇝ promptl 𝜖 ⌊𝜎⌋ m h′ e′ given

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′ prompt

Γ ⊢ e : 𝜎 | ⟨l | 𝜖⟩ ⇝ e′ above

⌊Γ⌋ ⊢F h′ : Hndl 𝜖 ⌊𝜎⌋ Part 3

⌊Γ⌋ ⊢F e′ : Mon ⟨l | 𝜖⟩ 𝜎 I.H.

⌊Γ⌋ ⊢F promptl 𝜖 ⌊𝜎⌋ m h′ e′ : Mon 𝜖 𝜎 prompt, ftapp and fapp

case e = yield m f k.
Γ ⊢ yield m h e0 : 𝜎 | 𝜖 ⇝ yield 𝜖 ⌊𝜎⌋ ⌊𝜎2⌋ 𝜖 ′ ⌊𝜎 ′⌋ m f ′ k′ given

Γ ⊢val f : (𝜎2→ 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′ ⇝ f ′ yieldb

Γ ⊢val k : 𝜎2→ 𝜖 𝜎 ⇝ k′ above

⌊Γ⌋ ⊢F f ′ : (⌊𝜎2⌋ →Mon 𝜖 ′ ⌊𝜎 ′⌋) →Mon 𝜖 ′ ⌊𝜎 ′⌋ Part 3

⌊Γ⌋ ⊢F k′ : ⌊𝜎2 ⌋ →Mon 𝜖 ⌊𝜎⌋ Part 3

⌊Γ⌋ ⊢F yield 𝜖 ⌊𝜎⌋ ⌊𝜎2⌋ 𝜖 ′ ⌊𝜎 ′⌋ m f ′ k′ : Mon 𝜖 ⌊𝜎⌋ yield, ftapp and fapp

case e = under𝜖0,𝜖 l e .
Γ ⊢ under𝜖0,𝜖 l e : 𝜎 | ⟨l | 𝜖0⟩ ⇝ 𝜆w : Evv ⟨l | 𝜖0⟩. let (m, _, w ′) : Ev 𝜖 r = w.l

in under l ⟨l | 𝜖0⟩ ⌊𝜎⌋ 𝜖 r m w ′ e′ w given

Γ ⊢ e : 𝜎 | 𝜖 ⇝ e′ under

⌊Γ⌋ ⊢F e′ : Mon 𝜖 ⌊𝜎⌋ I.H.

⌊Γ⌋ ,w : Evv ⟨l | 𝜖0⟩ ⊢F let (m, _, w ′) : Ev 𝜖 r = w.l
in under l ⟨l | 𝜖0⟩ ⌊𝜎⌋ 𝜖 r m w ′ e′ w :Ctl ⟨l | 𝜖0⟩ ⌊𝜎⌋ under l

⌊Γ⌋ ⊢F 𝜆w : Evv ⟨l | 𝜖0⟩. let (m, _, w ′) : Ev 𝜖 r = w.l
in under l ⟨l | 𝜖0⟩ ⌊𝜎⌋ 𝜖 r m w ′ e′ w : Mon ⟨l | 𝜖0⟩ ⌊𝜎⌋ fabs

Part 2
By induction on the translation.

case v = x.
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Γ ⊢val x : 𝜎 ⇝ x given

x :𝜎 ∈ Γ var

x : ⌊𝜎⌋ ∈ ⌊Γ⌋ follows

⌊Γ⌋ ⊢F x : ⌊𝜎⌋ fvar

case v = 𝜆𝜖 x :𝜎. e.
Γ ⊢val 𝜆𝜖 x : 𝜎1.e : 𝜎1→𝜖 𝜎2 ⇝ 𝜆x : ⌊𝜎1⌋ . e′ given

Γ, x :𝜎1 ⊢ e : 𝜎2 | 𝜖 ⇝ e′ abs

⌊Γ⌋, x : ⌊𝜎1⌋ ⊢F e′ : Mon 𝜖 ⌊𝜎2⌋ Part 1

⌊Γ⌋ ⊢F 𝜆x : ⌊𝜎1⌋ . e′ : ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎2⌋ fabs

case v = Λ𝛼𝜅 . v0.
Γ ⊢val Λ𝛼𝜅 . v : ∀𝛼. 𝜎 ⇝ Λ𝛼𝜅 . v ′ given

Γ ⊢val v : 𝜎 ⇝ v ′ tabs

⌊Γ⌋ ⊢F v ′ : ⌊𝜎⌋ I.H.

⌊Γ⌋ ⊢F Λ𝛼. v ′ : ∀𝛼. ⌊𝜎⌋ ftabs

case v = handler h.
Γ ⊢val handler𝜖 h : (() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎 ⇝ handler l 𝜖 ⌊𝜎⌋ h′ given

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′ mhandle

⌊Γ⌋ ⊢F h′ : Hndl 𝜖 ⌊𝜎⌋ Part 3

⌊Γ⌋ ⊢F handler l 𝜖 ⌊𝜎⌋ h′ : (() →Mon ⟨l | 𝜖⟩ 𝜎) →Mon 𝜖 𝜎 handler , ftapp. fapp
case v = perform op 𝜖 𝜎 .

