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Motivated by the recent replication and reproducibility crisis, Gelman and Carlin (2014,

Perspect. Psychol. Sci., 9, 641) advocated focusing on controlling for Type S/M errors,

instead of the classic Type I/II errors, when conducting hypothesis testing. In this paper,

we aim to fill several theoretical gaps in themethodology proposed by Gelman and Carlin

(2014, Perspect. Psychol. Sci., 9, 641). In particular, we derive the closed-form expression

for the expected Type M error, and study the mathematical properties of the probability

of Type S error as well as the expected Type M error, such as monotonicity. We

demonstrate the advantages of our results through numerical and empirical examples.

1. Introduction

The recent replication and reproducibility crisis in psychological science (e.g., Anderson

&Maxwell, 2017; Fiedler& Schwarz, 2016; Pashler&Wagenmakers, 2012) andwithin the
broader scientific community (Baker, 2016; Ioannidis, 2005a, 2005b) has rekindled the

debate on the highly controversial null hypothesis significance testing framework (NHST,

Lehmann & Romano, 2006) that has lasted for over half a century (Krantz, 1999;

Rozeboom, 1960). Among the critics, for example, Efron (2013) called outNHST for being

‘opportunistic’, because it only accumulates evidence against the null hypothesis. Bayarri,

Benjamin, Berger, and Sellke (2016) pointed out that NHST has been ‘overly relied on’ by

the scientific community, and Cumming (2014) stressed the ‘need to shift from reliance

on NHST to estimation and other preferred techniques’. Moreover, to replace the NHST
framework, several researchers and practitioners (e.g., Berger, Boukai, & Wang, 1997;

Deng, 2015; Deng, Lu, & Chen 2016; Johnson, 2013b; Kass & Raftery, 1995; Kruschke,

2013; Rouder, Speckman, Sun,Morey, & Iverson, 2009) have proposed several alternative

frameworks, most of which are Bayesian in nature. Among the advocates, Gigerenzer and

Swijtink (1990) praised NHST as the ‘essential backbone of scientific reasoning’. Through

several examples, Hagen (1997) illustrated the ‘elegance and usefulness’ of NHST. In a

response to Cumming (2014), Morey, Rouder, Verhagen, and Wagenmakers (2014)

argued that ‘hypothesis tests are essential for psychological science’. For a comprehensive
review of both the advantages and the pitfalls of NHST in psychological science, see

Nickerson (2000).

As pointed out by several researchers (e.g., Senn, 2001), much of the criticism of

the NHST framework is because of the scientific community’s distorted obsession with
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p-values, which are essentially the cornerstone of NHST. To clarify the misconceptions

about p-values, Wasserstein and Lazar (2016) issued an official statement on behalf of

the American Statistical Association, which among other things emphasized that ‘the

widespread use of “statistical significance” (generally interpreted as p ≤ .05) as a
license for making a claim of a scientific finding (or implied truth) leads to

considerable distortion of the scientific process’ and urged the scientific community to

provide ‘full reporting and transparency’ in research communications. Indeed, p-values

are often misinterpreted (Goodman, 2008; Huber, 2016; Peng, 2015), and, more

importantly, are prone to (intentional or unintentional) human manipulations, often

referred to as ‘hacking’ or ‘cherry-picking’ (Head, Holman, Lanfear, Kahn, & Jennions,

2015; Taylor & Tibshirani, 2015). Simmons, Nelson, and Simonsohn (2011) provided

examples of such inappropriate practices in psychological science, which they acutely
referred to as the ‘researcher degrees of freedom’. Nevertheless, despite the

controversies and criticisms, the NHST framework has remained the mainstream

approach for scientific reporting. Exceptions include academic journals such as Basic

and Applied Social Psychology, whose editorial team decided to ban the use of NHST,

because ‘the p < .05 bar is too easy to pass and sometimes serves as an excuse for

lower quality research’ (Trafimow & Marks, 2015).

