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ABSTRACT
As Video Streaming and Analytics (VSA) systems become increas-
ingly popular, serious privacy concerns have risen on exposing too
much unnecessary private information to the VSA providers. Yet,
it is challenging to protect privacy while still preserving desired
VSA features, i.e., effective analytics, forensic support, resource
efficiency, and real-time execution. In this paper, we present a VSA
privacy enhancement system (PECAM), which addresses the above
challenge with no change in the VSA back-end. PECAM leverages
a novel Generative Adversarial Network to perform the privacy-
enhanced securely-reversible video transformation. PECAM also in-
corporates a couple of system optimizations into its VSA workflow
to reduce network bandwidth usage and enable real-time processing
on cameras. We implement our PECAM prototype on commodity
hardware and evaluate its performance via both security study and
extensive experiments. Results demonstrate that PECAM can ef-
fectively enhance the visual privacy of VSA in the presence of an
adversary, and its transformed videos, when taken as input for vari-
ous VSA back-end tasks, maintain a 96% accuracy of corresponding
original videos. Additionally, it performs 12.3× and 1.8× better
than baseline methods in terms of the computing cost and network
bandwidth usage, respectively.

CCS CONCEPTS
• Security andprivacy→ Security services; •Computingmethod-
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Figure 1: Video Streaming & Analytics (VSA) system. The
front-end video sources are resource-limited cameras (mo-
bile or fixed). The video subscribers are analytics related
tasks in the centralized back-end, such as the human-in-the-
loop inspection, AI-based detection, and multimedia stor-
age service. With legitimate authorization, the authority is
able to collect forensic evidence fromvideos in cases like the
crime-scene investigation.
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1 INTRODUCTION
Video Streaming & Analytics (VSA) becomes a popular system para-
digm for video-centric applications. Such VSA systems offer tremen-
dous benefits to our society and thus are pervasively deployed in
various scenarios, such as elderly care, traffic monitoring, and pub-
lic safeguarding. A VSA system (Figure 1) typically consists of two
main parts, a set of front-end video sources and a set of back-end
video subscribers. Front-end sources stream real-time videos to cor-
responding back-end subscribers via the Internet. When abnormal
events are detected by human beings or AI, these videos are also
inspected by the authority for forensics purposes.

Psychological concerns have risen along with the widespread de-
ployment of VSA systems because people worry that too much
unnecessary information is exposed to the back-end subscribers.
For example, an elderly person may feel uncomfortable if non-
behavioral video contents, such as her facial/clothing details or
home interior details, are constantly streamed to a VSA subscriber
performing the fall detection. The previous study [54] has proven
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that individuals could feel their privacy violated when entering ar-
eas with cameras installed. To temporarily mitigate these concerns,
European Union took the action of banning the face recognition of
people in public-area videos for five years while waiting for proper
solutions [6].

We discover that those concerns imply the unique VSA privacy
situation. The privacy is demanded by people who are caught on
cameras rather than VSA providers. Those people, in general, have
diverse sensitivities regarding what visual contents should be pro-
tected, and they often do not have negotiation channels with VSA
providers. Thus, it is almost impossible to summarize a Region of
Interest (ROI) list, which makes everyone satisfied, as the privacy
protection target. Fortunately, everyone caught on cameras may
agree that the visual content details should be generally removed
as long as the accuracy of desired VSA back-end task is not affected
much. In this way, privacy can be greatly enhanced, and psycholog-
ical concerns will be mitigated to some extent. However, removed
visual contents are still able to be accessed in legitimate forensic
cases like identifying a thief.

Visual Privacy. According to our discovery, we introduce a con-
cept of visual privacy of VSA (VSAP). Given a video frame, VSAP is
referred to as the whole-frame visual content details which do not
belong to the categorizable, behavioral, or spatial information of any
foreground object. For example, VSAP covers the clothing texture,
facial appearance, vehicle license plate, while it does not cover the
object contours and colors. In general, VSAP considers the balanc-
ing of privacy and intelligibility with no prior knowledge of privacy
ROIs. The intelligibility here means the video information necessary
to both human perception and AI understanding for performing
VSA back-end subscriber tasks, such as classification, localization,
statistical counting, and behavior detection [14, 32, 45, 49].

Objectives. Given our definition of visual privacy of VSA, an ideal
VSAP-enhanced system should achieve the following five design
objectives altogether: (1) reliably raising the price an unautho-
rized party pays to compromise VSAP; (2) highly maintaining the
intelligibility of protected videos to support original/existed back-
end subscriber tasks performed by either human beings or AI; (3)
securely retaining the reversibility of protected VSAP for the au-
thorized party in the case of "after-the-fact-forensics"; (4) greatly
reducing the bandwidth consumed by streaming protected videos
to the back-end; (5) efficiently integrating the VSAP-enhancing
mechanism into front-end sources with little impact on the real-
time nature of VSA. Previous work [44] also advocates similar five
objectives.

Challenges. Although research efforts have been put into protect-
ing privacy in VSA or similar video scenarios, they cannot meet the
aforementioned five objectives altogether, due to three challenges
as follows. First, it is challenging to make the privacy protection
securely reversible without introducing extra auxiliary data struc-
tures. For example, it is common to extract the privacy information
from the video and encrypt it separately, leading to extra bandwidth
and storage space. Second, it is challenging to simultaneously guar-
antee a "friendly-triangle", namely the visual-perception-friendly,
AI-analysis-friendly, and protection-reliability-friendly. For exam-
ple, the ROI-oriented protection, although excellent in supporting

Figure 2: Example frames of PECAM-empowered car-
counting VSA. Please note that our transformation is ap-
plied to the whole frame.

analytics, cannot ensure every single ROI is properly protected be-
cause the ROI detection will fail if the viewing angle is not expected
or partial ROI is occluded. Additionally, current whole-frame-based
protection, although offering reliable privacy without ROIs, often
creates serious visual problems to human beings and AI. Last, it is
challenging to execute sophisticated operations on resource-limited
camera devices without breaking the real-time rule of VSA. We
elaborate on the deficiency of existed video privacy protections
with respect to our objectives in Section 2.1.

Designs. In this paper, we propose a versatile design called PECAM
to enhance VSAP. PECAM takes the approach of co-designing both
intelligent algorithms and system optimizations, aiming to meet
all five design objectives in practice. PECAM runs on the front-
end of a VSA system, e.g., an IP-based camera, and performs a
privacy-enhanced whole-frame transformation over real-time video
streaming. It does not require any change of the VSA back-end.

PECAM’s transformation is empowered by a novel Generative
Adversarial Network (GAN), which addresses the first two design
challenges aforementioned. Our GAN in PECAM is designed with
a security-reinforced cycle-consistent mechanism, and it can in-
telligently produce VSAP-enhanced videos suitable for both hu-
man inspection and AI recognition. Meanwhile, privacy-enhanced
videos can be fully reversed, in authorized situations, by our GAN
with no auxiliary data. This efficient secure reversibility is achieved
through the GAN-based steganography, which hides recoverable
information secretly and uniquely into produced videos. We demon-
strate with the empirical study that it is difficult for an adversary
to illegally reverse produced videos not belonging to him.

