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Abstract
The optimization of resource is crucial for the operation
of public cloud systems such as Microsoft Azure, as well
as servers dedicated to the workloads of large customers
such as Microsoft 365. Those optimization tasks often need
to take unknown parameters into consideration and can be
formulated as Prediction+Optimization problems. This pa-
per proposes a new Prediction+Optimization method named
Correlation-Aware Heuristic Search (CAHS) that is capable
of accounting for the uncertainty in unknown parameters and
delivering effective solutions to difficult optimization prob-
lems. We apply this method to solve the predictive VM pro-
visioning (PreVMP) problem in which the VM provisioning
plans are optimized based on the predicted demands of differ-
ent VM types, to ensure rapid provisions upon customers’ re-
quests and to pursue high resource utilization. Unlike the cur-
rent state-of-the-art PreVMP approaches that assume inde-
pendence among the demands for different VM types, CAHS
incorporates demand correlation when conducting prediction
and optimization in a novel and effective way. Our experi-
ments on two public benchmarks and one industrial bench-
mark demonstrate that CAHS can achieve better performance
than its nine state-of-the-art competitors. CAHS has been suc-
cessfully deployed in Microsoft Azure and significantly im-
proved its performance. The main ideas of CAHS have also
been leveraged to improve the efficiency and reliability of the
cloud services provided by Microsoft 365.

Introduction
Cloud computing has become a popular and powerful com-
puting paradigm (Wang et al. 2015). Virtualization is one of
the key technologies used in cloud systems. A physical ma-
chine (PM) can host multiple virtual machines (VMs) and a
cloud system manages a large pool of configurable VM re-
sources (Cortez et al. 2017). For instance, Microsoft Azure
provides public cloud services to host VMs from general
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customers and also maintains dedicated AzSC (Azure on
Substrate Compute) servers for the large number of Office
workloads owned by Microsoft 365.

In order to manage large cloud systems effectively, ad-
vanced algorithms are needed to guide the creation, schedul-
ing, allocation and maintenance of the large number of VMs.
Among all those different tasks, VM provisioning, as a core
problem in cloud computing, has attracted considerable at-
tention in both academia and industry (Zhang et al. 2014;
Zhao et al. 2018). In practice, a cloud system not only has to
provision an enormous quantity of VMs each day, but also
needs to provision VMs rapidly upon customers’ requests
since provisioning VMs from scratch could take a fairly long
time (Mao and Humphrey 2012). In order to overcome these
challenges, recent literature formulates the above scenario as
the predictive VM provisioning (PreVMP) problem, where
the future demands are predicted first and then the VM pro-
visioning plan is optimized based on the predicted demands
(Luo et al. 2020).

Similar to many other problems arsing from the study
of cloud systems such as Microsoft Azure and AzSC, the
PreVMP problem can be formulated as a typical predic-
tion and optimization (Prediction+Optimization) problem
(Balghiti et al. 2019). Still, as the objective in PreVMP
problem depends on unknown parameters (i.e., actual de-
mands), common optimization approaches are inapplica-
ble here (Demirović et al. 2019a). Unfortunately, existing
PreVMP approaches (Wilder, Dilkina, and Tambe 2019;
Demirović et al. 2019a; Luo et al. 2020) assume that the
demands for different VM types are independent, and do not
explore demand correlation. This limitation prevents the ex-
isting approaches from forming truly optimized VM provi-
sioning plans, since ignoring demand correlation would re-
sult in inaccurate modeling of prediction uncertainty and in-
cur performance degradation in optimization.

In this paper, we are devoted to proposing a novel, effec-
tive Prediction+Optimization approach called Correlation-
Aware Heuristic Search (CAHS), which leverages the corre-



lation among demands to improve the practical performance.
While we focus on the application of CAHS on solving
PreVMP problem, this approach is applicable to the general
Prediction+Optimization problem, including other problems
emerging from the intelligent management of cloud systems.
The ideas used in this method, such as correlation explo-
ration, uncertainty modeling and heuristic search, have also
been incorporated into a number of practical methods for
managing Microsoft 365’s workloads on the cloud. Those
practical methods include the B2 autopilot container allo-
cation algorithm for the load balance (Luo et al. 2020), the
AzSC packing algorithm for improving packing efficiency
(Luo et al. 2020), and DADRAC (Data Driven Admission
Control) for the capacity management.

In the following, we first formulate the PreVMP problem
and conduct empirical study on application PreVMP bench-
marks. Our investigation shows that the demands of differ-
ent VM types often exhibit significant correlations; as a re-
sult, the limitation of existing state-of-the-art PreVMP ap-
proaches would incur performance degradation. To address
this serious issue, CAHS first partitions all VM types into
different groups based on demand correlation; then, for each
partitioned group, CAHS jointly predicts the future demands
for all VM types in this group, and models the prediction
uncertainty considering demand correlation; finally, CAHS
optimizes the provisioning plan based on the predicted de-
mands and the jointly modeled prediction uncertainty. In this
way, CAHS incorporates demand correlation when conduct-
ing prediction and optimization.

Our experiments on two public benchmarks and one in-
dustrial benchmark, all of which are collected from indus-
trial public cloud systems, show that CAHS achieves much
better performance than existing state-of-the-art PreVMP
approaches. Our results indicate that CAHS can bring ben-
efits in practice. More encouragingly, CAHS has been suc-
cessfully deployed in Microsoft Azure, and the VM pro-
visioning time has been significantly shortened. The main
ideas behind CAHS have also been applied to managing
Microsoft 365’s workloads with considerable success.

We summarize our major contributions as follows.
• We provide empirical evidence that the demands of dif-

ferent VM types often exhibit significant correlations.
• In order to solve the PreVMP problem, as well as other

Predict+Optimization problems in general, we propose a
novel, effective approach called CAHS, which explores
the correlation among demands for different VM types
and incorporates demand correlation when conducting
prediction and optimization.

• Our experimental results on two public benchmarks
and one industrial benchmark clearly demonstrate the
superiority of CAHS over current state-of-the-art ap-
proaches. More encouragingly, CAHS has been deployed
in Microsoft Azure and brought significant performance
improvement in production.