To rebuild the credibility of theNHST framework and circumvent potential replication

and reproducibility crises in the future, several researchers (e.g., Johnson, 2013a) have
advocated establishing ‘revised standards’ (i.e., more stringent thresholds) for statistical

significance. Others such as Gelman (2016) pointed out a more fundamental problem

with typical NHST analyses: the lack of ‘greater acceptance of uncertainty and embracing

of variation’. Indeed, p-values and the associated power calculations only account for

Type I/II errors, and may ignore other errors which are of more practical concern or have

policy implications. To address this issue, in two illuminating papers Gelman and

Tuerlinckx (2000) proposed two new statistical errors named Type S (sign) and Type M

(magnitude) respectively, and Gelman and Carlin (2014) recommended calculating the
probability of the Type S error and the expected Type M error, which are two guardrail

metrics reflecting the trustworthiness of the NHST analysis conducted. Although

conceptually sound, the ‘applied’ nature of Gelman and Carlin’s (2014) paper resulted

in a lack of in-depth theoretical discussions, which we aim to address in this paper. We

believe that by filling the theoretical gaps, our work facilitates a better understanding of

theproposedmethodologybyGelman andCarlin (2014),whichhas beenwell receivedby

the psychology community (Lishner, 2015).

The remainder of this paper is organized as follows. Section 2 introduces Type S/M
errors in NHST, and reviews several measures to quantify them. Section 3 derives the

closed-form expressions of the said measures, based on which some mathematical

proprieties (e.g., bounds and monotonicity) are studied. Section 4 provides numerical

and empirical examples to illustrate our theoretical results. Section 5 concludes and

discusses future directions. We relegate all the proofs and other technical details to

Appendices A and B.

2. Hypothesis testing, Type I/II/S/M errors, and their measures

2.1. Hypothesis testing and Type I/II/S/M errors

To better illustrate the methodology proposed by Gelman and Carlin (2014), we consider

testing whether a true effect size l is non-zero, that is,
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H0 : l ¼ 0 versus H1 : l 6¼ 0:

The above two-sided setting is common inpsychological research, andwe followprevious

discussions (e.g., Gelman & Carlin, 2014; Gelman & Tuerlinckx, 2000) and adopt it
throughout this paper, for the purpose of illustration. It is worth mentioning that our

results can be trivially extended to other settings such as one-sided (which we discuss at

the end of this section).

Assume that the test statistic follows a normal distribution:

Z j l;r�Nðl;r2Þ ðr[ 0Þ:

As pointed out by Gelman and Tuerlinckx (2000), such setting is made plausible

by the central limit theorem, and it covers a wide range of scenarios in

psychological science, including averages, differences (e.g., between treatment and

control groups in randomized experiments), and linear regression coefficients. The

traditional hypothesis testing framework focuses on the following two statistical

errors:

1. Type I, rejecting the null hypothesis H0 when it is true;
2. Type II, failing to reject the null hypothesis H0 when it is not true.

The key idea behind the traditional hypothesis testing is the significance level a,
which controls the Type I error rate. To be more specific, let za = Φ�1(1 � a/2) be
the two-sided threshold value, and we reject the null hypothesis H0 when |Z| > za
so that

PrðjZj[ za j H0Þ ¼ a:

Although Type I/II errors are undoubtedly the cornerstone of the NHST

framework, Gelman and Carlin (2014) argued that controlling for these two

errors is insufficient to fully capture the risks of NHST analyses. Realizing this

potential pitfall, Gelman and Carlin (2014) proposed to focus on two new

errors:

1. Type S (sign), the test statistic Z is in the opposite direction to the effect size l, given
that it is statistically significant;

2. Type M (magnitude), the test statistic Z in magnitude exaggerates the effect size l,
given that it is statistically significant.

These two errors are ofmore practical concern and have policy implications, compared to

the classic Type I/II errors. First, we may want to avoid the scenario where an actually

harmless (beneficial) treatment is declared significantly harmful. Second, even if we

correctly identify the sign of the treatment, we may prefer not to overstate its actual

treatment effect.