PECAM also employs a couple of system optimizations on the
transformation pipeline (before leaving the VSA front-end) to im-
prove the overall efficiency. It introduces an H.264-compatible
video-compression method to reduce the network transmission
cost without compromising the reversibility. It also proposes an
online branching strategy with a lightweight execution option to
further reduce the transformation latency on the resource-limited
camera device. Thus, PECAM is able to deploy and run in real time
on VSA front-end video sources like smart cameras, addressing the
last challenge.

We have implemented PECAM on commodity hardware and
evaluated its performance via security analysis and comprehensive
experiments. The privacy-enhanced videos after PECAM’s trans-
formation can achieve at least 96% of the analytics accuracy of the
original videos, with respect to unmodified same VSA back-end
tasks. Moreover, PECAM’s transformation significantly increases
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the cost of an adversary to violate VSAP. For example, our exper-
imental results show that an adversary, who has the latest face
recognition tool and rich computing resources, cannot detect any
facial identity in videos produced by PECAM. Additionally, the
compression applied in PECAM can improve the bandwidth effi-
ciency of H.264 by 1.8×, given the same transmitted data qual-
ity. The overall transformation latency of PECAM also meets the
real-time requirement on VSA front-end sources, and is 12.3× and
46.8× faster than computations of the popular CycleGAN [56] and
YoloV3 [43], respectively.
Use Case. Figure 2 shows an example of the car-counting VSA
in the traffic monitoring scenario. The original frame (Figure 2(a))
captured by the camera contains the license plate number, which
is not used in the car-counting task but sensitive to many drivers.
PECAM on the camera, configured with proper privacy granularity,
will transform this frame into a cartoon-like version (Figure 2(b)),
where the license plate is not readable, and yet the car shape is
recognizable. By doing so, it raises the bar for attackers to retrieve
the plate information from the transformed frame, as shown in
Section 6. Later, if an accident is detected or reported, an authorized
party will be able to recover the targeted transformed frame back
to its original version (Figure 2(c)), to identify the plate associated
with the accident. Please note that all object details, not just the
plate number, are generally and smoothly removed at the whole
frame level by PECAM.
Contributions. In summary, our work makes the following con-
tributions. First, we design a versatile privacy-enhancing system
running on the VSA front-end in real time. Second, we introduce
a novel security-reinforced cycle-consistent GAN to perform the
privacy-enhancing transformation, which is empirically proven to
be securely-reversible. Third, we optimize the system performance
in terms of transmission bandwidth and computing latency. Last,
we implement a prototype on commodity hardware and conduct
extensive experiments for its evaluation.

2 RELATEDWORK AND BACKGROUND
2.1 Visual Privacy Protection
Visual privacy protection methods modify or remove the privacy
information in images or videos. They can be categorized into five
types of approaches as follows. Face de-identification [13, 20, 23,
34] has been well studied to replace real faces in the video with
synthetic ones to protect the facial appearance. However, there
are many other types of possible privacy information in the VSA
context, such as the license plate, craftwork design, and so forth.
Additionally, this de-identification cannot be reversed. Encryption
based methods [41, 46], although privacy is fully preserved, are
not suitable to protect videos used in various VSA back-end tasks
because the video intelligibility is also fully removed. It is also
challenging to run them in real time, even on resource-rich servers.
Inpainting based methods [25, 26, 33, 52] are utilized to protect
specific ROIs in images. They require prior identifications of all
possible ROIs before the deployment, which could be a challenge
for the VSA front-end (especially when it is deployed in a public
area). Moreover, these methods are not reliable to be used in the
video scenario where every frame need to be properly protected.
If an ROI is missed in any single frame due to the failure of ROI

detection, which is quite possible in practice, the perfect protection
of this ROI in all other frames is not helpful with respect to the
privacy leaking. Filtering based methods apply the visual effects,
such as the blurring or pixelating, on the entire frame to protect
privacy. However, their processing does not distinguish the privacy
and intelligibility, so that their outputs are not friendly to either
human beings or AI. Some filtering work [42] takes the generative
model into consideration, but its protection is not reversible either.
Transformation based methods like PAN [35] can transfer the
video frame into another representation, e.g., the pixel-reduced
image or immediate features, regarding a specific prescient AI task.
The transformed results do not preserve the intelligibility for both
visual perception and AI understanding.

Additionally, there are also hardware-assisted solutions to pro-
tect the video privacy by interfering with the video capture [57] or
introducing new TEE design [39, 40]. These solutions are not for
protecting VSAP and are orthogonal to our solution. For example,
Visor [40] is a recent TEE-based solution for video analytics privacy
protection. Visor makes the video analytics privacy-preserving by
eliminating side-channel attacks when running inside a CPU +
GPU secure enclave system. As a result, Visor develops techniques
to make the analytics modules oblivious (but uses the videos as
provided). On the other hand, our solution PECAM preserves the
privacy of the contents in the videos by developing techniques
to transform the videos themselves before providing them to the
analytics modules (but using the analytics modules as provided).
The techniques in Visor and PECAM are complementary and can
work together - PECAM provides its transformed video to Visor
for analytics. Then, Visor uses its CPU + GPU enclave system to an-
alyze the transformed video while protecting against side-channel
attacks.

2.2 Deep Information Concealment
Deep information concealment is a body of related works lever-
aging the deep learning techniques to conceal secrets, such as the
binary message, in a cover image [11, 12, 16, 55]. It usually consists
of two neural network parts, Transformer for hiding secrets and
Reconstructor for recovering secrets. Currently, it is proposed to
use in the secret transmission or digital watermarking. Although
PECAM utilizes deep learning to conceal secrets, it is different from
the deep information concealment in terms of the concealment
goal. Roughly speaking, existed works along this line aim to train a
unified strategy concealing an arbitrary information into the fixed
image, while PECAM aims to train a unique strategy concealing
part of arbitrary image into the image itself. The uniqueness means
PECAMs of two front-end video sources do not share the same
concealing (i.e., steganography) strategy.

2.3 Background of GANs
GAN [22] is a class of unsupervised learning models trained with
an adversarial process. Closely related to our work, a popular appli-
cation of GAN is image-to-image translations [51, 56]. Figure 3(a)
shows an example of one-way image translation. There are two
competing neural networks called Transformer (generator) and
discriminator. The Transformer tries to translate a zebra image in
domain-X into a horse image in domain-Y. The discriminator is
responsible for distinguishing the translated image from the real
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Figure 3: Image-to-image translations using GANs. (a) One-way translation; (b) Two-way translation. Transformer and Recon-
structor are known as generators in a standard GAN and CycleGAN. (Photos are borrowed from CycleGAN [56].)

one in domain-Y through the adversarial loss function L𝑋A𝑌
𝐺𝐴𝑁

[22].
The adversarial loss is calculated as:

L𝑋A𝑌
𝐺𝐴𝑁 =E

𝑋
E
𝑌
(𝑙𝑜𝑔(Discriminator(𝑦))

+ 𝑙𝑜𝑔(1 − Discriminator(Transformer(𝑥))))
(1)

, where E
𝑋
and E

𝑌
are the expectation over distribution of X and

Y, respectively. In the rest of paper, if an adversarial loss is ap-
plied, a Discriminator component will also be added to the neural
architecture accordingly.