Problem Definition
In this section, we formally describe the predictive virtual
machine provisioning (PreVMP) problem (Luo et al. 2020).

Notations Related to VMs: A virtual machine (VM) type
vi = (αi, Bi) is a pairwise tuple, where αi denotes the
number of CPU cores of vi, and Bi = {bi,1, . . . , bi,β}
(|Bi| = β) denotes the amount of β resource types (e.g.,
memory and disk) of vi. Given a set of n VM types, the
historical demands for all VM types are represented by
D = {dti | i ∈ {1, . . . , n}, t ∈ {1, . . . , T}}, where each
dti is a non-negative integer and represents the demand of
VM type vi during the time period [t − 1, t]. Moreover,
Di = {d1i , . . . , dTi } denotes the historical demands of VM
type vi; and Dt = {dt1, . . . , dtn} refers to the demands of all
VM types in the period [t−1, t]. Finally, Y ∗ = {y∗1 , . . . , y∗n}
represents the real demands for all VM types in the time pe-
riod [T, T +1], which are unknown till the time stamp T +1.

Notations Related to PMs: A physical machine (PM) pj
is a pairwise tuple, i.e., pj = (Cj , Hj), where Cj denotes
the number of CPU cores of pj , and Hj = {hj,1, . . . , hj,β}
(|Hj | = β) denotes the amount of β resource types of pj . At
any time stamp t, the cloud system can provide a collection
of mt PMs, i.e., P t = {pt1, . . . , ptm}, to provision VMs dur-
ing the time period [t, t+ 1]. For simplicity, notations P , pj
and m represent PT , pTj and mT (the PM related informa-
tion queried at last time stamp T ), respectively.

Resource Constraints: Since a VM can only be provi-
sioned on a PM with enough resource, for each PM pj =
(Cj , Hj), the total number of CPU cores cannot exceed Cj ;
for each of β resource types, the total amount of the corre-
sponding resource type required by all VMs hosted on pj
cannot exceed the amount of that resource type of pj .

Decision Variables: We use notation A = {ai,j | i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}} to denote n·m integer decision
variables, and each ai,j represents the number of VMs with
VM type vi to be hosted on PM pj . Also, notation X =
{xi | i ∈ {1, . . . , n}} denotes n integer decision variables,
and xi =

∑m
j=1 ai,j represents the number of VMs with VM

type vi to be provisioned on all PMs.
Provisioning Plan: A provisioning plan is a complete as-

signment toA. Given a provisioning plan, it is valid if all re-
source constraints are satisfied under this provisioning plan.

Objective: It is recognized that optimizing VM provi-
sioning at CPU core level can lead to good performance for
cloud systems in practice (Mann 2016; Zhao et al. 2018;
Luo et al. 2020). We follow this standard practice and set
the objective in this work as optimizing CPU core utiliza-
tion ratio, which is defined as the ratio between the total
number of CPU cores utilized by all VMs and the total
number of CPU cores in all physical machines. In our no-
tations, the number of utilized CPU cores for VM type vi is
ui = min{xi, y∗i } · αi and the total number of utilized CPU
cores for all VM types is u =

∑n
i=1 ui. Thus, the CPU core

utilization ratio can be represented as r = u/(
∑m
j=1 Cj).

The PreVMP Problem: At time stamp T , given a set of n
VM types V , historical demands D, and a set of m PMs, the
Predictive Virtual Machine Provisioning (PreVMP) prob-
lem aims to find a valid provisioning plan so that the highest
CPU core utilization ratio r can be achieved. As the number
of total CPU cores in all physical machines (i.e.,

∑m
j=1 Cj)

can be regarded as a constant, maximizing r is equivalent to



maximizing the total number of utilized CPU cores for all
VM types u. Hence, the PreVMP problem is formally de-
scribed as below.

maximize u =
∑n
i=1 min{xi, y∗i } · αi

s.t.
∑n
i=1ai,j · αi 6 Cj , j ∈ J∑n
i=1ai,j · bi,k 6 hj,k, (j, k) ∈ J ×K

ai,j > 0, (i, j) ∈ I × J
ai,j is an integer, (i, j) ∈ I × J

(1)

where I = {1, . . . , n}, J = {1, . . . ,m} and K =
{1, . . . , β} (recalling that xi =

∑m
j=1 ai,j). We would like

to note that, at time stamp T , the real demands of all VM
types during the following time period [T, T + 1] (i.e.,,
{y∗i | i ∈ {1, . . . , n}}) are unknown.

Actually, the PreVMP problem is a very challenging prob-
lem (Luo et al. 2020); even if all real demands during the
time period [T, T + 1] (i.e.,, {y∗i | i ∈ {1, . . . , n}}) were
known, the problem is still NP-hard (Hbaieb, Khemakhem,
and Jemaa 2017; Zhao et al. 2018; Luo et al. 2020).

Related Work
When all the real demands {y∗i | 1 6 i 6 n} are known,
the PreVMP formulated in Equation 1 reduces to the classic
VM provisioning (VMP) problem. While the classic VMP
problem has been well studied (Mann 2016; Hbaieb, Khe-
makhem, and Jemaa 2017; Zhao et al. 2018; Liu et al. 2018),
approaches for solving classic VMP problem cannot handle
the scenario where real demands are unknown.

As discussed before, the PreVMP problem is a typical
Prediction+Optimization problem (Balghiti et al. 2019). A
common solution is the two-stage approach, which first pre-
dicts the real demands based on historical demands, and
then optimizes the provisioning plan by treating predicted
demands as real ones (Demirović et al. 2019a). Recently,
there is a growing body of work on solving specific scenar-
ios of the Prediction+Optimization problem, including the
cases when the optimization objective is linear (Elmachtoub
and Grigas 2017; Mandi et al. 2020), when the optimization
problem is a ranking problem (Demirović et al. 2019b), and
when the optimization problem can be solved by dynamic
programming (Demirović et al. 2020). However, due to the
form of the optimization objective in the PreVMP problem,
these new approaches are not applicable. More importantly,
as prediction errors are unavoidable (Wilder, Dilkina, and
Tambe 2019), the two-stage method would exhibit inferior
performance for solving PreVMP (as can be observed in our
experiments). Also, robust optimization (Bertsimas, Gupta,
and Kallus 2018) and stochastic optimization (Spall 2003)
cannot be applied to the Prediction+Optimization problem,
since they do not have a clear way to use feature data and
predict unknown parameters in optimization objective from
data (Elmachtoub and Grigas 2017; Demirović et al. 2019a).