To illustrate the definitions of Type S/M errors, we consider the case where Z ~ N

(0.5, 1). Figure 1 contains 5,000 repeated samplings of Z. First, the grey round points
correspond to statistical non-significance. Second, the black triangular points

correspond to occurrences of the Type S error. Third, the black (triangular and

squared) points correspond to occurrences of the Type M error, because in this case all

of them inevitably overestimate the true effect size l( = 0.5) in magnitude.
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2.2. Measures of Type II/S/M errors

Under the classic NHST framework, to access the credibility of the hypothesis test, we

calculate the power function, which is a function of l and formally defined as the

probability of rejecting the null hypothesisH0 under a non-zero l (i.e.,H0 is indeed false):

p ¼ PrðjZj[rza j lÞ: ð1Þ

By definition, the power function is one minus the probability of the Type II error.

Therefore, the smaller the power is, the more likely it is that the Type II error occurs.

Having proposed new Type S/M errors, Gelman and Carlin (2014) advocated

calculating two additional guardrail metrics for hypothesis testing, in conjunction with

the traditional power calculation, which measure the severities of the Type S/M errors,
respectively. Again, the twometrics are both functions of l (without loss of generality, we

assume that l > 0):

1. the probability of the Type S error,

.

s ¼ PrðZ\0 j l; jZj[rzaÞ; ð2Þ

2. the expected Type M error (‘exaggeration ratio’),
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Figure 1. Five thousand repeated samplings of Z from N(l = 0.5, r = 1). The grey round points

correspond to statistically non-significance. The black triangular points correspond to occurrences

of the Type S error (statistically significant but in the opposite direction to l). The black (triangular
and squared) points together correspond to occurrences of the TypeMerror (statistically significant

but overestimating the magnitude of l).
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.

m ¼ EðjZj jl; jZj[rzaÞ
�
l: ð3Þ

Gelman and Carlin (2014) advocated taking (1)–(3) into account simultaneously when

conductingNHST analyses, and throughnumerical and empirical examples demonstrated

the benefits of adopting the two guardrail metrics (2) and (3).

To illustrate the proposed measures in (1)–(3), we revisit the simulation results in

Figure 1, under the setting where l = 0.5 and r = 1. First, by (1) the power can be
approximatedby theproportion of red/bluepoints,which is .0796 in this case. Intuitively,

such lower power study typically will suffer from Type S/M errors, as we will show later.

Second, by (2) the probability of Type S error can be approximated by the proportion of

red points among the red/blue, which is .093 in this case. Third, by (3) the exaggeration

ratio can be approximated by the average absolute value of the red and blue points divided

by 0.5, which is 4.82 in this case.

The above numerical evaluations can help us determine the values of the three

measures in (1)–(3) under different settings. However, as mentioned before, we believe
that amore thorough theoretical study is imperative to ensure better understanding of the

proposedmethodology regardingType S/Merrors. In particular, only simulation codewas

provided by Gelman and Carlin (2014) to compute (3), and we believe that a closed-form

expression for would be beneficial for both practitioners and methodology researchers.

On the one hand, closed-form expressions enable faster andmore accurate computations.

On the other hand, we can more conveniently study mathematical properties and gain

insights from them.

To end this section, we briefly discuss the one-sided analogues of the probability of the
Type S error and expected Type M error in (2) and (3), respectively. In this case, without

loss of generality, the null and alternative hypotheses are H0: l = 0 and H1: l > 0,

respectively. Consequently, the corresponding probabilities of the Type S error and

expected Type M error are

sone�sided ¼ PrðZ\0 j l;Z[rz2aÞ; mone�sided ¼ EðZ j l;Z[rz2aÞ
�
l;

respectively, where z2a = Φ�1(1 � a).

3. Theory behind Type S/M errors

3.1. Closed-form expressions

We provide the closed-form expressions for the power function, the probability of

Type S error, and the exaggeration ratio, defined in (1)–(3), respectively. It is worth
mentioning that, although the closed-form expression for (1) is well known among the

statistical and psychological science communities, and that for (2) is rather straight-

forward to obtain and has already been tersely sketched by Gelman and Carlin (2014),

we choose to explicitly derive both in the Appendix B, to ensure that this paper is self-

contained.