Recently, the cycle consistency principle, an idea leveraging tran-
sitivity to regularize structured data, has been applied to design var-
ious advanced GANs [15, 51], including CycleGAN [56]. CycleGAN
is a cycle-consistent GAN that enables two-way image translation
between two style domains by preserving the semantics. As shown
in Figure 3(b), two cycle-consistent losses are introduced, apart
from the two GAN losses, in CycleGAN, to train a Transformer-
Reconstructor pair to accurately translate an image from domain-
X to domain-Y and revert it back. The forward-consistency loss
L𝑋A𝑌A𝑋 ′
𝐶𝑌𝐶

is to make 𝑥 ′ = Reconstructor(Transformer(𝑥)) ≈ 𝑥
for each sample𝑥 in domain-X, while the backward cycle-consistency
loss L𝑌A𝑋A𝑌 ′

𝐶𝑌𝐶
is to make 𝑦′ = Transformer(Reconstructor(𝑦)) ≈

𝑦 for each sample 𝑦 in domain-Y. A Transformer can be used to
translate a zebra image into a horse image without losing semantics,
and thus Reconstructor can revert the translation back into a zebra
image.

3 DESIGN OVERVIEW
In this section, we elaborate on the five design objectives of the
VSAP enhancement, which are briefly introduced in the introduc-
tion section. We then present the PECAM design at a high level,
with respect to these objectives. More design details are explained
in the following section.

3.1 Design Objectives
We consider an ideal VSAP enhancement should achieve five objec-
tives below altogether.

O1 Privacy-enhanced. The proposed design should reliably im-
pede the unauthorized access of VSAP information throughout
whole frames of original videos, given various possible situations
that might be encountered in practice. For example, an object under
protection should remain inaccessible in every single video frame,
no matter it is changing pose or partially occluded. Please recall
that the VSAP is defined in the introduction section. The VSAP
information includes, but is not limited to, object details like texture
and distinguishable features like facial appearance.

O2 Intelligible. The proposed design should genuinely preserve
in protected videos the intelligible information of foreground ob-
jects, such as the object contour, color, posture, and localization,
which are critical semantics to VSA back-end tasks done by both
human beings and AI. Since the relationship between O1 and O2
is a trade-off, a configurable parameter is desired to adjust these
two objects according to the practical needs (Section 4.1).

O3 Securely-Reversible. The proposed design should be able to
securely recover its transformed video frames back to their original
versions with no auxiliary data, with the presence of an adversary,
and only upon the request from the authority. Our security model
is given in Section 5.

O4 Bandwidth-friendly. The proposed design should greatly re-
duce the bandwidth usage of streaming protected videos. The trans-
mission algorithm should be compatible with the existing video
codecs such as H.264, and thus no change is necessary on existed
VSA back-end.

O5 Efficient. The proposed design should ensure its privacy en-
hancement can efficiently run on front-end video sources with
limited resources. The protected videos are able to be streamed in
real time, and no local storage is required for the data buffering.

3.2 Design Overview
The core of PECAM is a privacy-enhanced securely-reversible vi-
sual transformation for VSA, which is empowered by our security-
reinforced cycle-consistent GAN. This novel GAN applies the cycle-
consistency mechanism to robustly enable the in-place transforma-
tion of video frames; it introduces a reinforced steganography ap-
proach to securely enable the two-way (reversible) transformation
only for authorized parties; it leverages the visual style conversion to
adjustably enable the privacy-intelligibility balancing. To achieve
the real-time transformation on mobile devices, PECAM also op-
timizes the workflow of its in-use stage by reducing the runtime
computation cost and the network bandwidth usage.

There are five system components of PECAM.Transformer,Re-
constructor, and DataGen are related to our GAN design, while
FastTranser and Compressor are used in real-time performance
optimization for the execution and transmission, respectively. These
components are involved in the two stages of PECAM, the prepara-
tion stage and the in-use stage, as shown in Figure 4. Please note
that PECAM is deployed only at the front-end video source side of
a VSA system.

Take the workflow of enabling PECAM on a camera named Al-
ice as an example. In the preparation stage (Figure 4(a)), PECAM
is trained with the assistance of DataGen specifically for camera
Alice. The trained model is divided and wrapped into two paired
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Figure 4: The PECAM overview and its workflow. Parts marked in rectangular box are system components of PECAM. The
PECAM workflow consists of two stages, the one-time preparation stage and the in-use stage after deployment. There is no
change on back-end video subscribers.

components, i.e., Transformer 𝐴𝑙𝑖𝑐𝑒 and Reconstructor 𝐴𝑙𝑖𝑐𝑒 . The
model distillation is also performed on Transformer 𝐴𝑙𝑖𝑐𝑒 to ob-
taining a lite-transformer FastTranser. When the preparation is
completed, the camera Alice is deployed with Transformer 𝐴𝑙𝑖𝑐𝑒 ,
FastTranser, and Compressor installed on it. In the in-use stage
(Figure 4(b)), PECAM on camera Alice orchestrates Transformer
𝐴𝑙𝑖𝑐𝑒 and FastTranser to efficiently transform the real-time video
streaming, and then it sends transformation outputs to Compressor
for compression before transmission. Upon receiving the trans-
formed privacy-enhanced video, the back-end video subscribers
can directly take it as input in various existing VSA tasks. When
forensics is requested for some video frames of camera Alice, the
authority can use Reconstructor 𝐴𝑙𝑖𝑐𝑒 to restore requested frames
to their original version. The unique pairing between Transformer
𝐴𝑙𝑖𝑐𝑒 and Reconstructor 𝐴𝑙𝑖𝑐𝑒 guarantees no other Reconstructor
𝐵𝑜𝑏 can perform the correct de-transformation.

More concretely, DataGen (Section 4.1) in the preparation stage
is to configure the trade-off betweenO1 andO2 at the whole frame
level. As a rule-based visual style 1 converter, DataGen determines
PECAM’s privacy enhancing granularity via the manipulation of
domain-𝑌 training data in a quantitative way.

Transformer essentially is the forward-cycle part of our GAN
neural architecture, while Reconstructor is the paired backward-
cycle counterpart. Our GAN introduces a novel “secret-key" scheme
to guide a pair of Transformer and Reconstructor to secretly agree
on the unique steganography. The steganography used by a Trans-
former can securely hide the VSAP information of an original frame
in place of the frame itself; the hidden VSAP information only can
be restored from the transformed frame by the paired Reconstructor
(O3). Please note that there is no auxiliary data generated or used
by Transformer and Reconstructor. Additionally, this GAN-based
steganography also ensures that the transformed video is friendly
to both visual perceptions and AI understanding. The core idea of
this “secret-key" scheme is that we generate a device-specific secret
1The "style" (aka. artistic style) means the rendering of the images’ semantic content
[21], which is often used in style transfer task.

key and apply it as the Alpha channel on the original RGB-format
video frame, which becomes the RGBA-format, before performing
the transformation. More details are in Section 4.2.

