
Qd-tree: Learning Data Layouts for Big Data Analytics

Zongheng Yang
§∗
, Badrish Chandramouli, Chi Wang, Johannes Gehrke

†
, Yinan Li,

Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, Rajeev Acharya
†

Microsoft Research
†
Microsoft

§
University of California, Berkeley

zongheng@cs.berkeley.edu,{badrishc,chiw,johannes,yinali}@microsoft.com,

{ufminhas,a-palars,donaldk,rajeevac}@microsoft.com

ABSTRACT

Corporations today collect data at an unprecedented and

accelerating scale, making the need to run queries on large

datasets increasingly important. Technologies such as colum-

nar block-based data organization and compression have

become standard practice in most commercial database sys-

tems. However, the problem of best assigning records to data

blocks on storage is still open. For example, today’s systems

usually partition data by arrival time into row groups, or

range/hash partition the data based on selected fields. For

a given workload, however, such techniques are unable to

optimize for the important metric of the number of blocks ac-
cessed by a query. This metric directly relates to the I/O cost,

and therefore performance, of most analytical queries. Fur-

ther, they are unable to exploit additional available storage

to drive this metric down further.

In this paper, we propose a new framework called a query-
data routing tree, or qd-tree, to address this problem, and pro-

pose two algorithms for their construction based on greedy

and deep reinforcement learning techniques. Experiments

over benchmark and real workloads show that a qd-tree can
provide physical speedups of more than an order of magni-

tude compared to current blocking schemes, and can reach

within 2× of the lower bound for data skipping based on

selectivity, while providing complete semantic descriptions

of created blocks.

ACM Reference Format:

Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes

Gehrke, Yinan Li, Umar Farooq Minhas, Per-Åke Larson, Donald

Kossmann, Rajeev Acharya. 2020. Qd-tree: Learning Data Layouts

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389770

for Big Data Analytics. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3318464.3389770

1 INTRODUCTION

The last decade has seen a huge surge in the volume of data

collected for big data analytics. This trend has in turn driven

up interest in building high-performance analytics systems

that can answer queries over terabytes of data in seconds.

The first generation of analytics systems heavily leveraged

fine-grained indexes such as B-Trees to accelerate query

processing. However, more recently, the trend has shifted to

using scan-oriented data processing strategies that exploit

the high sequential bandwidth of modern storage devices.

In an effort to reduce the amount of data read from disk,

today’s analytics systems typically split up the data into

chunks or data blocks in main memory or secondary storage.

Further, they build an in-memory min-max index that stores

the minimum and maximum values per block, per field, and

use it to only retrieve blocks relevant to a query. A retrieved

block is fully scanned, and other blocks are entirely skipped.

While tremendous progress has been made in organizing

the data carefully within each block, with techniques such as

columnar organization and compression, the problem of best

assigning records to data blocks is relatively less explored.

For example, today’s production systems usually partition

data by arrival time into blocks called row groups, or use
hash or range partitioning of data based on selected fields.

Such techniques are unable to optimize for the important

metric of number of blocks accessed (or rows touched, in

case of variable sized blocks) by a given query workload.

This metric directly relates to the I/O cost, and therefore

performance, of the workload.

We desire blocks with two properties: (1) a semantic de-
scription, a precise description of its contents as a predicate

over table fields; and (2) completeness, a guarantee that a block
contains all tuples matching the given description. These

properties are desirable for accelerating block retrieval and

for using blocks as a local cache or partial view over remote

∗
Research done during internship at Microsoft Research.

https://doi.org/10.1145/3318464.3389770
https://doi.org/10.1145/3318464.3389770

data. Further, they allow us to consider advanced data lay-

outs where a row is stored in more than one block, thereby

exploiting additional storage budget (Sec. 6). Such data redun-

dancy can significantly reduce the number of blocks accessed

by a query, but only if we have the completeness property

for blocks. Without the completeness guarantee, all blocks

overlapping with a query would need to be scanned, even if

a single block contains all the tuples needed for that query.

Recent research on row-grouping [45] proposes the use of

data mining and clustering techniques to create data blocks;

the blocks have semantic descriptions based on a feature

bitmap vector, but the resulting blocks lack completeness

(Sec. 2 has more details).

1.1 Our Solution

In this paper, we propose a new framework to address the

problem of data organization and query routing (Sec. 2 and 3).

Fig. 1 depicts our overall system architecture, targeting a

traditional data warehouse scenario where data is stored on

disk. At the heart of the system is a data structure we call

a query-data routing tree (or qd-tree). Briefly, a qd-tree is a
binary tree where each node corresponds to some sub-space

of the entire high-dimensional data space. The root of the

tree corresponds to the entire data space. We perform a cut
of a node’s data space in order to create its children.