In the literature, current state-of-the-art approaches for
solving the PreVMP problem are Semi-direct (Demirović
et al. 2019a), Decision-NN (Wilder, Dilkina, and Tambe
2019) and UAHS (Luo et al. 2020). However, these ap-
proaches assume that the demands for different VM types

(a) Azure-2017 (b) Azure-2019 (c) INDU-2020

Figure 1: Visualizations to demonstrate the VM demand cor-
relation for the three benchmarks.

are independent and do not explore correlation among de-
mands. As we will show later, this limitation would incur
performance degradation.

Empirical Study on VM Demand Correlation
Since our CAHS approach leverages the VM demand corre-
lation for optimizing VM provisioning plans, here we con-
duct empirical study to investigate whether the correlation
appears frequently or sporadically among the demands of
different VM types in application scenarios.

For the empirical study, we adopt two public benchmarks
(i.e., Azure-2017 and Azure-2019) and one industrial
benchmark (i.e., INDU-2020).1 It is well recognized that
Pearson’s correlation coefficient (PCC) (Rodgers and Nice-
wander 1988) is an effective metric to assess the correlation,
and has been adopted in many fields (Xiong et al. 2004;
Gao, Bagdouri, and Oard 2016). Hence, in this paper, we
adopt PCC as the metric to measure demand correlation.
Given two different VM types vi and vj , as well as their
historical demands Di and Dj , the demand correlation be-
tween vi and vj , denoted by ρ(vi, vj), can be calculated as
the PCC between Di and Dj , i.e., ρ(vi, vj) =

cov(Di ,Dj )
σ(Di)·σ(Dj)

(−1 6 ρ(vi, vj) 6 1), where cov(·, ·) and σ(·) denote co-
variance and standard deviation, respectively.

We visualize the demand correlations among all VM types
for the Azure-2017, Azure-2019 and INDU-2020
benchmarks in Figure 1, where we adopt λ =

√
1− ρ2 as

our distance metric (Innocenti and Materassi 2008). In Fig-
ure 1, each point represents a VM type; for two different VM
types vi and vj , the smaller the distance (i.e., the λ(vi, vj)
value), the stronger the demand correlation between vi and
vj . As can be seen from Figure 1, it is apparent that the de-
mand correlations are strong among a large number of VM
types in all application benchmarks.

In this empirical study, given two VM types vi and vj , we
say that the pair (vi, vj) is significantly correlated if vi 6= vj
and |ρ(vi, vj)| > 0.5 and the correlation is statistically sig-
nificant at a significance level of 0.05. For each VM type vi,
we use η(vi) to denote the number of significantly correlated
pairs where vi appears. Our statistics show that the values of
the averaged η across all VM types for the Azure-2017,

1The Azure-2017, Azure-2019 and INDU-2020 bench-
marks, which are all collected from industrial public cloud systems,
are introduced in the Experiments section.
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Azure-2019 and INDU-2020 benchmarks are 6.7, 6.4
and 45.4, respectively, which further confirms that signifi-
cant demand correlation among VM types can be frequently
observed in all application benchmarks.

There are many possible reasons for the existence of de-
mand correlation. For example, we observe from our data
that many requests are submitted to deploy web services. To
accomplish a web service deployment request, many VMs
with different VM types are required for front-end, business
logic, database, etc. As another example, a version upgrade
(e.g., the release of a new operating system version) could
also lead to the correlations in VM demands – more users
would request those VM types with the new operating sys-
tem version, and meanwhile less users would request those
VM types with the old operating system version.

Correlation-Aware Heuristic Search
This section presents Correlation-Aware Heuristic Search
(CAHS), a novel approach for solving the PreVMP problem.

High-level Framework
The main idea of CAHS is to explore and incorporate the VM
demand correlation when conducting prediction and opti-
mization. Inspired by the success of the iterative framework
underlying UAHS for solving PreVMP (Luo et al. 2020),
the high-level framework of our CAHS approach is also an
iterative one. There are four critical phases in our CAHS
approach: 1) partitioning phase; 2) configuration selection
phase; 3) prediction phase; 4) optimization phase. The high-
level framework of CAHS is illustrated in Figure 2. Accord-
ing to Figure 2, CAHS conducts the configuration selection,
prediction and optimization phases in an iterative manner.

Partitioning Phase: This phase partitions all VM types
into different VM type groups, based on the demand corre-

Algorithm 1: VM Type Partitioning

Input: V : a set of all VM types;
Output:G: the set of partitioned VM type groups;

1 G← ∅, R← V ;
2 while |R| > 1 do
3 vi, vj ← arg max

vi∈R,vj∈R (vi 6=vj)

|ρ(vi, vj)|;

4 g ← {vi}, R← R\{vi};
5 sort R by the |ρ| value w.r.t. vi in a descending order;
6 foreach vj ∈ R do
7 p← min{|ρ(vj , w)| | w ∈ g};
8 if p > τ then g ← g ∪ {vj}, R← R\{vj};
9 G← G ∪ {g};

10 if |R| == 1 then G← G ∪ {R } ;
11 return G;

lation. This phase ensures the sufficient strength of correla-
tions among demands of the VM types in the same group.

Configuration Selection Phase: This phase selects an ef-
fective configuration Cfg∗ for the prediction phase, based on
its estimated performance through a neural network based
performance regressor.

Prediction Phase: In this phase, for each partitioned VM
type group gs, CAHS jointly predicts the future demands for
all VM types in gs, and models the prediction uncertainty as
a joint distribution by considering demand correlation.