Γ ⊢val perform op 𝜖 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎]
⇝ performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r) given

⌊𝜎1 [𝛼 :=𝜎]⌋ = ⌊𝜎1⌋ [𝛼 :=⌊𝜎⌋] by substitution

⌊𝜎2 [𝛼 :=𝜎]⌋ = ⌊𝜎2⌋ [𝛼 :=⌊𝜎⌋] by substitution

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) mperform

⌊Γ⌋ ⊢F (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r) : ∀𝜇 r . Hndl 𝜇 r → Op ⌊𝜎1⌋ [𝛼 :=⌊𝜎⌋] ⌊𝜎2⌋ [𝛼 :=⌊𝜎⌋] 𝜇 r ftabs, selectop

⌊Γ⌋ ⊢F performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r) :

⌊𝜎1 [𝛼 :=𝜎]⌋ →Mon ⟨l | 𝜖⟩ ⌊𝜎2 [𝛼 :=𝜎]⌋ perform, ftapp, fapp

Part 3
Γ ⊢ops {op1→f1, . . ., opn→ fn} : 𝜎 | l | 𝜖 ⇝ Hndl (∀𝛼. Normal ⌊𝜎1⌋ ⌊𝜎2⌋ 𝜖 ⌊𝜎⌋ f ′i ) given

Γ ⊢val fi : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→𝜖 𝜎) → 𝜖 𝜎 ⇝ f ′i ops

⌊Γ⌋ ⊢F f ′i : ∀𝛼. ⌊𝜎1⌋ →Mon 𝜖 ((⌊𝜎2⌋ →Mon ⌊𝜎⌋) →Mon ⌊𝜎⌋) Part 2

⌊Γ⌋ ⊢F Normal ⌊𝜎1⌋ ⌊𝜎2⌋ 𝜖 ⌊𝜎⌋ f ′i : ∀𝛼. Op ⌊𝜎1⌋ ⌊𝜎2⌋ 𝜖 ⌊𝜎⌋ Op
⌊Γ⌋ ⊢F Hndl (Normal ⌊𝜎1⌋ ⌊𝜎2⌋ 𝜖 ⌊𝜎⌋ f ′i ) : Hnd

l 𝜖 ⌊𝜎⌋ Hnd and fapp

Part 4 case cempty.

⌊Γ⌋ ⊢ 𝜆x :Mon 𝜖 ⌊𝜎⌋ . x : Mon 𝜖 ⌊𝜎⌋ →Mon 𝜖 ⌊𝜎⌋
case capp1.
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Γ ⊢ec E e : 𝜎1→ 𝜎3 | 𝜖 ⇝ (𝜆f : ⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋ . e′ ▷ f ) ★ g given

Γ ⊢ e : 𝜎2 | 𝜖 ⇝ e′

Γ ⊢ec E : 𝜎1→ (𝜎2→𝜖 𝜎3) | 𝜖 ⇝ g
⌊Γ⌋ ⊢F e′ : Mon 𝜖 ⌊𝜎2⌋ Part 1

⌊Γ⌋ ⊢F g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ 𝜎1→Mon 𝜖 (⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋) I.H.

⌊Γ⌋, f : ⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋ ⊢F e′ : Mon 𝜖 ⌊𝜎2⌋ weakening

⌊Γ⌋, f : ⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋ ⊢F (e′ ▷ f ) : Mon 𝜖 ⌊𝜎3⌋ (▷)
⌊Γ⌋ ⊢F (𝜆f : ⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋ . e′ ▷ f ) : (⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋) →Mon 𝜖 ⌊𝜎3⌋ fabs

⌊Γ⌋, f : ⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋ ⊢F g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ 𝜎1→Mon 𝜖 (⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋) weakening

⌊Γ⌋ ⊢F (𝜆f : ⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋ . e′ ▷ f ) ★ g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎3⌋ (★)
case capp2.

Γ ⊢ec v E : 𝜎1→ 𝜎3 | 𝜖 ⇝ v ★ g given

Γ ⊢val v : 𝜎2→𝜖 𝜎3 ⇝ v ′

Γ ⊢ec E : 𝜎1→ 𝜎2 | 𝜖 ⇝ g
⌊Γ⌋ ⊢F v ′ : ⌊𝜎2⌋ →Mon 𝜖 ⌊𝜎3⌋ Part 2

⌊Γ⌋ ⊢F g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎2⌋ I.H.

⌊Γ⌋ ⊢F v ★ g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎3⌋ (★)
case ctapp.

Γ ⊢ec E 𝜎 : 𝜎1→ 𝜎2 [𝛼 :=𝜎] | 𝜖 ⇝ (𝜆x : ⌊∀𝛼. 𝜎2⌋ . pure 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) ★ g given

Γ ⊢ec E : 𝜎1→∀𝛼. 𝜎2 | 𝜖 ⇝ g
⌊Γ⌋ ⊢F g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊∀𝛼. 𝜎2⌋ I.H.