We can use a qd-tree for both block generation and query

processing. Given a qd-tree and a dataset, we can route each

tuple in the dataset through the qd-tree to assign them to data

blocks of a minimum size (large blocks may be physically

stored as multiple segments on storage). In other words, the

leaves of the qd-tree correspond to data blocks. Each leaf has

a semantic description, a predicate 𝑝 based on a conjunction

of the cuts made to the data space as we traverse the routing

tree from root to leaf. Data blocks created in this manner are

also complete: a data block can be described as “all tuples

that match predicate 𝑝”. Further, given a set of qd-tree based
blocks and an incoming query, we can use the qd-tree in

conjunction with traditional min-max indexes to quickly

locate and scan all blocks relevant to the query.

Constructing the optimal qd-tree for a given dataset and

workload is a hard problem. Our first approach (Sec. 4) uses a

new greedy heuristic where, starting from the root, each cut

is made based on locally available information. This provides

routing trees of high quality with new approximation guar-

antees, but is unable to fully exploit long-term knowledge

of tree quality. At the other extreme is dynamic program-
ming (DP) or memoized search, which can find the optimal

solution, but is infeasible given our large search space. In-

stead, by exploiting deep reinforcement learning (RL) for

their construction, we show (Sec. 5) that we can explore a

larger search space and exploit any implicit lower dimension-

ality of data during qd-tree construction, thereby producing

routing trees that significantly outperform the state-of-the-

art, while still providing complete semantic descriptions for

blocks. Our RL solution can be regarded as an approximate

and accelerated memoized search method [38, 39], leading

to higher efficiency than DP but with optimality close to

DP. Deep RL-based qd-tree also forms a general framework:

we show in Sec. 6 that it can easily be extended with newer

types of cuts, data overlap, and data replication for even

better block skipping.

We perform a detailed evaluation (Sec. 7) on a standard

benchmark workload (TPC-H) and two real workloads. Our

experiments show that qd-tree-based data layouts can yield

physical speedups, compared to current block construction

schemes, of up to 14× per workload (or up to 180× per query),
and reach within 2× of the lower bound for data skipping

based on selectivity (the optimal solution, being a hard prob-

lem, is unknown). We cover related work in Sec. 8 and con-

clude the paper in Sec. 9.

1.2 Contributions

To summarize, we make the following contributions:

• We introduce the qd-tree data structure and show how it

can be used for data partitioning.

• We propose a greedy construction scheme for qd-tree,
which builds the tree top-down starting from the root, and

offers theoretical approximation guarantees.

• To overcome the limitations of the greedy approach, we

introduceWoodblock, a deep reinforcement learning al-

gorithm that learns to construct high-quality qd-trees.
• We discuss the generality of our tree and learning frame-

work via potential extensions that are enabled by a qd-
tree’s semantic description and completeness properties.

• Through a detailed evaluation on benchmarks and real

workloads, we show that a learned qd-tree exhibits excel-
lent data skipping properties.

Finally, note that one can view a qd-tree as a powerful

workload-guided index for modern block-based big data ana-

lytics. It can express non-trivial block assignment strategies

and can locate relevant blocks quickly during query pro-

cessing. The layout within each block is orthogonal to the

qd-tree itself, affecting only its cost function. For instance, a

qd-tree can support columnar scan-optimized layouts as well

as row-oriented layouts (possibly indexed) in each block.

2 PRELIMINARIES

2.1 Problem Definition

Given a set of tuples𝑉 , we aim to partition them intomultiple

blocks, such that the number of tuples required to scan for

online

offline

learned
tree

Qd-tree Constructor
Greedy / Deep RL

Queries

Data Router

Query Router

Data Blocks

candidate
cuts

Block IDs

sample

learned
tree

DBMS

Data

Figure 1: System Architecture.

a workload is minimized, or equivalently, the number of

tuples that can be skipped for the workload is maximized.

Consider a partitioning P = {𝑃1, . . . , 𝑃𝑘 } over 𝑉 , i.e., P is a

set of disjoint subsets of 𝑉 whose union is 𝑉 . Each subset

𝑃𝑖 is called a block. We use 𝐶 (𝑃𝑖) to denote the number of

tuples that can be skipped when we execute all the queries

in a workload𝑊 = {𝑞1, . . . , 𝑞𝑚}. For a scan-oriented system,

it can be calculated as:

𝐶 (𝑃𝑖) = |𝑃𝑖 |
∑
𝑞∈𝑊

𝑆 (𝑃𝑖 , 𝑞) (1)

where 𝑆 (𝑃, 𝑞) is a binary function indicating whether parti-

tion 𝑃 can be skipped when processing query 𝑞. The defini-

tion of 𝑆 depends on the type of meta informationmaintained

at each block. The most common type of meta information

is the max-min filters, i.e., the maximal and minimal values

of each dimension over all the tuples in a block. For this case,

𝑆 (𝑃, 𝑞) = 1 if the hypercube defined by the max-min filters

intersects with the range of query 𝑞.