Optimization Phase: For each time period [t− 1, t], this
phase takes all VM types’ predicted demands during [t−1, t]
and all VM type groups’ prediction uncertainties as inputs,
and conducts optimization to produce an effective provision-
ing plan subject to resource constraints regarding the PM
status queried at time stamp t− 1.

In each iteration, after the provisioning plans for all time
periods are produced, the average utilization ratio r∗ across
all produced provisioning plans and the chosen configura-
tion Cfg∗ are combined as a new sample, i.e., (r∗,Cfg∗),
to iteratively enhance the performance regressor in the con-
figuration selection phase. Through this way, the configu-
ration selection, prediction and optimization phases form an
effective feedback loop, which can lead to significant perfor-
mance improvement. For the high-level framework, the iter-
ation process is terminated once the iteration limit κ (which
is a hyper-parameter) is reached.

Partitioning Phase
As demonstrated in our empirical study, different VM types
often form a cluster where all pairwise demand correlations
are relatively strong. This observation in our empirical study
motivates us to propose effective methods for partitioning all
VM types into different groups, based on demand correla-
tion. As a result, the core problem in the partitioning phase is
how to effectively identify a group of VM types with strong
demand correlation.

Given a group g containing multiple VM types, we will
say all VM types in g are correlated if the PCC metric |ρ| for
all pairs of VM types in group g are greater than a threshold
τ (which is a hyper-parameter).



Algorithm 2: Configuration Selection

Input: Reg : an NN-based performance regressor;
Output: Cfg∗: the selected configuration;

1 Cfg∗ ← a randomly sampled configuration;
2 Perf ∗ ← the performance of Cfg∗ estimated by Reg ;
3 SC ← a set of randomly sampled configurations;
4 foreach Cfg ∈ SC do
5 Perf ← the performance of Cfg estimated by Reg ;
6 if Perf ∗ is worse than Perf then
7 Cfg∗ ← Cfg , Perf ∗ ← Perf ;

8 return Cfg∗;

Here we propose a new, greedy VM type partitioning al-
gorithm, which is outlined in Algorithm 1. In the beginning,
the group set G is initialized as an empty set, and the set
of remaining VM types R is initialized as the set of all VM
types V (Line 1 in Algorithm 1). Then the algorithm works
in an iterative manner. In each iteration, a group of corre-
lated VM types satisfying our proposed criterion, denoted
by g, is identified, and those VM types in g are removed
from R (Lines 3–9 in Algorithm 1). The iteration process
is terminated once R contains no more than one VM type
(Line 2 in Algorithm 1).

Our partitioning algorithm splits all VM types into a set
of groups, and guarantees that, for each group g containing
more than one VM type, all VM types in g are correlated.

Configuration Selection Phase
The role of the configuration selection phase is to provide a
configuration for the prediction phase. Thus, the core prob-
lem in this phase is how to select an effective configuration.

To address this challenge, it is necessary to develop a
model that can estimate the performance of any given con-
figuration. This model would then help us choose the most
promising configuration for the next phase. Due to the fact
that neural network (NN) has strong learning ability and can
approximate any function (Hastie, Friedman, and Tibshirani
2001), we adopt an NN-based regressor for this task.

Furthermore, we propose a new algorithm for configura-
tion selection (outlined in Algorithm 2). Following an effec-
tive sampling method called Best from Multiple Selections
(BMS) (Cai 2015; Cai, Lin, and Luo 2017), our algorithm
first randomly samples a set of configurations; then, from
the sampled configuration set, the algorithm selects the con-
figuration Cfg∗ with the best performance, estimated by the
NN-based regressor; finally the selected configuration is out-
put as the one recommended to the prediction phase.

Our algorithm can work with any NN-based regressor. In
this paper, to keep the training time at a minimum, we use
multi-layer perceptron (MLP) (Hastie, Friedman, and Tib-
shirani 2001) to estimate configuration performance.

Prediction Phase
Within each group gs, the VM types’ demands are corre-
lated. Hence, the core problem in the prediction phase is how
to predict the demands for all VM types in gs and to model
the prediction uncertainty while considering the correlation.

Algorithm 3: Prediction and Uncertainty Modeling
Input: Cfg∗: a selected configuration;

Dgs : historical demands for VM type group gs;
Output: D̂gs : predicted demand data for group gs;

εgs : the multi-variant distribution of prediction
uncertainty for group gs;

1 specify l and predictor’s parameters by Cfg∗;
2 for t← 1 to T − l + 1 do
3 D̂t+l−1

gs ← the demands for gs at t+ l − 1 forecast by
predictor trained on Γt

l(Dgs)\{Dt+l−1
gs };

4 Et+l−1
gs ← Dt+l−1

gs − D̂t+l−1
gs ;

5 Ŷgs ← the real demands for gs (at time stamp T + 1)
forecast by predictor trained on ΓT−l+2

l−1 (Dgs);
6 D̂gs ← {D̂l

gs , D̂
l+1
gs , . . . , D̂T

gs , Ŷgs};
7 εgs ← fit multi-variant GMM based on {El

gs , . . . , E
T
gs};

8 return D̂gs , εgs ;

Here we introduce several necessary notations regarding
VM type groups. For a VM type group gs, we use notation
Dgs to denote the matrix of historical demands for group
gs (Dgs = {dtsi | vsi ∈ gs, t ∈ {1, . . . , T}}). Further, for
group gs and time stamp t, we use Dt

gs to denote the de-
mands for all VM types in gs during the time period [t−1, t]
(Dt

gs is a vector). In addition, for group gs, we use Γtl(Dgs)
to denote a submatrix of Dgs , with the first time stamp of t
and the length of l (Γtl(Dgs) = {Dt

gs , D
t+1
gs , . . . , Dt+l−1

gs }).
To address the challenge in the prediction phase, com-

pared to previous approaches that assume the demand of
each VM type is independent, we propose a novel predic-
tion and uncertainty modeling algorithm which is capable of
exploiting demand correlation. Our new proposed algorithm
is listed in Algorithm 3. For each VM type group gs, CAHS
first applies the sliding window based method (Box et al.
2015) to split the group demand Dgs into a set of sequential
matrices, i.e., {Γtl(Dgs) | 1 6 t 6 T−l+1}∪ΓT−l+2

l−1 (Dgs),
where l is a configurable parameter and can be specified
by Cfg∗. For each sequential matrix Γtl(Dgs), CAHS con-
siders the last demand vector Dt+l−1

gs as the label vector,
and then forecasts D̂t+l−1

gs , through a predictor trained on
Γtl(Dgs)\{Dt+l−1

gs }, and the prediction error vector for each
sequential matrix can be obtained.