Theorem 1. Let Φ(�) and /(�) denote the cumulative distribution function and the

probability density function of the standard normal distribution, respectively, and

k = l/r be the ‘signal’ to ‘noise’ ratio. The closed-form expressions for (1) and (2) are
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p ¼ Uð�za � kÞ þ 1� Uðza � kÞ ð4Þ

and

s ¼ Uð�za � kÞ
Uð�za � kÞ þ 1� Uðza � kÞ ; ð5Þ

respectively. The closed-form expression for (3) is

m ¼ /ðkþ zaÞ þ /ðk� zaÞ þ kfUðkþ zaÞ þ Uðk� zaÞ � 1g
kf1� Uðkþ zaÞ þ Uðk� zaÞg : ð6Þ

To facilitate better understanding, we consider Theorem 1 from two perspectives.

First, we fix the significance level a, and Theorem 1 indicates that the measures in (4)–(6)
are functions of k = l/r, where l and r are the mean and standard deviation of the test
statistic Z, respectively. In practice, however, k is sometimes proportional to the square

root of the sample size n. For example, in the one-sample t-test, given observations

X1; . . .;Xn �iid Nðl;r2
0Þ, the corresponding k ¼ ffiffiffi

n
p

l=r0. From a super-population point

of view, k is closely related to Cohen’s d (cf. Cohen, 1969; Orwin, 1983), which plays a

crucial role in quantitative psychological research and beyond. It is well known that the

power function can be solely determined by k, and Gelman and Carlin (2014) implicitly

stated that the probability of Type S error and the exaggeration ratio possess the same

characteristic, which we rigorously prove in the next section.
Second,we fix k, and Theorem1 indicates that themeasures in (4)–(6) are functions of

the significance levela. For illustration,we again let l = 0.5 andr = 1, and allow a to vary
in {.01, .02, . . ., .1}. In Figure 2 we plot the probability of Type S error s and the expected

Type M errorm, for different values of a. We also consider the special case a = 1, which

implies that za = 0. Consequently, in the following corollarywe obtain the expectation of
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Figure 2. Illustration of Theorem 1 for l = 0.5 and r = 1. In each sub-figure, the horizontal axis

denotes the significance level. In (a), the vertical axis denotes the probability of Type S error. In (b),

the vertical axis denotes the expected Type M error.
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the folded-normal random variable Leone, Nelson, and Nottingham (1961), which is

useful in engineering statistics.

Corollary 1. The expectation of the folded-normal is

EðjZjÞ ¼ rðp=2Þ�1=2
e�l2=2r2 þ lf1� 2Uð�l=rÞg:

3.2. Monotonicity properties

We now discuss the monotonicity properties of the power function, probability of the

Type S error, and exaggeration ratio, for a fixed significance level a. Although it is well

known among the statistical and psychological science communities that the power

function monotonically increases as k increases, we choose to include it in this paper for

the purpose of completeness. Furthermore, intuitively speaking, the probability of Type S

error and the exaggeration ratio should be monotonically decreasing, as indeed

demonstrated through numerical examples (and in some sense implied) by Gelman and
Carlin (2014). However, as we will show later, rigorously proving such a statement turns

out to be a non-trivial task, and to the best of our knowledge this paper presents the first

rigorous proof.

To help us with the proofs, we first present two lemmas. The first lemma contains a

simple yet fundamental result regarding the tail probabilities of normal distributions. The

lemma not only plays an important role in proving the main theorem, but also is of

independent interest.

Lemma 1. For all x 2 R; we have

x 1� UðxÞf g\/ðxÞ:

Lemma 2. Define functions

s1 ¼ /ðkþ zaÞ þ /ðk� zaÞ; s2 ¼ /ðkþ zaÞ � /ðk� zaÞ;

and

t1 ¼ Uðkþ zaÞ þ Uðk� zaÞ; t2 ¼ Uðkþ zaÞ � Uðk� zaÞ:

Then the function

u ¼ �za þ zat2 þ s1 þ kt1 � k

is positive for all k > 0.