Given a workload𝑊 , the overall effectiveness of a parti-

tioning P is measured by the total number of tuples skipped

𝐶 (P) = ∑
𝑃𝑖 ∈P 𝐶 (𝑃𝑖). Without constraints on block size, the

number can be trivially maximized by putting every tuple

in an individual block. For reasons like I/O batching and

columnar compression, a real system requires blocks to have

certain minimal size, e.g., 1 million tuples in SQL Server [25].

We use 𝑏 to refer to this minimal size.

The partitioning problem is formulated as follows.

Problem 1 (MaxSkip Partitioning). Given a set 𝑉 of
tuples, a workload𝑊 of queries, a skipping function 𝑆 , and a
minimal block size 𝑏, find a partitioning P to maximize𝐶 (P),
s.t. |𝑃𝑖 | ≥ 𝑏 for all 𝑃𝑖 ∈ P.

This formulation is appropriate for static data. To handle

dynamically ingested data, it is desirable to learn a parti-

tioning function from offline data, and apply the function to

online data ingestion to save data reshuffling cost.

Problem 2 (Learned MaxSkip Partitioning). Given a
set 𝑉 of tuples, a workload𝑊 of queries, a skipping function
𝑆 , and a minimal block size 𝑏, find a partitioning function 𝐹 ,

such that for the next 𝑉 tuples ingested, the partitioning P
generated by 𝐹 (𝑉) maximizes 𝐶 (P).

In general, no partitioning function is guaranteed to work

for future unseen data. In this work, we focus on the scenario

where the current𝑉 tuples have the same distribution as the

next 𝑉 tuples. Therefore, solving Problem 2 is reduced to

solving Problem 1 in addition with a descriptive partitioning

function, such that any new tuple can be mapped to a right

partition identifier. For efficiently ingesting data, we also

desire the partitioning function to be lightweight to compute.

2.2 Current Approaches

2.2.1 Date Partitioning. In this basic partitioning scheme,

we partition data by time of ingestion. The skipping function

𝑆 (𝑃, 𝑞) = 1 if query 𝑞’s date range intersects with partition

𝑃 , and is 0 otherwise.

2.2.2 Bottom-up Row Grouping. This technique was pro-

posed by Sun et al. [45], and uses feature-based data skipping.

Basically, each feature 𝑓𝑖 is a predicate over the data.𝑀 fea-

tures are extracted from the workload in the beginning using

frequent pattern mining. Each block has a bitmap of length

𝑀 , indicating whether predicate 𝑓𝑖 , 𝑖 ∈ [𝑀] is satisfied by

any tuple in this block. If the 𝑖-th bit for this block is 0, i.e.,

no tuple satisfies 𝑓𝑖 , then we can skip all queries subsumed

by (i.e., stricter than) 𝑓𝑖 . Sun et al.’s problem formulation

is slightly different, requiring each partition to have equal

size. They name the problem Balanced MaxSkip Partitioning,

and prove its NP-hardness by reduction from hypergraph

bisection. Using the same reduction technique, we can prove

that Problem 1 is NP-hard.

Sun et al.’s solution uses bottom-up clustering and is ac-

tually a solution to Problem 1, rather than the Balanced

MaxSkip Partitioning problem. This is because the output of

that algorithm has varying block sizes, and the sizes are no

smaller than 𝑏. The algorithm converts tuples into unique

binary feature vectors, and record the weight of each unique

feature vector (row weight), as well as the number of queries

subsumed by each feature (column weight). Initially every

unique feature vector is in its own block. Then blocks are

merged greedily using a heuristic criterion: in each iteration,

a heuristic penalty is calculated for all pairs of blocks; and

the pair with lowest penalty is chosen to be merged into a

new block. Once the size of a block reaches 𝑏, it does not

further merge with other blocks. Hence, merging eventually

stops with every block having size no smaller than 𝑏.

This solution is shown to be more effective than date

partitioning and simple multi-dimensional range partition-

ing. There are several drawbacks of that approach. First, the

heuristic penalty criterion used in the greedy algorithm only

matches the optimization objective when the query sets sub-

sumed by all features are disjoint. In general that assumption

𝐵1 𝐵2 𝐵3 𝐵4

mem=10GB? cpu<5%?

cpu<10%?

Figure 2: An example qd-tree with four leaf blocks.

is not true. So choosing the pair of blocks minimizing the

penalty does not necessarily maximize 𝐶 (P). Second, no
theoretical guarantee is provided by the greedy merging al-

gorithm. Third, the complexity of the algorithm is quadratic

to the number of unique feature vectors, which can be as

large as the number of tuples and grows exponentially with

respect to the number of features. Practical application of this

algorithm requires using a small number of features, which

poses an additional challenge of selecting a good, small set

of features. Last, while each block can be described using

the “OR” of all the feature bitmap vectors contained in that

block, such description is not complete. For example, there

can be two blocks with identical bitmap description, and a

new tuple does not have a deterministic destination partition

using this description.