FastTranser is obtained by applying the model distillation tech-
nique on Transformer. It is lightweight by nature, but the reversibil-
ity is discarded. PECAM exploits it in cooperation with Trans-
former so that the transformation is efficient enough to achieve the
real-time execution (O5). If a frame is determined to be securely-
reversible, Transformer is used to process the data; otherwise, Fast-
Transer is used. Frames transformed by either FastTranser or Trans-
former are encoded to an H.264-compatible video through Com-
pressor, which is designed to meet O4. Compressor is necessary
because the vanilla H.264 could downgrade the reversibility of our
transformed videos. More details of these two parts are provided in
Section 4.4 and Section 4.3, respectively.

4 KEY DESIGNS
This section elaborates on the PECAM technical details in depth.
The first two subsections focus on our security-reinforced cycle-
consistent GAN design, while the other two subsections present
how we optimize the network bandwidth and computation cost,
respectively.

4.1 VSAP Enhancement
Our security-reinforced cycle-consistent GAN, like most deep learn-
ing based technologies, requires a training phase, in which our GAN
can implicitly learn a proper VSAP enhancement level from the
datasets customized byDataGen.DataGen is an easily-configurable
visual style tool to convert the real-world images (domain-X) into
the privacy-enhanced ones (domain-Y). The pairs of images in the
two domains are the training dataset for our GAN.

According to our VSAP definition given in the introduction sec-
tion, we consider domain-Y as the cartoon style rendering like
examples shown in Figure 13. This cartoon style belongs to the non-
photorealistic rendering [28], which is popular to create various
human-pleasant types of visual artifacts, such as penciling and oil
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Figure 5: Quality Comparison of domain-Y frames produced
byDataGen (left) and PECAM (right) from the same domain-
X input (middle). The left frame has several conversion er-
rors on the vehicle body and road marks, which are cor-
rected in the right frame.

painting [21]. Besides being friendly to the perception, our cartoon
style also pays special attention to only preserving the main seman-
tics of real-world videos, such as the contour, color, posture, and
location, which are critical to VSA back-end tasks. Compared to the
original video, the corresponding domain-Y video greatly improves
privacy and raises the attack efforts of an adversary.

Technically, DataGen consists of a color-oriented segmentation
and a recoloring schema. Given a real-world video frame, DataGen
first applies the bilateral filter [47], an edge-preserving smoothing
filter, to reduce the color number. DataGen then performs the
simple image segmentation [19] to quickly locate the outline and
edges of possible objects. Lastly, segmented parts are recolored
with the average of original colors of their corresponding areas,
respectively, and this frame is finally converted into domain-Y at
the whole frame level.

To balance privacy and intelligibility in the converted domain-
Y video, we introduce a parameter k in the image segmentation
phase to configure the segmented block size. DataGen prunes all
visual details smaller than the segmented block size and produces
the domain-Y data with some quantifiable granularity. This config-
urable granularity will be eventually picked up by our trained GAN
as its proper privacy enhancement level. Figure 12(a) in the evalua-
tion section gives PECAM examples of how privacy enhancement
is influenced by 𝑘 .

Please note thatDataGen is only used to indicate learning targets,
i.e., the suitable domain-Y style and enhancement level, to our GAN
in training. This is because, although easy to configure the privacy
granularity,DataGen’s converting quality is not ideal for VSA back-
end tasks. However, the imperfect training data is not a problem for
our GAN due to its powerful neural architecture. Figure 5 illustrates
that our trained GAN significantly outperforms DataGen in terms
of preserving analytic semantics in transformation.

4.2 Secure Reversibility
In terms of neural architecture, our security-reinforced cycle-consistent
GAN can be divided into Transformer and Reconstructor, which are
paired via the training phase to transform videos between domain-
X and domain-Y versions. The cycle-consistency mechanism offers
a powerful semantics-aware (𝑋 → 𝑌 )-transformation for Trans-
former, which is also the key to overcome the data quality issue of
DataGen (illustrated in Figure 5). The reinforced steganography
approach enables a novel secure (𝑋 ← 𝑌 )-transformation for Re-
constructor, which only takes as input the targeted transformed

Figure 6: Cycle-consistent-GAN-based video transformation
with two adversarial losses (L𝑋A𝑌

𝐺𝐴𝑁
and L𝑌A𝑋

𝐺𝐴𝑁
) and a recov-

erable loss (L𝑋A𝑌A𝑋 ′
𝐶𝑌𝐶

). These losses are the same as that of
CycleGAN, which are introduced in Section 2.3.

Figure 7: Neural-network architecture of Transformer and
FastTranser. FastTranser has much fewer filter channels
than Transformer does (𝑓 𝑛 and 𝑜𝑢𝑡 are channel numbers). 𝑓 𝑛
is 64 in Transformer and 16 in FastTranser. 𝑜𝑢𝑡 is 3 in both
Transformer and FastTranser.

frames, in the presence of an adversary. A pair of Transformer
and Reconstructor is uniquely trained for each front-end video
source, although the neural architecture design of all Transformer/
Reconstructor is the same.
Cycle Consistency Mechanism. Figure 6 illustrates the cycle
consistency mechanism applied in our GAN. Compared to the stan-
dard cycle-consistent GAN like CycleGAN, we make ours more
lightweight by modifying the loss function and introducing a lite
neural architecture.

The cycle-consistent loss of our GAN L𝑐𝑦𝑐 can be represented
by three parts, two adversarial losses (explained in Section 2.3), i.e.,
L𝑋A𝑌
𝐺𝐴𝑁

and L𝑌A𝑋
𝐺𝐴𝑁

, and one forward cycle-consistent loss defined
as below:

L𝑋A𝑌A𝑋 ′
𝐶𝑌𝐶 = E

𝑋
(D1 (Reconstructor(Transformer(𝑥)), 𝑥)) (2)

, where D1 is the MS-SSIM metric [4], which is used to measure
the perceived quality of the image, and E

𝑋
is the expectation over

distribution of 𝑋 .
Thus, the first goal of the training is to minimize

L𝑐𝑦𝑐 = L𝑋A𝑌
𝐺𝐴𝑁 + L

𝑌A𝑋
𝐺𝐴𝑁 + 𝜆1L

𝑋A𝑌A𝑋 ′
𝐶𝑌𝐶 (3)

, where 𝜆1 denotes the weight of cycle consistency.
To support the real-time transformation on mobile devices, we

also design a lightweight neural architecture (Figure 7) for Trans-
former. This new neural architecture first reduces the eight 256-
channel ResNet blocks [27] of CycleGAN to a set of two 256-channel
blocks, two 128-channel blocks, and two 64-channel blocks. To
compensate for the accuracy loss of this change, it then adds some
shortcut paths that are similar to ones used in the inception net-
work. Each path concatenates outputs of a ResNet block and passes
the results to a 1×1 convolutional layer. In this way, the high-level
and low-level semantic features can be effectively fused for better
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Figure 8: Security-reinforced cycle-consistent GAN for
authorization-reversible video transformation. There are
two adversarial losses (L𝑋A𝑌

𝐺𝐴𝑁
and L𝑌A𝑋

𝐺𝐴𝑁
) and two recover-

able losses (L𝑋A𝑌A𝑋 ′
𝐶𝑌𝐶

and L𝐾𝑒𝑦
𝐶𝑌𝐶

). The adversarial losses are
the same as the CycleGAN.

restoration. Transformer using it is able to run 1.8× - 2.4× faster
than the standard CycleGAN counterpart.
Reinforced SteganographyApproach. Previous study [16] shows
that a cycle-consistent GAN is good at hiding visual information
in place via its highly-sophisticated steganography. However, such
steganography is not fully secure if many front-end video sources
install this GAN. The transformed videos of one Transformer can
be reversed/restored by another unpaired Reconstructor. Thus, an
adversary can buy one device and easily compromise the VSAP of
all other devices.