⌊Γ⌋, x : ⌊∀𝛼. 𝜎2⌋ ⊢F (x ⌊𝜎⌋)) : ⌊𝜎2⌋ [𝛼 :=⌊𝜎⌋] ftapp

⌊Γ⌋, x : ⌊∀𝛼. 𝜎2⌋ ⊢F (x ⌊𝜎⌋)) : ⌊𝜎2 [𝛼 :=𝜎]⌋ by substitution

⌊Γ⌋, x : ⌊∀𝛼. 𝜎2⌋ ⊢F pure 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) : Mon 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ pure
⌊Γ⌋ ⊢F (𝜆x : ⌊∀𝛼. 𝜎2⌋ . pure 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) : ⌊∀𝛼. 𝜎2⌋ →Mon 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ fabs

⌊Γ⌋ ⊢F (𝜆x : ⌊∀𝛼. 𝜎2⌋ . pure 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) ★ g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎2 [𝛼 :=𝜎]⌋ (★)
case cprompt.

Γ ⊢ec Γ ⊢ec prompt m h E : 𝜎1→ 𝜎 | 𝜖 promptl 𝜖 ⌊𝜎⌋ m h′ ◦ g given

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′

Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨l | 𝜖⟩ ⇝ g
⌊Γ⌋ ⊢F h′ : Hndl 𝜖 ⌊𝜎⌋ Part 3

⌊Γ⌋ ⊢F g : Mon ⟨⌈⌈E⌉⌉ | l | 𝜖⟩ ⌊𝜎1⌋ →Mon ⟨l | 𝜖⟩ ⌊𝜎⌋ I.H.

⌊Γ⌋ ⊢F promptl 𝜖 ⌊𝜎⌋ m h : Mon ⟨l | 𝜖⟩ ⌊𝜎⌋ →Mon 𝜖 ⌊𝜎⌋ promptl

⌊Γ⌋ ⊢F (promptl 𝜖 ⌊𝜎⌋ m h) ◦ g : Mon ⟨⌈⌈E⌉⌉ | l | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋ (◦)
case cunder.
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Γ ⊢ec under𝜖
′,𝜖 l E : 𝜎1→ 𝜎 | ⟨l | 𝜖 ′⟩ ⇝ 𝜆x :Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ . 𝜆w : Evv ⟨l | 𝜖 ′⟩. given

let (m, h′,w ′) : Ev 𝜖 r = w.l in under l ⟨l | 𝜖 ′⟩ ⌊𝜎⌋ 𝜖 r m w ′ (g x) w
Γ ⊢ec E : 𝜎1→ 𝜎 | 𝜖 ⇝ g
⌊Γ⌋ ⊢F g : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋ I.H.

⌊Γ⌋, x :Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ ⊢F g x : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎⌋ I.H.

⌊Γ⌋, x :Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋, w : Evv ⟨l | 𝜖 ′⟩ ⊢F
let (m, h′,w ′) : Ev 𝜖 r = w.l in under l ⟨l | 𝜖 ′⟩ ⌊𝜎⌋ 𝜖 r m w ′ (g x) w : Ctl ⟨l | 𝜖 ′⟩ ⌊𝜎⌋ under l

⌊Γ⌋ ⊢F 𝜆x :Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ . 𝜆w : Evv ⟨l | 𝜖 ′⟩.
let (m, h′,w ′) : Ev 𝜖 r = w.l

in under l ⟨l | 𝜖 ′⟩ ⌊𝜎⌋ 𝜖 r m w ′ (g x) w : Mon ⟨⌈⌈E⌉⌉ | 𝜖⟩ ⌊𝜎1⌋ →Mon ⟨l | 𝜖 ′⟩ ⌊𝜎⌋
(m, h′,w ′) : Ev 𝜖 r, h′, w ′ = w.l given

Since under removes labels from the context effect, we consider

⟨⌈⌈under𝜖′, 𝜖 l E⌉⌉ | l | 𝜖 ′⟩
= ⟨⌈⌈E⌉⌉ | ⌈⌈under𝜖′, 𝜖 l⌉⌉ | l | 𝜖 ′⟩
= ⟨⌈⌈E⌉⌉ | 𝜖⟩
□

Proof. (Proof for Theorem 6) Applying Lemma 27 Part 1 with Γ = ∅ and 𝜖 = ⟨⟩. □

Lemma 28. . If Γ ⊢ec F : 𝜎1→ 𝜎2 | 𝜖 ⇝ g, then g = g1 ★ (g2 ★ ( ..★ gn)), where gn = id.

Proof. (Of Lemma 28) By straightforward induction on the translation. Note the gn comes from the

translation of □, which is always id. □.

F.6.2 Simulation.
Lemma 29. (Simulation (−→)). 1. If∅ ⊢ e1 : 𝜎 | 𝜖 ⇝ e′

1
and∅ ⊢ e2 : 𝜎 | 𝜖 ⇝ e′

2
, and e1−→ e2

in internal-safe System Fpb, and w ′ : Evv 𝜖 then e′
1
w ′ ↦−→∗ e′

2
w ′;

2. If ∅ ⊢ e1 : 𝜎 | 𝜖 ⇝ e′
1
and ∅ ⊢ e2 : 𝜎 | 𝜖 ⇝ e′

2
, and w ⊢ e1 −→ e2 in internal-safe System

Fpb, where w elaborates to w ′ : Evv 𝜖 , then e′
1
⌊w⌋ ↦−→∗ e′

2
⌊w⌋;

Proof. (Of Theorem 29) To prove simulation, we apply many kinds of functional laws and equiva-

lence throughout the proof.

Also, to make the proof concise, we sometimes omit the type arguments to regular functions.