For each group gs, once the prediction error vectors for all
sequential matrices are computed, we need to model the pre-
diction uncertainty for group gs. Previous approaches (Luo
et al. 2020) use single-variant distributions to model the pre-
diction uncertainty, and cannot handle the correlated case.
In the context of PreVMP, for each group gs, we are the first
to model the prediction uncertainty εgs by fitting a multi-
variant Gaussian Mixture Model (GMM) (McLachlan and
Peel 2000), which can well capture the correlation among
multiple variants (Verbeek, Vlassis, and Kröse 2003). Be-
sides, the predictor underlying CAHS is the Unobserved
Component Model (UCM) (Durbin and Koopman 2012),
since it is recognized that UCM can forecast multi-variant
time series both efficiently and effectively (Pelagatti 2015).



Optimization Phase
For each time period [t − 1, t], this phase solves a corre-
sponding VMP problem subject to the resource constraints
regarding the PM status queried at time stamp t−1. If we di-
rectly solve the original combinatorial optimization problem
in Equation 1 by simply replacing the unknown demands
with the predicted demands, this would incur performance
degradation due to the neglection of prediction uncertainty.
Therefore, the core problem in this phase is how to find an
effective way to incorporate the prediction uncertainty into
optimization.

For a given group gs, we treat the prediction uncertainty
θsi for VM type vsi ∈ gs as a random variable, and
model all prediction uncertainties regarding group gs (i.e.,
θs1 , θs2 , . . . , θs|gs| ) with the joint distribution εgs . Then the
(unknown) real demand y∗si = d̂tsi + θsi can be treated as a
random variable. From Equation 1, the optimization objec-
tive u =

∑n
i=1 min{xi, y∗i } · αi is a random variable de-

pending on y∗1 , . . . , y
∗
n. Hence, an effective way to incorpo-

rate prediction uncertainty into optimization is to maximize
the mathematical expectation of objective u (i.e., E(u)).

As discussed in the Problem Definition section, the opti-
mization problem in our context is an NP-hard problem. To
address this challenge, we design a new heuristic search al-
gorithm, since heuristic search is known to show effective-
ness in solving NP-hard combinatorial optimization prob-
lems (Karp 2011; Cai and Su 2013; Luo et al. 2015, 2019).
For heuristic search algorithms, the most critical component
is the scoring function (Hoos and Stützle 2004; Cai et al.
2013; Luo et al. 2017), which is designed to evaluate the
potential of each candidate variable.

Specifically, given a provisioning plan A and its corre-
sponding objective u, if we provision a new VM with VM
type vi, resulting in a new objective u′, the score of vi is the
increment to the objective i.e., E(u′) − E(u). In this paper,
we propose a novel, efficient scoring function in Lemma 1,
which can well capture demand correlation.2

Lemma 1. Given a provisioning planA and VM type vi, the
score of vi can be calculated as:

score(vi) = αi · (1− CDF y∗i |gs\{vi}(xi))

+ Σj 6=i(αj · Ey∗j |gs\{vi,vj}(yj ≤ xj | y
∗
i = xi + 1))

− Σj 6=i(αj · Ey∗j |gs\{vi,vj}(yj ≤ xj | y
∗
i = xi))

+ Σj 6=i(αj · xj · CDF y∗j |gs\{vi,vj}(xj | y
∗
i = xi))

− Σj 6=i(αj · xj · CDF y∗j |gs\{vi,vj}(xj | y
∗
i = xi + 1)).

Actually, the computation of score is efficient, because it
is known that conditional distributions can be simulated very
fast (Cong, Chen, and Zhou 2017), and the computational
complexity for remaining calculations is O(|gs|).

Based on the new scoring function, we can design a new,
heuristic search algorithm for optimization. Our algorithm

2For simplicity, we utilize term ‘CDF’ to denote cumulative dis-
tribution function, and use term ‘y∗j | gs\{vi, vj}’ to denote a ran-
dom variable y∗j . In particular, y∗j is with a bi-variant distribution
χ(vi, vj), and χ(vi, vj) is derived from a multi-variant distribution
conditioned on {y∗k = xk | vk ∈ gs (vk 6= vi, vk 6= vj)}.

first initializes an empty provisioning plan (i.e., setting each
ai,j ∈ A to 0), and then works in an iterative manner: in
each iteration, the VM type vi with the greatest score is se-
lected, and a PM pj is randomly chosen; then CAHS assigns
one VM with VM type vi to PM pj (i.e., ai,j ← ai,j + 1).
The iteration process is terminated once there is no VM type
with positive score. Finally, our algorithm reports the provi-
sioning plan A as its output.

Discussions
Discussion on the differences between CAHS and UAHS:
The major differences between CAHS and UAHS are listed
as follows: a) CAHS explores demand correlation and par-
titions VM types into different groups based on demand
correlation, while UAHS does not consider demand corre-
lation; b) For prediction, CAHS jointly predicts the future
demands for those VM types in a group and models the
prediction uncertainty as a joint distribution, while UAHS
treats each VM type individually (UAHS predicts the fu-
ture demand and models the prediction uncertainty as a
single-variant distribution for each VM type independently).
c) For optimization, CAHS optimizes the provisioning plan
based on a novel, effective scoring function (Lemma 1),
while UAHS optimizes the provisioning plan using a simple,
greedy method.