Is it possible to provide each front-end video source with a unique
steganography strategy, empowered by the same GAN architecture
trained with the same transformation goal? The answer to this chal-
lenging question builds the foundation for O3. To this end, we
propose a reinforced steganography approach on top of our cycle-
consistent GAN. As shown in Figure 8, this security reinforcement
is achieved by introducing a unique key into the GAN training. By
using different keys, two Transformer-Reconstructor pairs trained
on the same dataset will learn different steganographic methods.
That is, the Reconstructor of one security-reinforced GAN cannot
recover the transformed videos generated by the Transformer of
another security-reinforced GAN that trained with a different key.
Consequently, PECAM supports secure video recovery and defends
against the above real-world attacks. We perform security analysis
in Section 5.

The key introduced in security-reinforcedGAN is a two-dimensional
matrix with the same width and height as the domain-X images
(i.e., video frames). Each variable in the matrix is randomly set
in the range of 0 to 255. This key can be considered as an addi-
tional digital watermark channel (i.e., alpha channel) attached to
the 3-channel RGB image. Note that each device only needs to
pick this secret key once for the whole training. No re-keying is
required. In the training stage for a device, the device’s secret key
is appended to domain X’s training data as the fourth-channel wa-
termark. Accordingly, the neural architecture of both Transformer
and Reconstructor is updated to support the RGBA-to-RGB and
RGB-to-RGBA transformation, respectively.

As to the loss function of this part, we introduce a recoverable
loss

L𝐾𝑒𝑦
𝐶𝑌𝐶

= D2 (𝐾𝑒𝑦′, 𝐾𝑒𝑦) (4)
, where 𝐾𝑒𝑦′ is the reconstructed key of original 𝐾𝑒𝑦, andD2 is the
Manhattan distance metric. The MS-SSIM metric (D1) is applied

Figure 9: Directly using the H.264 codec to compress the
transformed frames generated by Transformer significantly
reduces the reconstruction’s quality. We perform the face
recognition on the recovered video to measure the recon-
struction quality. Parameter 𝑞𝑝 is used to control the com-
pression ratio of H.264. A larger 𝑞𝑝 means a lager compres-
sion ratio, and 𝑞𝑝 = 0means lossless compression.

to the image reconstruction to improve the reconstruction’s visual
quality, while the Manhattan distance (D2) is used during the key
reconstruction to reinforce a unique steganography strategy.

Finally, the overall objective of our security-reinforced cycle-consistent
GAN is minimizing

L𝑠𝑒𝑐 = L𝑐𝑦𝑐 + 𝜆2L𝐾𝑒𝑦𝐶𝑌𝐶
(5)

, where L𝑐𝑦𝑐 is calculated as Equation 3. 𝜆1 in L𝑐𝑦𝑐 and 𝜆2 are
hyper-parameters (both are 5 in our experiments).

4.3 Bandwidth Reduction
It is problematic if PECAM directly uses existed codec like H.264
to compress transformed frames for the network transmission. As
shown in Figure 9, even a small compression ratio of 2 (when 𝑞𝑝 2

is 8) will largely drop the reconstruction quality by 60%. This is
because the compression commonly prunes the high-frequency in-
formation containing part of PECAM’s steganographic data, which
later will be used for reconstruction.

We observe that high-entropy regions usually have more impacts
on our reconstruction quality after compression-decompression
procedures, compared to low-entropy regions. Therefore, we pro-
pose our own Compressor as follows, which is also compatible
with existing H.264 lossy compression. Algorithm 1 illustrates the
compression procedure. Compressor takes a set of transformed
frames produced by Transformer as an input and extracts the high-
frequency information of recoverable frames (line 8-9). Then, it cuts
the high-frequency information of each frame into macroblocks
of equal size, i.e., a block of 32×32 pixels (line 11) and calculates
the entropy value of each macroblock (line 13). Next, Compressor
retains the macroblock whose entropy value is higher than a cer-
tain threshold (denoted as 𝑡ℎ) and discards the rest high-frequency
information (line 14). Then we produce the transformed video by
putting the retained macroblocks back to the transformed video
(line 15) and encode them with lossless H.264 compression (line 16).
The threshold 𝑡ℎ is a trade-off between the reconstruction quality
and bandwidth. We will discuss this hyper-parameter in Section 6.3.

2qp is short for quantization parameter, which controls the amount of compression
for a frame. Larger values lead to more compression and vice versa. 𝑞𝑝 ranges from 0
to 51.
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Algorithm 1: Pseudo code of video compression.
Data: A set of transformed frames, 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑛}; their

corresponding indicators, 𝐼 = {𝑅, 𝑁, ...} to indicate
that the frame is produced by Transformer (R) or
FastTranser (N); and a hyperparameter, 𝑡ℎ.

Result: A set of compressed streaming clips,
𝑆 = {𝑆1, 𝑆2, ....}

1 begin
2 𝑆 ← ∅, 𝑓𝑐 = 𝐹 [0], 𝑖𝑐 = 𝐼 [0], 𝐹𝑐 ← {𝐹 [0]}
3 for 𝑖 ∈ [1, 𝑙𝑒𝑛(𝐼 )) do
4 if 𝐼 [𝑖]! = 𝑖𝑐 or 𝑖 == 𝑙𝑒𝑛(𝐼 ) − 1 then
5 if 𝑖𝑐 == 𝑁 then
6 𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐻264𝑙𝑜𝑠𝑠𝑦 (𝐹𝑐 ))
7 else
8 𝐼𝑁 𝐹𝑂𝑙 = 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐹𝑐 )
9 𝐼𝑁 𝐹𝑂ℎ = 𝐹𝑐 − 𝐼𝑁 𝐹𝑂𝑙

10 for 𝑗 ∈ [0, 𝑙𝑒𝑛(𝐹𝑐 )) do
11 𝐵 = 𝑏𝑟𝑒𝑎𝑘_𝑖𝑛𝑡𝑜_𝑏𝑙𝑜𝑐𝑘𝑠 (𝐼𝑁 𝐹𝑂ℎ [ 𝑗])
12 for 𝑘 ∈ [0, 𝑙𝑒𝑛(𝐵)) do
13 if 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝐵 [𝑘]) <= 𝑡ℎ then
14 𝐵 [𝑘] = 𝑧𝑒𝑟𝑜𝑠 (𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐵 [𝑘]))
15 𝐹𝑐 [ 𝑗] = 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐵, 𝐼𝑁𝐹𝑂𝑙 [ 𝑗])
16 𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐻264𝑙𝑜𝑠𝑠𝑙𝑒𝑠𝑠 (𝐹𝑐 ))
17 𝑓𝑐 = 𝐹 [𝑖], 𝑖𝑐 = 𝐼 [𝑖], 𝐹𝑐 = {𝐹 [𝑖]}
18 𝐹𝑐 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐹 [𝑖])
19 return 𝑆

Figure 10: The training procedure of FastTranser through
distillation. The Transformer is frozen during the training.