Part 1. Induction on the operational rules.

case (app) (𝜆𝜖 x :𝜎1 . e) v −→ e[x:=v].
∅ ⊢ (𝜆𝜖 x :𝜎1. e) v : 𝜎 | 𝜖 ⇝ (pure 𝜖 ⌊𝜎1→ 𝜖 𝜎2⌋ (𝜆𝜖 x :𝜎1 . e′)) ▷ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . pure 𝜖 ⌊𝜎1⌋ v ′ ▷ f )
((pure 𝜖 ⌊𝜎1→ 𝜖 𝜎2⌋ (𝜆𝜖 x :𝜎1. e′)) ▷ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . pure 𝜖 ⌊𝜎1⌋ v ′ ▷ f )) w ′
↦−→∗ (𝜆w. (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . pure 𝜖 ⌊𝜎1⌋ v ′ ▷ f ) (𝜆𝜖 x :𝜎1 . e′) w) w ′
↦−→∗ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . pure 𝜖 ⌊𝜎1⌋ v ′ ▷ f ) (𝜆𝜖 x :𝜎1. e′) w ′
↦−→∗ (pure 𝜖 ⌊𝜎1⌋ v ′ ▷ (𝜆𝜖 x :𝜎1. e′)) w ′
↦−→∗ (𝜆w. (𝜆𝜖 x :𝜎1. e′) v ′ w) w ′
↦−→∗ (𝜆𝜖 x :𝜎1 . e′) v ′ w ′
↦−→∗ e′[x:=v ′] w ′
case (tapp) (Λ𝛼𝜅 . v) [𝜎] −→ v [𝛼 :=𝜎].
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∅ ⊢ (Λ𝛼𝜅 . v) [𝜎] : 𝜎1 [𝛼 :=𝜎] | 𝜖
⇝ (pure 𝜖 ⌊∀𝛼𝜅 . 𝜎1⌋ (Λ𝛼𝜅 . v ′)) ▷ (𝜆x : ⌊∀𝛼𝜅 . 𝜎1⌋ . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋))

((pure 𝜖 ⌊∀𝛼𝜅 . 𝜎1⌋ (Λ𝛼𝜅 . v ′)) ▷ (𝜆x : ⌊∀𝛼𝜅 . 𝜎1⌋ . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋))) w ′
↦−→∗ (𝜆w. (𝜆x : ⌊∀𝛼𝜅 . 𝜎1⌋ . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) (Λ𝛼𝜅 . v ′) w) w ′
↦−→∗ (𝜆x : ⌊∀𝛼𝜅 . 𝜎1⌋ . pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (x ⌊𝜎⌋)) (Λ𝛼𝜅 . v ′) w ′
↦−→∗ pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ((Λ𝛼𝜅 . v ′) ⌊𝜎⌋) w ′
↦−→∗ pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ v ′[𝛼 :=𝜎] w ′
∅ ⊢ v :𝜎1 | 𝜖 ⇝ pure 𝜖 ⌊𝜎1⌋ v ′
∅ ⊢ v [𝛼 :=𝜎] :𝜎1 [𝛼 :=𝜎] | 𝜖 ⇝ pure 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ (v ′[𝛼 :=𝜎]) By substitution

case (handler) (handler h) v −→ prompt m h (v ()) with m unique.

∅ ⊢ (handler h) v : 𝜎 | 𝜖
⇝ pure 𝜖 ⌊(() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎⌋ (handler l 𝜖 ⌊𝜎⌋ h′) ▷ (𝜆f : ⌊() → 𝜖 𝜎⌋ . pure ⟨l | 𝜖⟩ () v ▷ f )

(pure 𝜖 ⌊(() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎⌋ (handler l 𝜖 ⌊𝜎⌋ h′) ▷ (𝜆f : ⌊() → 𝜖 𝜎⌋ . pure ⟨l | 𝜖⟩ () v ▷ f )) w ′
↦−→∗ (𝜆w. (𝜆f : ⌊() → 𝜖 𝜎⌋ . pure ⟨l | 𝜖⟩ () v ▷ f ) (handler l 𝜖 ⌊𝜎⌋ h′) w) w ′
↦−→∗ (𝜆f : ⌊() → 𝜖 𝜎⌋ . pure ⟨l | 𝜖⟩ () v ▷ f ) (handler l 𝜖 ⌊𝜎⌋ h′) w ′
↦−→∗ (pure ⟨l | 𝜖⟩ () v ▷ (handler l 𝜖 ⌊𝜎⌋ h′)) w ′
↦−→∗ (𝜆w. (handler l 𝜖 ⌊𝜎⌋ h′) v w) w ′
↦−→∗ (handler l 𝜖 ⌊𝜎⌋ h′) v w ′

↦−→∗ freshm (𝜆m→ promptl 𝜖 ⌊𝜎⌋ m h′ (v ′ ())) w ′
↦−→∗ promptl 𝜖 ⌊𝜎⌋ m h′ (v ′ ()) w ′ m fresh