Weprovide the proofs of Lemmas 1 and 2 in Appendix A.With the help of the lemmas,

we now present the main theorem of this paper.
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Theorem 2. As k increases:

1. the power function (4) monotonically increases;

2. the probability of Type S error (5) monotonically decreases;
3. the exaggeration ratio (6) monotonically decreases.

We believe that Theorem 2 has a twofold use. On the one hand, it can serve as a

theoretical complement to the heuristic discussion by Gelman and Carlin (2014). On the

other hand, from a more practical perspective, only with the above monotonicity

guarantees can a policy-maker asks questions like ‘in order to control the probability of

Type S error below .01 and the extent of exaggeration below 10%,what power do I need?’

We will continue to discuss this matter later.

To end this section, we briefly discuss the sharp bounds of the power
function, the probability of Type S error, and the exaggeration ratio, defined in

(1)–(3) respectively. We emphasize that although the bounds seem straightforward

and intuitive, only with the monotonicity guarantees can we rigorously derive

them.

Corollary 2. The sharp bounds of the power function, the probability of Type S error,

and the exaggeration ratio are [a, 1], [0, .5] and [1, ∞], respectively.

The above bounds are indeed intuitive, as previously pointed out byGelman andCarlin

(2014) and Gelman and Tuerlinckx (2000). For illustration we consider two extreme

cases:

1. When the signal-to-noise ratio k approaches zero,

(a). the power function (4) approaches the significance level a by definition;

(b). the probability of Type S error (3) approaches .5, because the sign of any

realization of the test statistic Z (statistically significant or not) is essentially

determined by a fair coin flip;
(c). the exaggeration ratio (6) approaches infinity.

2. When the signal-to-noise ratio k approaches infinity,

(a). the power approaches 1, because we are almost sure to detect the non-zero

treatment effect;

(b). the probability of Type S error approaches zero, because there will be no

realization of Z in the opposite direction;

(c). the exaggeration ratio approaches 1, because overestimation no longer exists.

In the next section, we will provide some examples to illustrate the above
arguments.

4. Numerical and empirical examples

4.1. Numerical examples

We first present some numerical examples to illustrate our theoretical results. We allow k
to vary over (0.25, 0.5, . . . , 2.75, 3), representing a wide range of typical psychological

experiment settings. For each value of k, we use (4)–(6) to calculate the corresponding

power, the probability of Type S error and the exaggeration ratio, respectively. Results are

in Figure 3, from which we can draw several conclusions, some of which echo the

discussions by Gelman and Carlin (2014):
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1. The numeric results corroborate our findings regarding the monotonicity properties

of the measures in Theorem 2.

2. The probability of Type S error decreases fast. As amatter of fact, to ensure that s ≤ .1

and s ≤ .01, we only need k ≥ 0.5 ( p = .08) and k ≥ 1 ( p = .17), respectively. In
other words, even moderately low-power studies are sufficient to control the Type S

errors.

3. The exaggeration ratio decreases relatively slowly. To ensure that m ≤ 1.5 and

m ≤ 1.1, we need k ≥ 2 (p = .52) and k ≥ 3 (p = .85), respectively. In other

words, only high-power studies are sufficient to control the extent of Type M

errors.

To summarize, it appears while that Type S errors are rare in practice as long as the

analysis is conducted in a principled way, Type M errors are rather common. This
conclusion corroborates several discussions in the existing literature. For example, as

mentioned by Gelman and Carlin (2014), Button et al. (2013) emphasized that ‘using
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Figure 3. Numerical results for a = .05. In each sub-figure, the horizontal axis denotes the signal to

noise ratio k. In (a), the vertical axis represents power. In (b), the vertical axis represents the

probability of Type S error. In (c), the vertical axis represents the expected Type M error.