3 QD-TREE
A qd-tree describes how a high-dimensional data space is cut.

Each node corresponds to a subspace of an 𝑁 -dimensional

table, modeled as a discrete hypercube, ([0, |𝐷𝑜𝑚𝑖 |),∀𝑖 ∈
[0, 𝑁)). Each node logically holds all records that belong to

its hypercube. The root of the tree, ([0, |𝐷𝑜𝑚𝑖 |),∀𝑖), repre-
sents the whole table. We assume that the domain of each di-

mension is known, and its attribute values are in [0, |𝐷𝑜𝑚𝑖 |).
Each internal node 𝑛 has two children, where the left child

satisfies a particular predicate 𝑝—attached to node𝑛—and the

right child satisfies ¬𝑝 . For now, we assume each predicate

to be a simple unary form, (attr, op, literal), where op is a

numeric comparison, but the framework supports arbitrary

predicates as well. We call predicate 𝑝 a cut on node 𝑛.

qd-tree differs from the classical k-d tree [5]. k-d tree can

be seen as a simple form of qd-tree, in that they typically

come with heuristics such as assuming cuts to be unary, cuts

alternating among dimensions, and cuts points chosen as

each dimension’s median value. qd-tree does not assume

these construction heuristics.

Example. Figure 2 shows an example qd-tree on two

columns, (cpu,mem). The root is cut with predicate 𝑐𝑝𝑢 <

10%. The resultant two children are cut with𝑚𝑒𝑚 = 10𝐺𝐵

and 𝑐𝑝𝑢 < 5%, respectively. In our implementation, the liter-

als, e.g., “10%”, are dictionary-encoded as integers.

We next describe the usage of qd-tree in data routing and

query processing. We later present algorithms to construct

qd-tree in Sections 4 and 5.

Fields of node 𝑛 Definition

n.range Hypercube describing the node’s sub-

space. 2𝑁 -dimensional array.

n.categorical_mask Map: categorical column 𝑖’s name →
|𝐷𝑜𝑚𝑖 |-dim of bits. 0 means that value

is not present.

Table 1: Semantic description of a qd-tree node.

3.1 Routing Data

Our overall strategy is to use a qd-tree to assign data to

blocks on storage. The routing of data to blocks is carried

out as follows. Each record “arrives” at the root and is re-

cursively routed down. At each node, the tagged predicate

𝑝 is evaluated; if 𝑝 (𝑟𝑒𝑐𝑜𝑟𝑑) is true, it is routed to the left,

otherwise to the right. Each record uniquely lands in a leaf

due to the binary split (𝑝 or ¬𝑝). Each leaf thus represents

a set of physical blocks to be persisted. Records are stored

with an additional block ID (BID) field to denote the block

they belong to, and the dataset is partitioned by this field.

In practice, we route large batches of records at a time,

taking advantage of vectorized instructions. Further, threads

can load different batches of records in parallel (assuming

the appends at the leaves are protected with locking).

3.2 Semantic Description of Nodes

As mentioned above, each allowed cut (predicate) is of the

form (attr, op, literal). We allow each operator to be range

comparisons, {<, ≤, >, ≥}, or equality comparisons, {=, IN}.
We now describe what node metadata we need to store to

process each cut. Table 1 presents a summary.

Handling range comparisons is straightforward, as we

only need to restrict a parent’s hypercube description. For
example, Figure 2’s root node has the hypercube

root.range: [0, 𝑀𝐴𝑋𝑐𝑝𝑢), [0, 𝑀𝐴𝑋𝑚𝑒𝑚),

and the cut on this node, 𝑐𝑝𝑢 < 10%, produces two restricted

versions for its left and right child,

left.range: [0, 10%), [0, 𝑀𝐴𝑋𝑚𝑒𝑚)
right.range: [10%, 𝑀𝐴𝑋𝑐𝑝𝑢), [0, 𝑀𝐴𝑋𝑚𝑒𝑚)

Handling equality comparisons, i.e.,= and IN, requires
storing additional metadata. We assume that these predicates

are only issued to categorical columns. Each node stores, for

each categorical column 𝑖 , a |𝐷𝑜𝑚𝑖 |-dimensional bit vector,

representing the distinct values of this column. If 1 is present

at a position, the value that corresponds to that position may

appear under the node’s subspace; otherwise, if 0, that value

definitively does not appear. It is then straightforward to

process = and IN cuts, by simply keeping (for the left child,

since it satisfies the cut) or zeroing out (for the right child) the

corresponding slots in the bit vector. For example, consider

a categorical column, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∈ {𝐿𝑂𝑊 ,𝑀𝐸𝐷,𝐻𝐼𝐺𝐻 }. The
root is initialized with

root.categorical_mask: (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 → [1, 1, 1])
since any of the three values may potentially appear. If we

cut the root with 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑀𝐸𝐷 (say, second value in the

ordered domain), the left and right child would have the

following categorical masks:

left.categorical_mask: (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 → [1, 1, 1])
right.categorical_mask: (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 → [1, 0, 1])

because the right child must satisfy ¬(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑀𝐸𝐷).
Overall, this scheme is similar to “dictionary filtering” in

popular persistent formats such as Parquet.