∅ ⊢ promptl m h (v ()) : 𝜎 | 𝜖
⇝ promptl 𝜖 ⌊𝜎⌋ m h′ (pure 𝜖 ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ v ▷ (𝜆f : ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ . pure 𝜖 ⌊()⌋ () ▷ f ))

promptl 𝜖 ⌊𝜎⌋ m h′ (pure 𝜖 ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ v ▷ (𝜆f : ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ . pure 𝜖 ⌊()⌋ () ▷ f )) w ′
↦−→∗ promptl 𝜖 ⌊𝜎⌋ m h′ (𝜆w. (𝜆f : ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ . pure 𝜖 ⌊()⌋ () ▷ f ) v w) w ′
↦−→∗ (𝜆w. case (𝜆w. (𝜆f : ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ . pure 𝜖 ⌊()⌋ () ▷ f ) v w) ⟨⟨l : (m, h′,w | w⟩⟩ of . . .) w ′
↦−→∗ case (𝜆w. (𝜆f : ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ . pure 𝜖 ⌊()⌋ () ▷ f ) v w) ⟨⟨l :m, h′,w ′ | w ′⟩⟩ of . . .
↦−→∗ case (𝜆f : ⌊() → ⟨l | 𝜖⟩ 𝜎⌋ . pure 𝜖 ⌊()⌋ () ▷ f ) v ⟨⟨l :m, h′,w ′ | w ′⟩⟩ of . . .
↦−→∗ case (pure 𝜖 ⌊()⌋ () ▷ v) ⟨⟨l :m, h′,w ′ | w ′⟩⟩ of . . .
↦−→∗ case (𝜆w. v () w) ⟨⟨l :m, h′,w ′ | w ′⟩⟩ of . . .
↦−→∗ case v () ⟨⟨l :m, h′,w ′ | w ′⟩⟩ of . . .
= promptl 𝜖 ⌊𝜎⌋ m h′ (v ′ ()) w ′
case (promptv) prompt m h v −→ v.

∅ ⊢ prompt m h v : 𝜎 | 𝜖 ⇝ promptl 𝜖 ⌊𝜎⌋ m h′ (pure ⟨l | 𝜖⟩ ⌊𝜎⌋ v)
promptl 𝜖 ⌊𝜎⌋ m h′ (pure ⟨l | 𝜖⟩ ⌊𝜎⌋ v) w ′
↦−→∗ Pure ⟨l | 𝜖⟩ ⌊𝜎⌋ v
= pure ⟨l | 𝜖⟩ ⌊𝜎⌋ v w ′

case (prompt
1
) prompt m h (yield m f k) −→ f (𝜆𝜖 x : 𝜎2 . prompt m h (k x))

with ∅ ⊢val k : 𝜎2→ ⟨l | 𝜖⟩ 𝜎 .
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∅ ⊢ prompt m h (yield m f ) ⇝ promptl m h′ (yield 𝜖 ′ m f ′ k′)
promptl m h′ (yield m f ′ k′) w ′
↦−→∗ f ′ (promptl m h′ ◦ k′) w ′
= f ′ (𝜆x . promptl m h′ (k′ x)) w ′
∅ ⊢ f (𝜆𝜖 x : 𝜎2. prompt m h (k′ x))

⇝ (pure f ′) ▷ (𝜆g. pure (𝜆x . promptl m h′ (pure k′ ▷ (𝜆h. pure x ▷ h))) ▷ g)
↦−→∗ ((pure f ′) ▷ (𝜆g. pure (𝜆x . promptl m h′ (pure k′ ▷ (𝜆h. pure x ▷ h))) ▷ g)) w ′
↦−→∗ (𝜆w. (𝜆g. pure ((𝜆x . promptl m h′ (pure k′ ▷ (𝜆h. pure x ▷ h))) ▷ g) f ) w) w ′
↦−→∗ (𝜆g. pure ((𝜆x . promptl m h′ (pure k′ ▷ (𝜆h. pure x ▷ h))) ▷ g) f ) w ′
↦−→∗ (pure (𝜆x . promptl m h′ (pure k′ ▷ (𝜆h. pure x ▷ h))) ▷ f ′) w ′
↦−→∗ (𝜆w. f ′ (𝜆x . promptl m h′ (pure k′ ▷ (𝜆h. pure x ▷ h))) w) w ′
↦−→∗ f ′ (𝜆x . promptl m h′ (pure k′ ▷ (𝜆h. pure x ▷ h))) w ′
↦−→∗ f ′ (𝜆x . promptl m h′ (𝜆w. (𝜆h. pure x ▷ h) k′ w)) w ′
= f ′ (𝜆x . promptl m h′ ((𝜆h. pure x ▷ h) k′)) w ′
↦−→∗ f ′ (𝜆x . promptl m h′ (pure x ▷ k′) w ′
↦−→∗ f ′ (𝜆x . promptl m h′ (𝜆w. k′ x w) w ′
= f ′ (𝜆x . promptl m h′ (k′ x) w ′
case (prompt

2
) prompt n h (yield m f k) −→ yield m f (𝜆𝜖x :𝜎2. prompt n h (k x)) iff n ≠ m

∅ ⊢ prompt n h (yield m f ) ⇝ promptl n h′ (yield 𝜖 ′ m f ′ k′)
promptl n h′ (yield m f ′ k′) w ′
↦−→∗ Yield m f ′ (prompt n h′ ◦ k′)
= Yield m f ′ (𝜆x . prompt n h′ (k′ x))
∅ ⊢ yield m f (𝜆𝜖x :𝜎2. prompt n h (k x)) ⇝ yield m f ′ (𝜆x . prompt n h′ (k′ x) )
yield m f ′ (𝜆x . prompt n h′ (k′ x) w ′
= Yield m f ′ (𝜆x . prompt n h′ (k′ x)
case (app