Type S/M errors 9



statistical significance as a screener can lead researchers to drastically overestimate the

magnitude of an effect’. As a matter of fact, Figure 3 suggests that even for studies with

moderately high power (e.g., between .6 and .7), on averagewewill overestimate the true

effect size l by 20–30%.
We conclude this section by answering the motivating question raised earlier – to

simultaneously achieve the two goals of controlling the probability of Type S error below

.01 and the extent of exaggeration below 10%, we need the power to be at least 85%.

4.2. Empirical example

By focusing on Type S/M errors in additional to the classic Type I/II errors, Gelman and

Carlin (2014) proposed a new retrospective analysis tool that complements the traditional

NHST framework. In particular, it can ‘provide useful insight, beyond what was revealed

by the estimate, confidence interval, and p-value that came from the original data

summary’. In practice, for an existing data analysis, the following steps were taken:
1. Assume that the sampling standard deviation equals (or at least accurately

approximates) the true standard deviation r.
2. Make an educated guess at the true effect size l, through, for example, extensive

external literature reviews.

3. Use (5) and (6) to calculate the minimal required standard error r to meet the

thresholds, and compare it to the standard deviation in the existing study.

Gelman and Carlin (2014) used this tool to reanalyse three empirical studies in

psychological and political sciences (all of which are in published papers), and
revealed that existing results might have grossly overestimated the true effect sizes.

What is worse, there was a decent chance that the point estimates were in the wrong

directions.

In this section, we illustrate how to obtain additional insights from a different

perspective, by proposing some slightmodifications toGelman and Carlin (2014) analytic

tool, without any fundamental changes:

1. Depending on the context of the study, propose ‘toleration’ levels of Type S/M

errors – thresholds for the probability of Type S error and exaggeration ratio.
2. Make an educated guess at the true effect size l.
3. Use (5) and (6) to calculate the minimal required standard error r to meet the

thresholds, and compare it to the standard deviation in the existing study.

We believe that our approach has somemerits. For example, suppose that we find that

for an existing study, the standard deviation is twice the desired minimal standard error

that meets the thresholds for controlling Type S/M errors. If circumstances (time, budget)

permit, it is possible to repeat the studywith four times the sample size. Therefore, instead

of declaring the existing study untrustworthy, we advocate ‘salvage’ by accruing more
evidence.

We revisit the controversial ‘beauty and sex ratio’ study by Kanazawa (2007). For

illustration, we require that s ≤ .01 and m ≤ 1.1, which is equivalent to k ≥ 3. As

mentioned by Gelman and Carlin (2014), a review of the literature suggested that the true

effect size can be at most 1%, which implies that in order to meet the thresholds the

standard deviation should be at most 0.33%. The existing study has a sample size of 2,972

and a standard error of 3.3%. Therefore, by assuming that the sample is representative of

the target population,we recommend reconducting the studywith a sample size of at least
300,000. This recommendation more or less echoes Gelman and Carlin (2014)
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recommendation of 500,000. It is worth mentioning that, if such a large-scale study were

indeed conducted, it is very likely thatwewould have obtained a point estimatemuch less

than the 8% reported by Kanazawa (2007). According to the existing literature, such a

large number is highly unlikely to represent the truth.

5. Concluding remarks

In this paper, we have studied the proposed methodology for Type S/M errors in null

hypothesis significance testing in Gelman and Carlin (2014), and filled several theoretical

gaps. In particular, we derived the closed-form expression of the exaggeration ratio, and
proved its monotonicity property. Through several numerical and empirical examples,

we demonstrated that our results can complement of the heuristic discussion by Gelman

and Carlin (2014), and, moreover, are of both theoretical and practical interest. We also

discussed how to apply our retrospective analysis tool to real-life data sets.