Thus, (range, categorical_mask) make up a node’s seman-

tic description. We make an optimization in the case of when

data has fully been routed down a qd-tree. In this scenario,

we can freeze the tree and replace each leaf’s range with a

min-max index over the leaf’s records. The min-max index

serves to “tighten” the range hypercube.

Each node of the qd-tree has a semantic description as

described. Further, based on our routing strategy, the blocks

assigned to each leaf together have the completeness prop-

erty, i.e., for a given leaf’s semantic description, every record

satisfying the description is stored at the corresponding leaf.

3.3 Query Processing

A simple way to process queries is to directly execute them

on a dataset partitioned by the block ID (BID) field introduced
by qd-tree (Sec. 3.1). In this case, which requires no inter-

vention during query processing, the traditional partition-

pruning [11, 16, 30] block-level indexes (e.g., min-max) are

used for actual block-skipping on a best-effort basis. For fur-

ther effectiveness, we instead intercept queries submitted

by users and augment them to effectively use qd-tree for

partition pruning as follows. Queries are routed through the

qd-tree and augmented with a BID IN (...) clause that lists
the pruned set of block IDs. Modern databases can use this

explicit predicate to prune blocks, without modifications to

the database internals. If desired, the query routing func-

tionality can also be integrated into the DBMS to make the

process entirely transparent.

To obtain the BID list, we loop over each leaf descrip-

tion, check whether the query logically intersects with the

leaf subspace, and return the IDs of all intersecting leaves.

Concretely, for any (unary) range predicate (recall from last

section, these include {<, ≤, >, ≥}), we perform a simple in-

terval intersection check against each leaf.range. For any
equality predicate (= and IN), we check the corresponding

bit vector slot in leaf.categorical_mask. Alternatively, we
could also “route” the query down the tree to reach a set

of leaves; however, we find scanning leaf metadata to be

efficient enough, especially when leaf metadata is grouped

together for fast access.

Building on top of checks for predicates, the intersection
checks for queries are natural extensions.We allow a query to

be arbitrary conjunction or disjunction of unary predicates

(and of lower-level conjuncts/disjuncts). The intersection

logic for AND is simply that it intersects if all of its conjuncts

do. Likewise, an OR intersects if any of its disjuncts does.

3.4 Choosing Candidate Cuts

Prior to discussing algorithms to construct qd-tree, we de-
scribe choosing the set of allowed cuts. This set serves as the

search space for the construction algorithms.

We opt for a simple treatment. Since we are given a target

workload𝑊 of queries, we simply parse them through a stan-

dard SQL planner and take all pushed-down unary predicates
as allowed cuts. For example, from a target query:

SELECT ... FROM R
WHERE (R.a < 10 OR R.b > 90) AND (R.c IN (0,4))

three cuts are extracted: (1) R.a < 10, (2) R.b > 90, and
(3) R.c IN (0,4). We find that our algorithms can easily

handle a few hundreds to low thousands of candidate cuts.

4 GREEDY CONSTRUCTION OF QD-TREE
The construction of a qd-tree is an NP-hard combinatorial

optimization problem. Greedy algorithms are a typical fam-

ily of solutions that are usually efficient and make locally

optimal choices. Hence, we start by proposing a greedy algo-

rithm to construct the qd-tree. We begin with all the tuples

in a single block, i.e., the qd-tree has a single root node that
contains all the tuples. In each iteration, we split a leaf node

whose size is larger than 2𝑏 into two child nodes, and make

sure the two children have size at least 𝑏. When choosing the

cut for a node, we use the one that maximizes 𝐶 (𝑇), i.e., the
number of tuples skipped by the partitioning P𝑇 induced by

qd-tree 𝑇 . The idea is similar to decision tree construction,

except that in decision tree learning, the predicate is chosen

using a different criterion such as information gain.