1
) v (yield m f k) −→ yield m f (𝜆𝜖x :𝜎2. v (k x))

∅ ⊢ v (yield m f k) ⇝ pure v ′ ▷ (𝜆f . (yield m f ′ k′) ▷ f )
(pure v ′ ▷ (𝜆f . (yield m f ′ k′) ▷ f )) w ′
↦−→∗ (𝜆w. (𝜆f . (yield m f ′ k′) ▷ f ) v ′ w) w ′
↦−→∗ (𝜆f . (yield m f ′ k′) ▷ f ) v ′ w ′
↦−→∗ ((yield m f ′ k′) ▷ v ′) w ′
↦−→∗ (𝜆w. Yield m f ′ (v ★ k′) ) w ′
↦−→∗ Yield m f ′ (v ′ ★ k′)
= Yield m f ′ (𝜆x . k′ x ▷ v ′)
∅ ⊢ yield m f (𝜆𝜖x :𝜎2. v (k x))

⇝ yield m f ′ (𝜆x . pure v ′ ▷ (𝜆f . (pure k′ ▷ (𝜆g. pure x ▷ g)) ▷ f ) )
yield m f ′ (𝜆x . pure v ′ ▷ (𝜆f . (pure k′ ▷ (𝜆g. pure x ▷ g)) ▷ f )) w ′
↦−→∗ Yield m f ′ (𝜆x . (pure k′ ▷ (𝜆g. pure x ▷ g)) ▷ v ′ )
↦−→∗ Yield m f ′ (𝜆x . (pure x ▷ k′) ▷ v ′ )
↦−→∗ Yield m f ′ (𝜆x . k′ x ▷ v ′ )
case (app

2
) yield m f k e −→ yield m f (𝜆𝜖x :𝜎2. (k x) e) | ∅ ⊢val k : 𝜎2→ 𝜖 𝜎
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∅ ⊢ (yield m f k) e ⇝ (yield m f ′ k′) ▷ (𝜆f . e′ ▷ f ′))
((yield m f ′ k′) ▷ (𝜆f . e′ ▷ f ′))) w ′
↦−→∗ (𝜆w. (Yield m f ′ ((𝜆f . e′ ▷ f ′) ★ k))) w ′
↦−→∗ Yield m f ′ ((𝜆f . e′ ▷ f ′) ★ k′)
= Yield m f ′ (𝜆x . k′ x ▷ (𝜆f . e′ ▷ f ′))
∅ ⊢ yield m f (𝜆𝜖x :𝜎2. (k x) e)

⇝ yield m f ′ (𝜆x . (pure k′ ▷ (𝜆g. pure x ▷ g)) ▷ (𝜆f . e′ ▷ f )) )
yield m f ′ (𝜆x . (pure k′ ▷ (𝜆g. pure x ▷ g)) ▷ (𝜆f . e′ ▷ f )) ) w ′
↦−→∗ Yield m f ′ (𝜆x . (pure x ▷ k′) ▷ (𝜆f . e′ ▷ f )) )
↦−→∗ Yield m f ′ (𝜆x . k′ x ▷ (𝜆f . e′ ▷ f ))
case (under) under𝜖0,𝜖 l (yield n f k) −→ yield n f (𝜆𝜖0x :𝜎2. under𝜖0,𝜖 l (k x))

∅ ⊢ under l (yield n f k) ⇝ 𝜆w. let (m, _,w ′) = w.l in under l m w ′ (yield n f ′ k′) w
(𝜆w. let (m, _,w1) = w.l in under l m w1 (yield n f ′ k′) w) w ′
↦−→∗ let (m, _,w1) = w ′.l in under l m w1 (yield n f ′ k′) w ′
↦−→∗ let (m, _,w1) = w ′.l in (Yield n f ′ (underkl m k′))
= let (m, _,w1) = w ′.l in Yield n f ′ (𝜆x . 𝜆w2. underkl m k′ x w2)
= let (m, _,w1) = w ′.l in

Yield n f ′ (𝜆x . 𝜆w2 . let (m2, _, w ′2) = w2 .l in if (m = m2) then under l m w ′
2
(k′ x) w2)

∅ ⊢ yield n f (𝜆𝜖x :𝜎2 . under l (k x))
⇝ yield n f ′ (𝜆x . 𝜆w2. let (m, _, w ′

2
) = w2 .l in under m w ′

2
(pure k′ ▷ (𝜆f . pure x ▷ f )) w2 )

yield n f ′ (𝜆x . 𝜆w2. let (m, _, w ′
2
) = w2 .l in under m w ′

2
(pure k′ ▷ (𝜆f . pure x ▷ f )) w2 ) w ′

↦−→∗ Yield n f ′ (𝜆x . 𝜆w2. let (m, _, w ′
2
) = w2.l in under m w ′

2
(k′ x) w2)

= Yield n f ′ (𝜆x . 𝜆w2. let (m, _, w ′
2
) = w2 .l in under m w ′

2
(k′ x) w2)

For internal-safe expressions, we know that m = m2 is always true, so the expressions are

equivalent.