There are multiple possible future directions based on our work. In particular,

although Gelman and Carlin (2014) current framework aims to ‘use prior information

without necessarily using Bayesian inference’, it is possible to embed the proposed

measures of Type S/M errors in a fully Bayesian setting. We leave this to future research.
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Appendix A: Proofs of lemmas

Proof of Lemma 1. For x ≤ 0, the lemma holds trivially. For x > 0, note that

x 1� UðxÞf g ¼ ð2pÞ�1=2

Z 1

x

xe�s2=2ds

\ð2pÞ�1=2

Z 1

x

se�s2=2ds

¼ ð2pÞ�1=2
e�x2=2

¼ /ðxÞ;

which completes the proof. h
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Proof of Lemma 2. By the definitions of s1, s2, t1 and t2, we can rewrite u as follows:

u ¼ s1 � za � kþ za Uðkþ zaÞ � Uðk� zaÞf g þ k Uðkþ zaÞ þ Uðk� zaÞf g
¼ s1 � za � kþ ðkþ zaÞUðkþ zaÞ þ ðk� zaÞUðk� zaÞ
¼ ðkþ zaÞ Uðkþ zaÞ � 1f g þ ðk� zaÞUðk� zaÞ þ /ðkþ zaÞ þ /ðk� zaÞ:

By Lemma 1,

ðkþ zaÞ Uðkþ zaÞ � 1f g þ /ðkþ zaÞ[ �/ðkþ zaÞ þ /ðkþ zaÞ ¼ 0

and

ðk� zaÞUðk� zaÞ þ /ðk� zaÞ ¼ �ðza � kÞ 1� Uðza � kÞf g þ /ðza � kÞ
[ �/ðza � kÞ þ /ðza � kÞ ¼ 0:

The proof is complete. h

Appendix B: Proofs of theorems and corollaries

Proof of Theorem 1. By definition, Z/r � N(k, 1). First, by (1),

p ¼ PrðZ=r\�zaÞ þ PrðZ=r[ zaÞ ¼ Uð�za � kÞ þ 1� Uðza � kÞ:

Second, by (2),

s ¼ PrðZ\0; jZj[rzaÞ
PrðjZj[rzaÞ

¼ PrðZ=r\�zaÞ
PrðZ=r[ zaÞ þ PrðZ=r\�zaÞ

¼ Uð�za � kÞ
Uð�za � kÞ þ 1� Uðza � kÞ :

Third, let Y = |Z/r| denote the corresponding folded-normal random variable, whose

probability density function is (cf. Leone et al., 1961)

f ð yÞ ¼ ð2pÞ�1=2
e
�ðy� kÞ2

2 þ e
�ðyþ kÞ2

2

8<
:

9=
; ð y� 0Þ:

By definition, we can rewrite (3) as
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mðkÞ ¼ EðjZj j jZ=rj[ zaÞ=r
l=r

¼ EðY j Y [ zaÞ
k

;

ð7Þ

which implies that

mðkÞ ¼
ð2pÞ�1=2 R1

za
y e�

ðy�kÞ2
2 þ e�

ðyþkÞ2
2

n o
dy

kð2pÞ�1=2 R1
za

e�
ðy�kÞ2

2 þ e�
ðyþkÞ2

2

n o
dy

: ð8Þ

To further simplify (8), note that

ð2pÞ�1=2

Z 1

za

e�
ðy�kÞ2

2 dy ¼ Uðk� zaÞ; ð2pÞ�1=2

Z 1

za

e�
ðyþkÞ2

2 dy ¼ 1� Uðkþ zaÞ;

that

ð2pÞ�1=2

Z 1

za

ye�
ðy�kÞ2

2 dy ¼ �ð2pÞ�1=2

Z 1

za�k
de�

s2

2 þ kð2pÞ�1=2

Z 1

za

e�
ðy�kÞ2

2 dy

¼ /ðk� zaÞ þ kUðk� zaÞ;

and that

ð2pÞ�1=2

Z 1

za

ye�
ðyþkÞ2

2 dy ¼ �ð2pÞ�1=2

Z 1

zaþk
de�

s2

2 � kð2pÞ�1=2

Z 1

za

e�
ðyþkÞ2

2 dy

¼ /ðkþ zaÞ þ kfUðkþ zaÞ � 1g:

We complete the proof by combining the above. h

Proof of Corollary 1. By (7) and (8) in the proof of Theorem 1,

EðY jY [ zaÞ ¼ kmðkÞ

¼ /ðkþ zaÞ þ /ðk� zaÞ þ kfUðkþ zaÞ þ Uðk� zaÞ � 1g
1� Uðkþ zaÞ þ Uðk� zaÞ :