4.4 Execution Optimization
There is redundant information among continuous video frames,
so it is unnecessary to make every single frame securely-reversible.
Thus, we can further optimize the transformation pipeline on the
camera device. FastTranser is then proposed to perform the non-
reversible transformation, which can run around 6.4× faster than
Transformer. Given both FastTranser and Transformer, we design
an online branching strategy (Figure 4(b)) to decide which one shall
transform an incoming frame, considering both runtime overhead
and forensics need.

FastTranser takes the neural architecture of Transformer (Fig-
ure 7) and only keeps one quarter of original channels. Its training
leverages the distillation [29] technique so that output frames, no
matter transformed by FastTranser or Transformer, are visually
consistent, which is important to VSA. The key part is applying
an adversarial loss to measure the difference between outputs of

FastTranser and Transformer. We illustrate FastTranser’s training
structure in Figure 10. The training goal is to minimize

Ldistill = D(Transformer(𝑥 | |𝑘𝑒𝑦), 𝑥) (6)

, where the D is the manhattan distance metric. Note that Trans-
former is frozen during FastTranser’s training procedure.

Our branching strategy exploits the temporal locality and data
sparsity of videos. Two frames with a high perceptive similarity
may not have to be both reversible. PECAM caches the latest frame
forwarded to the Transformer, denoted as 𝐹latest. When a new
frame, denoted as 𝐹current, captured by PECAM, we estimate the
similarity using the equation:H(P(𝐹latest),P(𝐹current)), where P
is the perceptual hash (pHash) metric [1] which is widely used to
capture image’s visual perception features, andH is the Hamming
distance, which is usually applied to the image’s pHash values
to measure the images’ similarity. A larger distance represents
less similarity. We set a threshold sp as the decision trigger. If the
distance is larger than the 𝑠𝑝 value, PECAM forwards the incoming
frame to Transformer; otherwise, it will be forwarded to FastTranser.
A larger 𝑠𝑝 means lower cost and fewer reversible frames. In the
pHash implementation [2] PECAM adopts, if the distance between
two images’ pHash values is less than or equal to 6, then these two
images have visual perceptions that are nearly the same.

5 SECURITY ANALYSIS
5.1 Security Model
We assume that the preparation stage of PECAM is done by some
trusted device manufacturers. After deployment, we also assume
that the execution environment of PECAM is secured, and the
whole device is properly guarded so that there is no illegal physical
access to it. Additionally, we trust the authorized party performing
forensics.

We do not trust back-end video subscribers of the VSA. One of
such subscribers may be interested in collecting as much VSAP
information as possible from the received video streaming. This
adversary has rich computing resources and fully understands the
neural architecture and all procedures of PECAM. It can even buy
(or collude with) one device the same as the targeted victim and
then own the trained models and the secret key specific to that
device, which can be leveraged in its attacks.

However, we assume that the adversary cannot access the secret
key of the targeted victim device and the training dataset of this
device. Besides, we do not consider the malicious subscriber who
searches for a specific target with out-of-band information, e.g., the
walking pattern 3.

The security goal of PECAM is to significantly raise the bar
against the VSAP leaking on videos streamed to subscribers, and ef-
fectively prevent unauthorized subscribers from reversing PECAM’s
VSAP enhancement.

5.2 Enhancement Analysis
Given our security model, we analyze the privacy enhancement of
PECAM from two perspectives.

3It is a costly attack by itself because the attacker does not know when and where the
target is recorded in the VSA system
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Figure 11: Visual comparison of recovered frame examples. Images labeled with attack 1 and 2 are recovered by adversaries
in Section 5.

First, is it much harder for an adversary to directly obtain the
VSAP information from transformed videos, compared to original
videos? To answer it, we conduct a comparison experiment on both
transformed and original videos, which is detailed in Section 6.1. It
demonstrates that almost no VSAP information can be recognized
even by state-of-the-art (SOTA) techniques, which have proven
to outperform human beings. Please note that PECAM enhances
privacy at the whole-frame level without prior knowledge of ROIs,
which is more robust and generic than existing solutions. The en-
hancement is persistent and effective across video streaming all
the time. There are no corner cases like a person’s identity is not
properly protected because they are not facing the camera upright.
Besides, PECAM’s enhancement is configurable according to dif-
ferent balancing requirements of privacy and intelligibility.

Second, is it much more difficult for an adversary to indirectly
obtain the VSAP information by reversing the transformation in unau-
thorized manners? To answer it, we analyze the feasibility of launch-
ing the following two attacks and conduct experiments to further
support our analysis conclusions. Please note that PECAM’s trans-
formation is implicitly learned through an end-to-end procedure,
so the best attack strategy for the adversary is also deep learning
based.

Attack 1. Is it possible for the adversary to train another deep-
learning model Reconstructor𝑎𝑑𝑣 , which can directly reverse the trans-
formed video of targeted victim camera Alice Transformer𝐴𝑙𝑖𝑐𝑒?

Analysis. In this attack, the adversary ignores the existence of
secret key 𝑘𝑒𝑦𝐴𝑙𝑖𝑐𝑒 and attempts to train an RGB-2-RGB transfor-
mation with public-available resources like training data and neural
architectures. After the training, the adversary directly applies it
onto the domain-Y video and generates the domain-X video. How-
ever, previous work on the message concealing [11] has shown
the evidence that, if some knowledge is unknown to the adver-
sary, the adversary cannot reconstruct concealed data. Similarly, in
our case, Reconstructor𝑎𝑑𝑣 trained without 𝑘𝑒𝑦𝐴𝑙𝑖𝑐𝑒 cannot under-
stand how Transformer𝐴𝑙𝑖𝑐𝑒 works and therefore fails to reverse
the transformation.

Experiment. We allow the adversary to train a standard Cy-
cleGAN, even with the training data used by camera Alice (which
is not available to the adversary in practice). After training, we
compare the reconstruction performance of Reconstructor𝑎𝑑𝑣 and
Reconstructor𝐴𝑙𝑖𝑐𝑒 on 1,000 transformed frames of Transformer𝐴𝑙𝑖𝑐𝑒 .
These 1,000 images are randomly selected from the face recognition
dataset PIPA [53]. We then run a state-of-the-art face recognition
service [7] on these two sets of reconstructed results and discover
that all recognized faces in data of Reconstructor𝐴𝑙𝑖𝑐𝑒 cannot be
recognized in data of Reconstructor𝑎𝑑𝑣 . The second column of Fig-
ure 11 illustrates some examples reversed by Reconstructor𝑎𝑑𝑣 .
Attack thus fails.