To present the algorithm, we define an action 𝑎 = (𝑝, 𝑛) as
applying cut 𝑝 to node 𝑛 in a qd-tree 𝑇 . The result of action
𝑎 is denoted as 𝑇 ⊕ 𝑎 = 𝑇 ⊕ (𝑝, 𝑛). In 𝑇 ⊕ 𝑎, node 𝑛 becomes

the parent of two child nodes: the left child 𝑛𝑝 contains all

the tuples in 𝑛 satisfying 𝑝 , and the right child 𝑛¬𝑝 contains

all the tuples in 𝑛 satisfying ¬𝑝 .
Our algorithm is presented in Algorithm 1. The main com-

putation is to choose the cut 𝑝 that maximizes the greedy

criterion𝐶 (𝑇𝑡−1⊕(𝑝, 𝑛)) for each node𝑛. For each level of the
tree, the cost to executed the for loop is bounded by𝑂 (|𝑉 | |𝑃 |).
The total cost of the while loop is bounded by 𝑂 (|𝑉 | |𝑃 |𝑑),
where 𝑑 is the final depth of the tree. log

2

|𝑉 |
𝑏
≤ 𝑑 < |𝑉 |/𝑏. In

Algorithm 1 Greedy construction of qd-tree

Input: Tuple set 𝑉 , min block size 𝑏, workload𝑊 , candi-

date cut set 𝑃

Initializatioin: Set 𝑇0 ← 𝑉 , 𝑡 ← 1, 𝐶𝑎𝑛𝑆𝑝𝑙𝑖𝑡 ← 𝑇𝑟𝑢𝑒

while 𝐶𝑎𝑛𝑆𝑝𝑙𝑖𝑡 do

𝐶𝑎𝑛𝑆𝑝𝑙𝑖𝑡 ← 𝐹𝑎𝑙𝑠𝑒

for each node 𝑛 ∈ 𝑇𝑡−1 on the last level do

if 𝑛.𝑠𝑖𝑧𝑒 ≥ 2𝑏 then

𝑝 ← argmax𝑝∈𝑃, |𝑛𝑝 | ≥𝑏, |𝑛¬𝑝 | ≥𝑏 𝐶 (𝑇𝑡−1 ⊕ (𝑝, 𝑛))
if 𝐶 (𝑇𝑡−1 ⊕ (𝑝, 𝑛)) > 𝐶 (𝑇𝑡−1) then

𝑇𝑡 ← 𝑇𝑡−1 ⊕ (𝑝, 𝑛)
𝑡 ← 𝑡 + 1,𝐶𝑎𝑛𝑆𝑝𝑙𝑖𝑡 ← 𝑇𝑟𝑢𝑒

Return 𝑇𝑡−1

the worst case, when the tree is least balanced, the complex-

ity is quadratic to |𝑉 |. In the balanced case, the complexity

grows as |𝑉 | log |𝑉 |. If the number of partitions |𝑉 |/𝑏 is a

constant, then the cost is linear to |𝑉 |.

Approximation Guarantee

Under certain generic assumptions, we can prove that the

greedy algorithm has a multiplicative offline approximation

guarantee, and an additive online approximation guarantee.

To the best of our knowledge, this the first algorithm with

such guarantees. Our proof technique defines a new notion

of submodularity: tree submodularity. We are unaware of

notions of similar kind in other tree construction algorithms.

Let 𝑡 be the number of leaf nodes in a qd-tree. The total
number of nodes is 2𝑡 − 1. While the result of the greedy

algorithm is invariant to the order of leaf splitting (which leaf

to split at each iteration), we fix the order to be top-down,

left-to-right for ease of analysis. In each iteration 𝑖 , a cut 𝑝𝑖
is chosen for the leftmost node 𝑛𝑖 on level 𝑙𝑖 . We define this

action as 𝑎𝑖 = (𝑝𝑖 , 𝑛𝑖). To characterize the properties of𝐶 (𝑇),
it is useful to define an encoding of the qd-tree.

Definition 1 (Action Encoding). An action encoding
𝐴(𝑇) = {𝑎𝑖 }𝑡−11

of a qd-tree is the sequence of cuts chosen
following the top-down, left-to-right order. We denote the tree
after iteration 𝑟 as𝑇𝑟 , and𝑇𝑟 = 𝑇0 ⊕𝑎1 ⊕ · · · ⊕𝑎𝑟 = 𝑇0 ⊕𝐴𝑟 (𝑇).

After applying action 𝑎𝑖 , a leaf node is split into two child

nodes. By definition, 𝑇 = 𝑇𝑡−1 = 𝑇0 ⊕ 𝐴𝑡−1 (𝑇).

Definition 2 (Tree Submodularity). Given two nodes 𝑛
and 𝑛′ in qd-tree 𝑇 , and actions 𝑎 = (𝑝, 𝑛), 𝑎′ = (𝑝, 𝑛′). If 𝑛′
is an ancestor of 𝑛, let 𝑇 ′ be 𝑇 minus all descendants of 𝑛′. We
say a qd-tree space is tree-submodular if for any such𝑇, 𝑛, 𝑛′, 𝑎
in the space, 𝐶 (𝑇 ⊕ 𝑎) −𝐶 (𝑇) ≤ 𝐶 (𝑇 ′ ⊕ 𝑎′) −𝐶 (𝑇 ′).