Discussion on the general applicability of CAHS: It is
worthy noting that CAHS can be easily adapted for solving
the general Prediction+Optimization problem. This method
is applicable to other Prediction+Optimization problems as
long as the following two conditions hold: a) Historical sam-
ples of the unknown parameters are available to train the
predictor in the prediction phase; b) The scoring function
representing the increment to the objective function dur-
ing heuristic search is available and can be easily computed
based on the simulated conditional distributions in the op-
timization phase. The high-level framework of CAHS (i.e.,
the iteration process involving the partitioning, configura-
tion selection, prediction and optimization phases) can also
be easily modified to incorporate any probability model of
unknown parameters and any heuristic search algorithm for
solving the general Prediction+Optimization problem.

Experiments
In this section, in order to evaluate the effectiveness of
CAHS, we first perform thorough experiments on two pub-
lic benchmarks and one industrial benchmark to compare
CAHS against nine state-of-the-art approaches. Then we
conduct more empirical evaluations to analyze the effects
of our proposed new algorithmic ideas underlying CAHS.

Benchmarks
In the context of PreVMP, two public PreVMP bench-
marks3 (Cortez et al. 2017), i.e., Azure-2017 and
Azure-2019, are commonly used to evaluate the perfor-
mance of PreVMP approaches (Luo et al. 2020). Both public
PreVMP benchmarks are collected from Microsoft Azure.

3https://github.com/Azure/AzurePublicDataset



Approach
Azure-2017 Azure-2019 INDU-2020
avg. r± SD avg. r± SD avg. r± SD
time (sec) time (sec) time (sec)

LR+ACO 0.684± 0.187 0.697± 0.135 0.714± 0.050
1089.8 4849.6 3166.1

TSDec+ACO 0.756± 0.084 0.721± 0.123 0.739± 0.036
1051.7 4137.1 3252.4

AutoARIMA+ACO 0.769± 0.140 0.760± 0.122 0.746± 0.041
2229.5 4408.9 7510.3

LSTM+ACO 0.757± 0.084 0.711± 0.090 0.754± 0.054
3434.2 9054.5 14067.4

UCM+ACO 0.784± 0.122 0.767± 0.106 0.760± 0.038
1386.7 3226.7 4254.3

Prophet+ACO 0.762± 0.141 0.704± 0.142 0.738± 0.040
800.2 3071.3 2048.3

Semi-direct 0.790± 0.120 0.781± 0.084 0.751± 0.039
1030.6 4174.1 3649.8

Decision-NN 0.794± 0.116 0.791± 0.097 0.772± 0.043
2722.1 4818.0 1891.5

UAHS 0.818± 0.103 0.816± 0.102 0.803± 0.053
255.1 394.8 507.2

CAHS 0.871± 0.064 0.851± 0.033 0.872± 0.032
284.5 450.6 584.2

Table 1: Results of CAHS and its state-of-the-art competitors
on all benchmarks.

The Azure-2017 benchmark contains 110 VM types
and summarizes VM provisioning workloads of Microsoft
Azure across 30 days in 2017. Similarly, the Azure-2019
benchmark includes 150 VM types and contains VM pro-
visioning workloads of Microsoft Azure across 30 days in
2019. For each of the Azure-2017 and Azure-2019
benchmarks, the demand for each VM type is recorded every
4 hours, so it has 180 time stamps across 30 days. Each of
the Azure-2017 and Azure-2019 benchmarks consists
of 42 PreVMP benchmarking instances.

Also, we encode and use an industrial benchmark called
INDU-2020, which is gathered from Microsoft Azure. The
INDU-2020 benchmark has 154 VM types and records VM
provisioning workloads in 60 days in 2020; it has 360 time
stamps across 60 days. To align with those two public bench-
marks, the INDU-2020 benchmark is processed to contain
42 PreVMP benchmarking instances.

State-of-the-art Competitors
Following the evaluation setup adopted in the literature
(Luo et al. 2020), we compare CAHS against a baseline
comprised of 9 state-of-the-art PreVMP competitors, in-
cluding 6 two-stage methods, Semi-direct (Demirović et al.
2019a), Decision-NN (Wilder, Dilkina, and Tambe 2019)
and UAHS (Luo et al. 2020). Those 6 two-stage methods are
LR+ACO, TSDec+ACO, AutoARIMA+ACO, LSTM+ACO,
UCM+ACO and Prophet+ACO, which integrate 6 repre-
sentative, effective prediction methods, i.e., linear regres-
sion (LR) (Hyndman and Athanasopoulos 2013), time se-
ries decomposition based forecasting approach (TSDec)
(Hyndman and Athanasopoulos 2013), automatic autore-
gressive integrated moving average (AutoARIMA) (Hynd-
man and Athanasopoulos 2013), long short-term memory
(LSTM) (Luo et al. 2019), unobserved component model

Approach
Azure-2017 Azure-2019 INDU-2020
avg. r± SD avg. r± SD avg. r± SD
time (sec) time (sec) time (sec)

CAHS-alt1 0.822± 0.094 0.820± 0.084 0.820± 0.047
261.9 412.6 541.9

CAHS-alt2 0.839± 0.087 0.826± 0.091 0.837± 0.047
283.4 444.1 564.6

CAHS-alt3 0.842± 0.063 0.824± 0.051 0.853± 0.060
461.1 678.9 1033.8

CAHS-alt4 0.847± 0.051 0.827± 0.047 0.863± 0.037
344.7 544.6 998.9

CAHS-alt5 0.844± 0.077 0.834± 0.038 0.853± 0.055
351.1 521.5 789.5

CAHS 0.871± 0.064 0.851± 0.033 0.872± 0.032
284.5 450.6 584.2

Table 2: Results of CAHS, CAHS-alt1, CAHS-alt2, CAHS-
alt3, CAHS-alt4 and CAHS-alt5 on all benchmarks.

(UCM) (Durbin and Koopman 2012) and Prophet (Taylor
and Letham 2018), with the ACO (Ant Colony Optimiza-
tion) algorithm (Zhao et al. 2018) (which is the current state
of the art in solving the classic VMP problem), respectively.
Semi-direct, Decision-NN and UAHS are three state-of-the-
art approaches for solving PreVMP (Luo et al. 2020).