Attack 2. Is it possible for the adversary to buy (or collude with) the
camera Bob, which is of the same type as camera Alice, and leverage
Reconstructor𝐵𝑜𝑏 to reverse the transformed video of Transformer𝐴𝑙𝑖𝑐𝑒?

Analysis. Each trained GAN can be viewed as a complex non-
linear function implicitly capturing the hidden mapping between
two high-dimensional domains [17]. When we leverage the device-
specific secret key to manipulate the GAN training, the hidden
mapping learned by a model is greatly different from others. This
factor can be magnified by the nonlinearity of neural architec-
tures [18, 24, 30, 38] and leads to various steganography strategies,
each of which is only known by one trained GAN. Therefore, the
adversary cannot use Reconstructor𝐵𝑜𝑏 to reconstruct the original
video contents from transformed videos of Transformer𝐴𝑙𝑖𝑐𝑒 .

Experiment. We train ten Transformer-Reconstructor pairs
with different secret keys. We then try using one Reconstructor to
reverse the transformed outputs of the other nine non-paired Trans-
formers. For each Transformer, 1,000 images picked from PIPA [53]
dataset are used for the transformation. We repeat the whole ex-
periment three times. Experimental results show that non-paired
Reconstructors cannot successfully recover all transformed frames.
The third column of Figure 11 shows some failure examples.
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Figure 12: Exploration of how k affects the privacy protec-
tion and intelligibility.

6 EVALUATION
Our evaluation starts with measuring the privacy enhancement
of PECAM transformation. We then examine the intelligibility of
transformed videos with respect to representative back-end appli-
cations of video analytics. We also conduct experiments to discover
how our compression algorithm strikes a good balance between
recovery quality and bandwidth cost. We finally evaluate resource
usages of PECAM.
Prototype. We implement a PECAM prototype with the MNN
deep-learning framework [5] on a typical mobile dev board Qual-
comm Snapdragon 845. The Snapdragon 845 has a Kryo 385 CPU,
an Adreno 630 GPU, and 6GBmemory on its SoC. PECAM is trained
with 4,400 X-Y domain data pairs. Each pair consists of one image
picked from PIPA dataset [53] and its corresponding transformed
image prepared by DataGen. We adopt the training setting of the
standard CycleGAN. After the training, PECAM is deployed onto
the dev board with the Linux 4.9.
Knobs. With the tunable parameters of 𝑘 , 𝑡ℎ, and 𝑠𝑝 , PECAM pro-
vides multiple knobs to achieve flexible trade-offs among the achiev-
able privacy protection. 𝑘 is the parameter in DataGen to control
the granularity of privacy protection. A larger 𝑘 makes transformed
videos have fewer content details. 𝑡ℎ is the parameter in Compres-
sor balancing the network communication cost and video recovery
quality. 𝑠𝑝 is the similarity threshold to trigger the FastTranser.
Metrics. There are several metrics in our experiments. Privacy ac-
curacy is measured as the private information detection, i.e., face
recognition and license recognition, performance of some state-
of-the-art methods. When measuring on transformed videos, a
low value means a low risk of privacy leakage, indicating that
PECAM has strong privacy protection; When measuring on recov-
ered videos, a high value means concealed information is restored,
indicating that PECAM achieves good reversibility. We also refer to
the privacy accuracy of recovered videos as the recovery accuracy
metric in this section. Additionally, the task accuracy is measured
as the performance ratio of some video analytics tasks on trans-
formed videos and original videos. 100% means transformed videos
maintain good intelligibility.

Figure 13: Two examples of video playback (consecutive
video frames) after transformation.

6.1 Privacy Enhancing
Since advanced privacy detection methods have outperformed hu-
man beings [3], we pick these methods, the state-of-the-art face and
license recognition algorithms4 [7], to test whether transformed
videos contain recognizable privacy information. The metric used
is the privacy accuracy.

We select four pairs of Transformer and Reconstructor trained
with 𝑘 value of 20, 30, 40, and 50 respectively to observe different
privacy protection strength (Figure 12(a)). Our evaluation utilizes
6,000 video frames, which are not seen in the training, from real
traffic cameras [10] and CCTV cameras [48].

Experimental results are shown in Figure 12(b). As the value of
𝑘 gets larger, the privacy accuracy decreases, indicating that the
protection capability increases. Even in the worst case (𝑘 = 20),
the privacy accuracy is less than 5%, which means only 5% privacy
information out of all in original videos is able to be recognized in
transformed videos by the state-of-the-art methods. The privacy
accuracy of human viewers would be even lower.

6.2 Intelligibility Preserving
We evaluate task accuracy of transformed videos in terms of five
commonly-seen VSA back-end tasks. The results, except the video
playback, are shown in Figure 12(c).
People Counting. We pick 4,000 video frames from a well-known
dataset [48] and transform them respectively by using Transformers
trained with different 𝑘 values. We then perform the people count-
ing task on both original and transformed videos by leveraging a
commonly-used approach YoloV3 [43]. As shown in Figure 12(c),
when 𝑘 = 20, 𝑘 = 30, and 𝑘 = 40, PECAM transformation has no
impact on this task. A larger 𝑘 value may lead to overprotection,
which will slightly affect the task accuracy. For example, when
𝑘 = 50, the task accuracy is 96%.
Vehicle Counting. We pick 2,000 video frames from a well-known
dataset [10], and transform them respectively by using Transformers
trained with different 𝑘 values. We then perform the vehicle count-
ing task on both original and transformed videos by leveraging a
commonly-used approach YoloV3 [43]. As shown in Figure 12(c),
when 𝑘 = 20, 𝑘 = 30, and 𝑘 = 40, the performance on transformed

4We use the text recognition service to perform the license recognition task.
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Figure 14: The compression performance of Compressor and H.264 in terms of compression ratio for transmission and recov-
ery accuracy for forensics.

Figure 15: Frame rates of PECAM transformation with dif-
ferent deep learning networks and FastTranser settings. The
frame rate of YoloV3(𝑡𝑖𝑛𝑦) is shown as baseline for compari-
son.

frames is the same as on original ones (100% task accuracy). When
𝑘 is equal to 50, the task accuracy drops to 97%.
Fall Detection. We randomly select 30 videos from the fall detec-
tion dataset [31] and get their corresponding transformations via
PECAM. Our task accuracy is also 100% regarding the SOTA fall
detection [8], indicating there is no difference between the original
and transformed videos for this VSA back-end task.
Abnormal Event Detection. We select 20 videos from the abnor-
mal event detection dataset [37] and generate their corresponding
transformed ones. There are three kinds of abnormal events in
videos, the strange action, wrong direction, and abnormal object.
We then apply the SOTA detection [36] on both original and trans-
formed videos. PECAM still maintains 100% task accuracy.
VideoPlayback (HumanViewing).We can observe that PECAM’s
transformed videos (Figure 13) have a good consistency of color
scheme and brightness. The information concealed by PECAM
in the transformed frames does not affect the user experience of
watching.