This property means that applying a cut in qd-tree has a
diminishing return as the tree grows deeper. Let 𝑄 (𝑝) ⊆𝑊
be the set of queries that can be skipped by 𝑝 . We have the

following sufficient condition for the qd-tree space to be

tree-submodular.

Lemma 1. The qd-tree space is tree-submodular if the con-
junction of cuts 𝑝1 and 𝑝2 cannot skip any query besides
𝑄 (𝑝1) ∪𝑄 (𝑝2) for all candidate cuts 𝑝1 and 𝑝2.

For example, if the workload𝑊 only consists of conjunc-

tive range queries, and each cut is a range predicate, the

above condition is satisfied.

Theorem 2. If the qd-tree space is tree-submodular, the
greedy top-down construction algorithm produces a qd-tree 𝑇
whose overall skipping capacity 𝐶 (𝑇) is no worse than:

(a) 𝑂𝑃𝑇 − 2 |𝑉 |
𝑏

(
𝐶 (𝑇) −𝐶 (𝑇 −1)

)
(b)

(
1 − 𝑏

|𝑉 |

𝑏 log
2
𝑒

2|𝑉 |

)
𝑂𝑃𝑇

where 𝑂𝑃𝑇 refers to the skipping capacity of the optimal
qd-tree 𝑇 ∗, and 𝑇 −1 refers to the sub qd-tree in 𝑇 by removing
all the leaf nodes.

Bound (a) is an online bound because it depends on the

algorithm output 𝐶 (𝑇) and 𝐶 (𝑇 −1). Bound (b) is an offline

bound independent of the algorithm output. For space rea-

sons, we defer the proofs to our technical report [49].

5 QD-TREE USING DEEP RL

The greedy technique presented above makes locally op-

timal choices which may lead to global suboptimality. At

the other extreme is dynamic programming (DP), or equiva-

lently, memoized search. It can find the optimal solution, but

is infeasible given our large high-dimensional search space,

leading to a need for approximate DP [38, 39]. In this paper,

we propose leveraging deep RL to perform an approximate,

accelerated, and incremental memoized search.

Woodblock is our deep RL agent that constructs routing

trees optimized for a target dataset and workload. At a high

level, the algorithm repeatedly constructs many trees, ini-

tially making random cuts (i.e., randomly sampling a tree

from the set of all valid trees), and gradually learns to iden-

tify better cuts through rewards. After attempting a fixed

number of trees or if a timeout is reached, the best tree found

is deployed. This approach brings several key benefits:

• Instead of remembering all the exact search states and the

optimality (reward) for them, it featurizes the states and

uses a model to predict the reward under the states.

• Instead of enumerating all the follow-up actions of a search

state to observe the reward from each of them, it samples

a subset of such actions and updates the model from the

observed rewards.

• It can incrementally produce better trees, letting us deploy

solutions quickly based on time or CPU budgets.

We next start with motivating arguments to illustrate the

above intuition, and then present Woodblock in detail.

0 20 40 60 80 100
cpu

0

1

di
sk

Q1: cpu<10 OR cpu>90
Q2: disk<0.01

Figure 3: A dataset with disjunctive queries. Regions se-

lected by Q1/Q2 are shown in grey/blue. The candidate cuts

are: {cpu<10, cpu>90, disk<0.01}. The first two cuts cannot

skip any query, so Greedy opts for the third cut, resulting in

a scan ratio of 50.5%.Woodblock is not limited by the forms

of queries; it produces a layout with a scan ratio of 10.4%, a

4.8× improvement. Discussion in Section 5.1.

5.1 Motivation for RL

Routing tree construction presents several unique challenges

that we argue are good fit for RL.

First, the exact goodness of a tree is only measurable after

the whole tree is completed. Typically, a tree is completed

after dozens or hundreds of cuts. Thus, when deciding what

cut to make, we either approximate its benefit at that single
step (e.g., a greedy criterion), or we randomly sample a cut

from some (learned, gradually refined) distribution, and then

accurately attribute benefits of each decision once the true

goodness is calculated. We will show long-term considera-

tion leads to higher quality trees than greedy consideration.

RL methods are thus a natural fit because they study the

optimization of long-term, cumulative rewards.

Second, an RL method does not make assumptions on

the query or data distribution. It requires only a black-box

learning signal, the skipping quality of a tree. To be concrete,

we now present a microbenchmark to showcase the potential

advantage due to this generality.