Experimental Setup
All the experiments in this paper were performed on a com-
puting server with 2.50GHz Intel Xeon E7-8890 v3 CPU
and 1.0TB memory, running the operating system of Ubuntu
18.04. For our CAHS approach, the hyper-parameters κ and
τ are set to 50 and 0.8, respectively; the effects of different
hyper-parameter settings are discussed later. For each ap-
proach for solving each benchmark, we report the average
CPU core utilization ratio (‘avg. r’), the standard deviation
(‘SD’) and the average runtime (‘time’) in seconds. The ex-
perimental results highlighted in boldface indicate the best
performance for each benchmark.

Experimental Results
Improvement over State-of-the-art Competitors: Table 1
reports the comparative results of CAHS and its 9 state-of-
the-art competitors on all benchmarks. As can be clearly
seen from Table 1, CAHS can achieve much better utiliza-
tion ratio than all its competitors. In particular, the improve-
ment of CAHS on average utilization ratio over the sec-
ond best approach UAHS is 0.053, 0.035 and 0.069 on the
Azure-2017, Azure-2019 and INDU-2020 bench-
marks, respectively. Since those benchmarks are all gath-
ered from industrial public cloud systems, the significant
improvement on computing resource utilization achieved by
CAHS indicates that CAHS is able to greatly decrease the
hardware resources required by predictive VM provisioning,
and in turn can considerably reduce operational expenses.

Effect of Incorporating Demand Correlation: Based on
CAHS, we develop its two alternative versions CAHS-alt1
and CAHS-alt2: CAHS-alt1 does not consider demand cor-
relation in both prediction and optimization phases, while
CAHS-alt2 only considers demand correlation in its predic-



κ
Azure-2017 Azure-2019 INDU-2020
avg. r± SD avg. r± SD avg. r± SD
time (sec) time (sec) time (sec)

1 0.837± 0.081 0.802± 0.094 0.833± 0.050
4.0 7.9 12.4

10 0.851± 0.061 0.832± 0.045 0.850± 0.040
45.8 59.3 118.8

25 0.861± 0.060 0.842± 0.039 0.859± 0.038
121.8 144.0 300.3

50 0.871± 0.064 0.851± 0.033 0.872± 0.032
284.5 450.6 584.2

100 0.877± 0.048 0.854± 0.033 0.872± 0.038
475.3 754.2 1249.9

150 0.881± 0.047 0.855± 0.035 0.873± 0.033
727.8 995.7 1953.0

200 0.883± 0.047 0.858± 0.036 0.872± 0.039
961.6 1393.9 2734.1

Table 3: Results of CAHS with different hyper-parameter
settings of κ on all benchmarks.

tion phase. The results of comparing CAHS with CAHS-
alt1 and CAHS-alt2 are presented in Table 2. From Table 2,
CAHS clearly outperforms CAHS-alt1 and CAHS-alt2 on all
benchmarks, which confirms that incorporating demand cor-
relation can lead to significant performance improvement.

Effect of VM Type Partitioning: To show the effec-
tiveness of our algorithm for VM type partitioning, based
on CAHS, we replace our partitioning algorithm with three
well-known clustering algorithms (i.e., k-means (Lloyd
1982), Spectral Clustering (Shi and Malik 2000) and DB-
SCAN (Ester et al. 1996)), resulting in CAHS-alt3, CAHS-
alt4 and CAHS-alt5, respectively. The experimental results
of CAHS, CAHS-alt3, CAHS-alt4 and CAHS-alt5 are shown
in Table 2. According to Table 2, CAHS achieves better per-
formance than CAHS-alt3, CAHS-alt4 and CAHS-alt5 on all
benchmarks, which indicates the effectiveness of our parti-
tioning algorithm.

Effects of Hyper-parameter Settings: Since CAHS in-
troduces two hyper-parameters κ and τ , the experimental
results of CAHS with different hyper-parameter settings of
κ and τ are presented in Tables 3 and 4, respectively. Table
3 presents that CAHS can achieve better performance with
larger κ, and Table 4 demonstrates that CAHS can perform
better when τ is around 0.8.

Applications in Practice
In this section, we present the applications of CAHS in
practice. In particular, we first describe the success story
in Microsoft Azure, and then introduce the applications in
Microsoft 365.

Success Story in Microsoft Azure
More encouragingly, our CAHS approach has been success-
fully applied to the Pre-Provisioning Service (PPS) (Luo
et al. 2020) in Microsoft Azure. For PPS, demand predic-
tions are obtained from CAHS through an intermediary ser-
vice system called Resource Central (Cortez et al. 2017), and
CAHS has significantly improved the performance of VM
provisioning for Microsoft Azure. Through our statistics on

τ
Azure-2017 Azure-2019 INDU-2020
avg. r± SD avg. r± SD avg. r± SD
time (sec) time (sec) time (sec)

0 0.825± 0.099 0.818± 0.057 0.829± 0.064
936.4 1669.0 2210.5

0.1 0.847± 0.065 0.825± 0.049 0.853± 0.064
478.3 824.6 1025.5

0.2 0.853± 0.061 0.821± 0.057 0.855± 0.064
464.3 738.6 912.5

0.3 0.841± 0.074 0.825± 0.050 0.862± 0.065
446.5 695.5 849.5

0.4 0.846± 0.067 0.826± 0.047 0.865± 0.062
430.6 634.9 771.6

0.5 0.846± 0.062 0.828± 0.051 0.868± 0.034
411.3 594.3 720.6

0.6 0.848± 0.076 0.836± 0.039 0.873± 0.030
379.1 551.4 653.5

0.7 0.855± 0.065 0.842± 0.034 0.871± 0.039
331.3 488.2 614.8

0.8 0.871± 0.064 0.851± 0.033 0.872± 0.032
284.5 450.6 584.2

0.9 0.853± 0.077 0.845± 0.041 0.854± 0.053
275.0 428.1 548.0

1.0 0.822± 0.094 0.820± 0.084 0.820± 0.047
261.9 412.6 541.9

Table 4: Results of CAHS with different hyper-parameter
settings of τ on all benchmarks.

the collected data, CAHS benefits the majority of VM provi-
sioning processes that are eligible for PPS, and the median of
the VM provisioning time has been significantly shortened.