6.3 Bandwidth Usage v.s. Recovery Quality
In this part, we evaluate our Compressor by comparing it with the
typical H.264 video compression in terms of how they affect the
reversibility. We select the transformed videos as the compression
target of transmission and the privacy information recognition
method in Section 6.1 as the method measuring the recovery ac-
curacy. Each transformed video is first compressed with different
configurations (𝑘-𝑡ℎ pairs). We then calculate its compression ratio,
which reflects the bandwidth cost of transmitting this video. Af-
terward, we decompress and recover the compressed transformed
videos and measure their recovery accuracy, which is introduced

at the beginning of this section. We also repeat the above experi-
ment procedure by replacing PECAM compression with the H.264
compression. Compression levels in the H.264 case are controlled
by the 𝑘-𝑞𝑝 pairs.

The comparison results of PECAM and H.264 compression cases
are shown in Figure 14(a). For all experiments, PECAM compression
always offers better recovery accuracy than the H.264 compression.
Actually, the recovered videos transmitted by using H.264 will
have great negative impacts on the usability of forensics, as its
highest recovery accuracy is only 84% (compression ratio is only
1.05). While maintaining a good recovery accuracy (e.g., >90%),
PECAM compression cases also reach better compression ratios
than the H.264 cases. Therefore, PECAM Compressor is suitable
and effective in reducing the bandwidth cost of videos containing
self-reversible information. We also summarize results of different
knob configurations in Figure 14(b), and find out that a 𝑘-𝑡ℎ pair
with balanced performance could be 20-34, which delivers a 93%
recovery accuracywith a 1.82 compression ratio.When the recovery
accuracy is the same (i.e., 0.8), the Compressor’s compression ratio
is 1.8× that of H.264.

6.4 Real-Time Performance
We demonstrate the efficiency of PECAM’s computing cost opti-
mizations, in terms of the frame rate, with its comparison with
CycleGAN and YoloV3.

In Figure 15, PECAM𝑠𝑝=𝑥 is the case if we set 𝑠𝑝 = 𝑥 for our
PECAM prototype. A larger 𝑠𝑝 leads to a higher frame rate. Recall
if the pHash distance of two frames is less than or equal to 6 in
the implementation adopted by PECAM [2], these two frames have
almost no perception difference. PECAM𝑏𝑎𝑠𝑒 is the case when we
replace our PECAM prototype’s light neural architecture with the
one proposed in CycleGAN, and let it process every frame. Addi-
tionally, we also compare the performance of PECAM operations
with other deep-learning empowered operations, namely YoloV3
and YoloV3𝑡𝑖𝑛𝑦 5, in terms of frame rate of video processing. Please
note that YoloV3/YoloV3𝑡𝑖𝑛𝑦 is used to perform object detection
tasks on video frames, rather than the video transformation, and is
famous for its high accuracy.

We perform the experiment with 10 video clips randomly se-
lected from the real-world surveillance video dataset ChokePoint [48].

5ThemAP (mean average precision) of YoloV3𝑡𝑖𝑛𝑦 is only 60% of that of the full-version
YoloV3.
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Figure 16: Bandwidth (BW) usage of video transmissionwith
different 𝑠𝑝 settings. 𝑤/𝑜𝑠𝑝 represents that the trigger strat-
egy is disabled. We set 𝑘 to 20 and set 𝑡ℎ to 34, as recom-
menced in Figure 14(b).

PECAM takes these videos as input, protects them, and sends them
to back-end subscribers. Experimental results show that, just by
applying our light neural architecture, PECAM𝑠𝑝=0 is 4.2× and
5.1× faster than the PECAM𝑏𝑎𝑠𝑒 on CPU and GPU, respectively.
And with the help of FastTranser and mobile GPU, PECAM can
reach a 35.6fps when 𝑠𝑝 = 6. Compared to the video processing of
YoloV3, PECAMwith 𝑠𝑝 = 6 achieves an 18.1× and 46.8× frame-rate
speedup on CPU and mobile GPU, respectively. The storage usage
of the PECAM system is 17.6MB. The memory used by PECAM
system during running is 200MB. In the CPU mode, the CPU uti-
lization is about 85.8%; while in the GPU mode, the GPU utilization
is about 99% and the CPU utilization is about 3%.

Moreover, FastTranser also benefits the overall bandwidth cost
because it produces frames that do not need recoverability. There-
fore, a more aggressive lossy compression can be applied to such
frames. Figure 16 shows, when 𝑠𝑝 is set to 6, the network bandwidth
required for transmission is further reduced by 93% on top of the
bandwidth reduction by PECAM compression.

7 DISCUSSION
Limitations. PECAM has three limitations that can be improved
in the future. First, we do not theoretically guarantee that no attack
is able to reverse PECAM’s privacy enhancement. We plan to pro-
vide more theoretical supports for PECAM with the help of recent
advances in deep learning interpretability. Second, PECAM cannot
completely preserve the VSAP, although it greatly enhances pri-
vacy. For example, when objects are extremely close to the camera,
their partial details could be leaked under the protection of PECAM.
The leaking level is determined by the configurable parameter 𝑘 ,
which balances usability and privacy. We will consider the auto or
adaptive tuning of 𝑘 in the future. Third, PECAM by design does
not protect the categorizable information, behavioral information,
or spatial information because such information is commonly used
in VSA analytics tasks.
Scalable Deployment. To defend against the adversary, PECAM
enables each camera to possess its own PECAM instance, which
achieves the same visual transformation goal with a unique se-
cret transformation method. Thus, the PECAM instance has to be
trained for each camera, which is not convenient for large-scale
deployment. Here we discuss two potential strategies, i.e., short-
term and long-term, to mitigate this scalability issue. In the short
term, we could apply the pre-training technique to improve training

efficiency. Pre-training is widely used to quickly fine-tune different
models from the basic one. We could also group cameras together
according to the geographic area or ownership and just train one
model for every group. In the long term, we envision both the hard-
ware and algorithms will be more powerful, given the current fast
development of deep learning. New training procedure and training
platform will help us to propose more efficient PECAM deployment
on millions of devices.

Prototype Hardware. We build the PECAM prototype on the
Qualcomm Snapdragon 845, which is comparable to the mid-range
or high-end off-the-shelf (COTS) cameras for VSA. For example,
in terms of the GPU ability, some high-end COTS cameras [9] are
about 2-8× more powerful than the Snapdragon 845. Moreover, the
dedicated AI hardware accelerators [50] have emerged to deliver
excellent mobile deep learning capabilities. We advocate that smart
cameras in the future shall all run certain on-device intelligent
solutions like PECAM to improve privacy.

8 CONCLUSION
PECAM is a VSAP enhancement system featuring a GAN-based
video transformation. It runs on the VSA front-end to enhance
whole-frame privacy over real-time video streaming. Its outputs can
be directly taken as inputs by various existed VSA tasks in the back-
end. PECAM also makes transformed video securely-reversible in
the presence of an adversary. We believe PECAM’s design is generic
enough to become an intelligent platform hosting future privacy
solutions for video streaming and analytics.
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