Part 2. case (perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆𝜖k :𝜎k . f 𝜎 v k) (𝜆 ⟨l |𝜖0⟩x :𝜎2 [𝛼 :=𝜎] . x)
with (m, h, _) = w.l, (op : (∀𝛼. 𝜎1→ 𝜎2) → f ) ∈ h : 𝜎 | l | 𝜖 , 𝜎k = 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 .

∅ ⊢ perform op 𝜖0 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖0⟩
⇝ (pure (performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r))) ▷ (𝜆f . pure v ′ ▷ f )
(pure (performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r))) ▷ (𝜆f . pure v ′ ▷ f ) w ′
↦−→∗ performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r) v ′ w ′
↦−→∗ performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r) v ′ w ′
↦−→∗ Yield m (𝜆k. f ′ v ′ ▷ (𝜆g. g k)) pure
∅ ⊢ yield m (𝜆𝜖k :𝜎k . f 𝜎 v k) (𝜆 ⟨l |𝜖0⟩x :𝜎2 [𝛼 :=𝜎] . x) : 𝜎2 [𝛼 :=𝜎] | ⟨l | 𝜖0⟩

⇝ yield m (𝜆𝜖k :𝜎k . (pure f ′) 𝜎 ▷ (𝜆g1. pure v ′ ▷ g1 ) ▷ (𝜆g. pure k ▷ g) ) (𝜆 ⟨l |𝜖0⟩x :𝜎2 [𝛼 :=𝜎] . pure x)
yield m (𝜆k. (pure f ′) 𝜎 ▷ (𝜆g1. pure v ′ ▷ g1 ) ▷ (𝜆g. pure k ▷ g)) (𝜆x . pure x) w ′
= yield m (𝜆k. (pure f ′) 𝜎 ▷ (𝜆g1. pure v ′ ▷ g1 ) ▷ (𝜆g. pure k ▷ g)) pure w ′
↦−→∗ yield m (𝜆k. f ′ v ′ ▷ (𝜆g. pure k ▷ g)) pure w ′
↦−→∗ yield m (𝜆k. f ′ v ′ ▷ (𝜆g. g k)) pure w ′
↦−→∗ Yield m (𝜆k. f ′ v ′ ▷ (𝜆g. g k)) pure
□

Lemma 30. (Simulation (↦−→)). If ∅ ⊢ e1 : 𝜎 | 𝜖 ⇝ e′
1
and 0 ⊢ e2 : 𝜎 | 𝜖 ⇝ e′

2
, and w : evv 𝜖 ,

and w ⊢ e1 ↦−→ e2 in internal-safe System Fpb, then e′
1
⌊w⌋ ↦−→∗ e′

2
⌊w⌋;

Proof. case
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e1 −→ e2
w ⊢ F[e1] ↦−→ F[e2]

(step)
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∅ ⊢ F[e1] : 𝜎 | 𝜖 ⇝ g e′
1

given

∅ ⊢ F : 𝜎1→ 𝜎 | 𝜖 ⇝ g
∅ ⊢ e1 : 𝜎1 | 𝜖 ⇝ e′

1

g = g1 ★ (g2 ★ ( . . .★ gn)) Lemma 28

gn = id above

e′
1
w ′ −→ e′

2
w ′ Lemma 30

g e′
1

= (g1 ★ (g2 ★ ( . . .★ gn))) e′1
= (g2 ★ ( . . .★ gn)) e′1 ▷ g1
= ((gn e′1) ▷ . . .) ▷ g2) ▷ g1
g e′

1
w ′

= (((gn e′1) ▷ . . .) ▷ g2) ▷ g1) w ′
= case (((gn e′1) ▷ . . .) ▷ g2) w ′ of Pure x → g1 x w ′; Yield m f k→ Yield m f (g1 ★ k)
= case

(case (((gn e′1) ▷ . . .)) w ′ of Pure x → g2 x w′; Yield m f k→ Yield m f (g2 ★ k))
of Pure x → g1 x w′; Yield m f k→ Yield m f (g1 ★ k)

= . . .

= case
case

. . .

(case gn e′1 w ′) of Pure x → gn−1 x w ′; Yield m f k→ Yield m f (gn−1 ★ k))
. . .

of Pure x → g2 x w′; Yield m f k→ Yield m f (g2 ★ k))
of Pure x → g1 x w ′; Yield m f k→ Yield m f (g1 ★ k)

= case gn = id
case

. . .

case (id e′
1
w ′) of Pure x → gn−1 x w′; Yield m f k→ Yield m f (gn−1 ★ k))

. . .

of Pure x → g2 x w′; Yield m f k→ Yield m f (g2 ★ k))
of Pure x → g1 x w ′; Yield m f k→ Yield m f (g1 ★ k)
↦−→∗ case

case
. . .

case (e′
1
w ′) of Pure x → gn−1 x w′; Yield m f k→ Yield m f (gn−1 ★ k))

. . .

of Pure x → g2 x w′; Yield m f k→ Yield m f (g2 ★ k))
of Pure x → g1 x w ′; Yield m f k→ Yield m f (g1 ★ k)
↦−→∗ case

case
. . .

case (e′
2
w ′) of Pure x → gn−1 x w′; Yield m f k→ Yield m f (gn−1 ★ k))

. . .

of Pure x → g2 x w′; Yield m f k→ Yield m f (g2 ★ k))
of Pure x → g1 x w ′; Yield m f k→ Yield m f (g1 ★ k)

= case gn = id
case

. . .