We let a = 1 and za = 0. Consequently, E(Y) = 2/(k) + k{1 � 2Φ(�k)}, which implies

that

EðjZjÞ ¼ 2r/ðkÞ þ krf1� 2Uð�kÞg
¼ r

ffiffiffiffiffiffiffiffi
2=p

p
e�l2=2r2 þ lf1� 2Uð�l=rÞg;

and the proof is complete. h
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Proof of Proposition 2. First, to prove that (4) monotonically increases, note that its

derivative

op
ok

¼ /ðza � kÞ � /ðza þ kÞ[ 0

for all a 2 (0, 1) and k > 0. The last step holds because (za � k)2 < (za + k)2.
Second, proving that (5) monotonically decreases is equivalent to proving that

h ¼ Uðk� zaÞ
�
Uð�k� zaÞ monotonically increases, which holds because its derivative

oh
ok

¼ /ðk� zaÞUð�k� zaÞ þ Uðk� zaÞ/ð�k� zaÞ
U2ð�k� zaÞ

[ 0

for all k > 0.

Third, to prove that (6)monotonically decreases, first note that by the definitions of s1,

s2, t1 and t2, we can express m(k) as m1/m2, where

m1 ¼ s1 þ kðt1 � 1Þ; m2 ¼ kð1� t2Þ:

Furthermore, the derivative of m1 is

m0
1 ¼ �ðkþ zaÞ/ðkþ zaÞ � ðk� zaÞ/ðk� zaÞ þ t1 � 1þ ks1
¼ �zas2 þ t1 � 1;

and that of m2 is m
0
2 ¼ 1� t2 � ks2: Therefore, we have

m0
1m2 ¼ kð1� t2Þð�zas2 þ t1 � 1Þ

¼ �ks2zað1� t2Þ þ kð1� t2Þðt1 � 1Þ ð9Þ

and

m0
2m1 ¼ ð1� t2 � ks2Þðs1 þ kt1 � kÞ

¼ s1ð1� t2Þ � ks1s2 þ kð1� t2Þðt1 � 1Þ � k2s2ðt1 � 1Þ: ð10Þ

Combining (9) and (10), we have

m0
1m2 �m0

2m1 ¼ �ks2zað1� t2Þ � s1ð1� t2Þ þ ks1s2 þ k2s2ðt1 � 1Þ
¼ ks2ð�za þ zat2 þ s1 þ kt1 � kÞ � s1ð1� t2Þ
¼ ks2u� s1ð1� t2Þ:

By the definitions of s1, s2 and t2, and by Lemma 2,

s1 [ 0; s2 � 0; 1� t2 [ 0; u[ 0;

for all k > 0. The proof is complete. h
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Proof of Corollary 2. By the monotonicity properties in Theorem 2:

1. p(0) ≤ p ≤ p(∞), where

pð0Þ ¼ a; pð1Þ ¼ 1;

2. s(∞) ≤ s ≤ s(0), where

sð1Þ ¼ 0; pð0Þ ¼ 0:5;

3. m(∞) ≤ m ≤ m(0), where

mð1Þ ¼ lim
k!1

/ðkþ zaÞ þ /ðk� zaÞ
kf1� Uðkþ zaÞ þ Uðk� zaÞg þ lim

k!1
Uðkþ zaÞ þ Uðk� zaÞ � 1

1� Uðkþ zaÞ þ Uðk� zaÞ
¼ lim

k!1
0

k
þ lim

k!1
1

1

¼ 1

and

mð0Þ ¼ lim
k!0

/ðkþ zaÞ þ /ðk� zaÞ
kf1� Uðkþ zaÞ þ Uðk� zaÞg þ lim

k!0

Uðkþ zaÞ þ Uðk� zaÞ � 1

1� Uðkþ zaÞ þ Uðk� zaÞ
¼ lim

k!0

2/ðzaÞ
ka

þ lim
k!1

a
a

¼ 1:

The proof is complete. h
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