Applications in Microsoft 365
Although our discussion has been mainly focused on solv-
ing the PreVMP problem, our proposed CAHS method pro-
vides a general framework for dealing with a broad range
of Prediction+Optimization problems, including many com-
mon issues in managing large number of workloads hosted
on cloud systems. The ideas used in CAHS, including cor-
relation exploration, uncertainty modeling, heuristic search
and the unified Prediction+Optimization framework, have
also been leveraged for developing intelligent algorithms to
improve the efficiency and the reliability of Microsoft 365’s
workloads hosted on the cloud. In this subsection, we will
discuss the general applicability of CAHS and provide a brief
overview on the relevant applications in managing Microsoft
365’s cloud services.

Methods and ideas explored in CAHS can be extremely
valuable for managing dedicated cloud servers hosting
workloads owned by large enterprises and organizations
such as Microsoft 365 as well as public cloud systems. Sim-
ilar to the scenario of intelligent VM provisioning, the man-
agement of cloud services needs to handle unknown quanti-
ties corresponding to the fluctuating demands of customers,
and requires to solve various challenging optimization prob-
lems under multiple hard and soft constraints. For instance,
one of the most frequent tasks is the allocation of VMs to
physical machines. Given objective functions such as the
packing density or machine load balance, a difficult combi-
natorial optimization problem has to be solved to obtain the



best allocation plan under resource constraints such as CPU
and memory. A better allocation policy also needs to plan for
unknown factors such as the life time, priority, and actual
resource utilization of a VM, which can only be predicted
with models trained on historical data. Such application sce-
narios occur during both the initial onboarding of VMs and
run time adjustment such as live migration. Moreover, prac-
tical tasks such as capacity planning, VM scheduling, and
power management also require to solve different combina-
torial optimization problems while taking the unknown fu-
ture workload demand into consideration.

In addition to VM provisioning, we have leveraged ideas
in CAHS to develop intelligent algorithms for managing
cloud workloads owned by Microsoft 365. The B2 autopi-
lot container allocation algorithm adopts the similar heuris-
tic search method used in CAHS to guide the allocation of
containers hosting Office workloads in Microsoft 365 data
centers under multiple resource constraints. This algorithm
has significantly improved the load balance across physical
machines and significantly reduced the number of hot-spot
machines. The AzSC packing algorithm deployed on AzSC,
the dedicated clusters for Microsoft 365, also relies on the
heuristic search method to improve the packing efficiency.
This algorithm has resulted in an increment of the overall
packing density and a reduction of the number of stranded
cores in the fleet. In order to improve the capacity efficiency,
the DADRAC (Data-Driven Admission Control) system uti-
lizes predicted demand growth at cluster level to dynami-
cally set the optimal buffer threshold for each cluster. This
approach has freed considerable computing resources and
contributed to the effort of easing the resource shortage dur-
ing the outbreak of COVID-19. All those examples rely on
heuristic search algorithms and prediction-based planning
inspired by CAHS to improve the efficiency and reliability
of cloud services provided by Microsoft 365. These success-
ful applications present the application potential of Predic-
tion+Optimization methods such as CAHS, and the future
development of intelligent cloud management system will
continuously benefit from new advancements in this area.

Conclusion
In this paper, we aim to advance the state of the art in solv-
ing the predictive virtual machine provisioning (PreVMP)
problem, which is a typical Prediction+Optimization prob-
lem and is critical in cloud computing. We conduct empiri-
cal study on application benchmarks and provide empirical
evidence showing the prevalence of significant correlation
among demands of different VM types. Then, we propose
a novel approach dubbed CAHS for solving the PreVMP
problem. The main advantage of CAHS is that CAHS in-
corporates demand correlation into prediction and optimiza-
tion. Our extensive experiments on two public benchmarks
and one industrial benchmark clearly demonstrate the su-
periority of CAHS. Furthermore, CAHS has been success-
fully deployed in Microsoft Azure and achieved significant
performance improvement for that cloud system, which in-
dicates that CAHS can bring considerable performance im-
provement in production.
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Hoos, H. H.; and Stützle, T. 2004. Stochastic Local Search:
Foundations & Applications. Elsevier / Morgan Kaufmann.

Hyndman, R. J.; and Athanasopoulos, G. 2013. Forecasting:
Principles and Practice. OTexts.

Innocenti, G.; and Materassi, D. 2008. Econometrics as Sor-
cery. CoRR abs/0801.3047.

Karp, R. M. 2011. Heuristic algorithms in computational
molecular biology. Journal of Computer and System Sci-
ences 77(1): 122–128.

Liu, X. F.; Zhan, Z.; Deng, J. D.; Li, Y.; Gu, T.; and Zhang,
J. 2018. An Energy Efficient Ant Colony System for Virtual
Machine Placement in Cloud Computing. IEEE Transac-
tions on Evolutionary Computation 22(1): 113–128.

Lloyd, S. P. 1982. Least Squares Quantization in PCM.
IEEE Transactions on Information Theory 28(2): 129–136.

Luo, C.; Cai, S.; Su, K.; and Huang, W. 2017. CCEHC: An
efficient local search algorithm for weighted partial maxi-
mum satisfiability. Artificial Intelligence 243: 26–44.

Luo, C.; Cai, S.; Wu, W.; Jie, Z.; and Su, K. 2015. CCLS:
An Efficient Local Search Algorithm for Weighted Maxi-
mum Satisfiability. IEEE Transactions on Computers 64(7):
1830–1843.

Luo, C.; Hoos, H. H.; Cai, S.; Lin, Q.; Zhang, H.; and Zhang,
D. 2019. Local Search with Efficient Automatic Configura-
tion for Minimum Vertex Cover. In Proceedings of IJCAI
2019, 1297–1304.
Luo, C.; Qiao, B.; Chen, X.; Zhao, P.; Yao, R.; Zhang, H.;
Wu, W.; Zhou, A.; and Lin, Q. 2020. Intelligent Virtual Ma-
chine Provisioning in Cloud Computing. In Proceedings of
IJCAI 2020, 1495–1502.
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