(gn e′2 w ′) of Pure x → gn−1 x w ′; Yield m f k→ Yield m f (gn−1 ★ k))
. . .

of Pure x → g2 x w′; Yield m f k→ Yield m f (g2 ★ k))
of Pure x → g1 x w′; Yield m f k→ Yield m f (g1 ★ k)
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case

w ⊢ e −→ e′

w ⊢ F[e] ↦−→ F[e′]
(stepw)

The same as the previous case with part 2 of Lemma 29.

case

⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e1 ↦−→ e2
w ⊢ F[prompt m h e1] ↦−→ F[prompt m h e2]

(promptw)

Similar as previous cases, except that the final expression in the case of the last (▷) is id (prompt m h′ e′) w ′.

e′
1
⟨⟨l : (m, h′,w ′) | w of . . . ⟩⟩ ↦−→∗ e′

2
⟨⟨l : (m, h′,w ′) | w of . . . ⟩⟩ Lemma 29

id (prompt m h′ e′
1
) w ′

= (prompt m h′ e′
1
) w ′

= case (e′
1
⟨⟨l : (m, h′,w ′) | w) of . . . ⟩⟩

↦−→∗ case (e′
2
⟨⟨l : (m, h′,w ′) | w) of . . . ⟩⟩

= (prompt m h′ e′
2
) w ′

case

w ′ ⊢ e ↦−→ e′ (m, h,w ′) = w.l

w ⊢ F[under𝜖0,𝜖 l e] ↦−→ F[under𝜖0,𝜖 l e′]
(underw)

Similar as previous cases, except that the final expression in the case of the last (▷) is id (𝜆w. let (m, _, w1) = w.l in under l m w1 e′1 w.

e′
1
w ′ ↦−→∗ e′

2
w ′ Lemma 29

id (𝜆w. let (m, _, w1) = w.l in under l m w1 e′1 w) w ′
= (𝜆w. let (m, _, w1) = w.l in under l m w1 e′1 w) w ′
= let (m, _, w1) = w ′.l in under l m w1 e′1 w

′

= let (m, _, w1) = w ′.l in case e′
1
w ′ of . . .

↦−→ let (m, _, w1) = w ′.l in case e′
2
w ′ of . . .

= id (𝜆w. let (m, _, w1) = w.l in under l m w1 e′2 w) w ′

Theorem19. (Simulation). If∅ ⊢ e1 : 𝜎 | ⟨⟩ ⇝ e′
1
and 0 ⊢ e2 : 𝜎 | ⟨⟩ ⇝ e′

2
, and ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2

in internal-safe System Fpb, then e′
1
⟨⟨⟩⟩ ↦−→∗ e′

2
⟨⟨⟩⟩;

Proof. (Of Theorem 19) Apply Lemma 30 with 𝜖 = ⟨⟩ and w = ⟨⟨⟩⟩. □

F.7 Semantics Preserving

Proof. (Of Theorem 7) We have established the simulation theorems for all refinements: Theorem

14, Theorem 15, Theorem 18 and Theorem 19.

If e ↦−→∗ n in System F𝜖 , we know that from Theorem 14, there exists e2, such that ⌈e⌉𝜖⇓𝑝 ↦−→∗ e2
and ⌈e2⌉𝜖⇑𝑝 = n. Since e is user-provided which contains no internal frames, so ⌈e⌉𝜖⇓𝑝 = e. Also
according to the definition of ⌈⌉𝜖⇑𝑝 , we know e2 = n. So we have e ↦−→∗ n in System Fp.

Then by Theorem 15, we know that e ↦−→∗ n in System Fpw .
Theorem 18 does not directly lead to e ↦−→∗ n in System Fpb, because of the =𝜂 relation. However,

since the relation only occurs when we build up the resumption, it is easy to show that evaluation

preserves the =𝜂 relation, as if the resumption is not used that the equivalence is preserved, and

when the resumption is used we immediately have (𝜆x . E[x]) v −→ E[v].
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Then we get e ↦−→∗ e3 in System Fpb, where n =𝜂 e3. By progress, we can further evaluate e3 to
n, i.e., e ↦−→∗ n. Note e3 cannot loop as we can only add a finite number of the =𝜂 sequence during

the evaluation of e ↦−→∗ e3.
Finally, given ∅ ⊢ e : int | ⟨⟩ ⇝ e′, and ∅ ⊢ n : int | ⟨⟩ ⇝ pure ⟨⟩ int n, by Theorem 19, we

know that e′ ⟨⟨⟩⟩ −→∗ pure ⟨⟩ n ⟨⟨⟩⟩ −→∗ Pure ⟨⟩ int n.
On the other hand, if e diverges (i.e., e ⇑), then following the same reasoning as above, we can

show that e′ ⟨⟨⟩⟩ diverges.
□

Created with Madoko.net.
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