In Figure 3, we plot a simple dataset with two columns,

(cpu, disk).We draw 𝑐𝑝𝑢 ∼ Unif[0, 100) and𝑑𝑖𝑠𝑘 ∼ Unif[0, 1).
Query 1 is a disjunctive query on 𝑐𝑝𝑢 (perhaps looking for

anomalies at either ends), and Query 2 is a unary filter on

𝑑𝑖𝑠𝑘 . Recall from last section that the optimality proofs of our

Greedy construction relies on the tree-submodularity. When

the query workload contains disjunctive range queries and

the candidate cuts are only simple range predicates, tree sub-

modularity is not satisfied. Our Greedy algorithm is forced

to choose the cut on 𝑑𝑖𝑠𝑘—since, the two cuts on 𝑐𝑝𝑢 provide

zero skipping capability (making either cut cannot skip Q1

nor Q2), whereas the cut on 𝑑𝑖𝑠𝑘 provides a non-zero gain.

This results in a layout of the following two blocks:

• Block 1: 𝑑𝑖𝑠𝑘 < 0.01

• Block 2: 𝑑𝑖𝑠𝑘 ≥ 0.01

Thus, Q1 has to scan the large portion of unselected records

in the middle. Our deep RL agent, Woodblock, is able to

produce a 4.8× better partitioning:

• Block 1: 𝑑𝑖𝑠𝑘 < 0.01

• Block 2: (𝑑𝑖𝑠𝑘 ≥ 0.01) ∧ (𝑐𝑝𝑢 > 90)
• Block 3: (𝑑𝑖𝑠𝑘 ≥ 0.01) ∧ (𝑐𝑝𝑢 < 10)
• Block 4: (𝑑𝑖𝑠𝑘 ≥ 0.01) ∧ (𝑐𝑝𝑢 ≤ 90) ∧ (𝑐𝑝𝑢 ≥ 10)

Hence, under this layout, both Q1 and Q2 can skip block 4,

which contains a majority of records. This showcases the

power of RL as a black-box optimization method.

Lastly, a large search space needs to be navigated. The

number of candidate cuts can be large, potentially 𝑂 (100)
or 𝑂 (1000). Further, the number of data dimensions can be

in the dozens or hundreds. Deep RL (compared to classical

RL) methods have shown successes in tackling such high-

dimensional problems For instance, OpenAI Five [34], a deep

RL agent for successfully playing Dota, considers an action

space of 𝑂 (1000) dimensions and an 𝑂 (20000)-dimensional

observation space. Our Woodblock agent uses the same

scalable learning algorithm as OpenAI Five, taking advantage

of recent algorithmic advances.

We next describe the detailed design of Woodblock, a

deep RL agent that learns to construct qd-trees.

5.2 Woodblock: the Deep RL agent

To apply any RL algorithm, we first need to define the tree

construction Markov Decision Process (MDP). The state

space, 𝑆 , is defined to be any subspace of the entire data

space of the relation under optimization. The action space,

𝐴, is the set of allowed cuts. Taking an action (cut) on a state

(node) produces two new states, which we append into a

queue for exploration. The queue is initialized with a root

state (the root node) when starting each tree construction.

TheWoodblock agent, at its core, consists of two learn-

able networks parameterized by 𝜃 : (1) the policy network,
𝜋𝜃 : 𝑆 → 𝐴, takes a state and emits a probability distribu-

tion over the action space (“given a node, how good are the

cuts?”), and (2) the value network, 𝑉𝜃 : 𝑆 → R, estimates the

expected cumulative reward from a given state.

Sequentially, the agent (1) takes a node 𝑛 off the explo-

ration queue, (2) evaluates its current policy, 𝜋𝜃 (𝑛), (3) sam-

ples an action from this output distribution, (4) applies the

sampled action (cut) on node𝑛 to produce new nodes. We use

Proximal Policy Optimization (PPO) [43] as the underlying

learning algorithm, a variation in the policy gradient family

of methods. This update rule is used as a black-box subrou-

tine and is not fundamental to the design of Woodblock.

Intuition. We start each episode (the construction of one

tree) with the root state (the singleton tree with a root node).

The agent takes actions and transition into next state(s).

Once a stopping condition is reached, described next, the

episode is ended and we obtain a completed qd-tree. We

calculate the reward of this episode, i.e., the data skipping

ratio achieved by the tree, and invoke PPO for gradient up-

dates to 𝜃 . With the updated behaviors, the agent starts the

next episode. Through repeatedly constructing qd-tree, the
RL agent becomes better. At the beginning of training, a

randomly initialized 𝜃 implies random behavior: random

cuts are made and the skipping ratios would not excel. How-

ever, as more trees (episodes) are explored, the refined 𝜃 is

encouraged to make cuts that achieve higher skipping ratios.

We next discuss algorithmic details.

5.2.1 Stopping Condition. To prevent an endless sequence

of cuts, we must define an appropriate stopping condition.

A naive condition would be stopping after a pre-determined

number of cuts are made. This is problematic, because we

do not know a priori the number of cuts required to achieve

good data skipping for a given dataset-workload.

Instead, we connect back to Problem 1’s requirementwhere

each leaf block must contain at least 𝑏 records. The agent is

allowed to make a cut 𝑝 on current node 𝑛, if the resultant

children (approximately) contain more than 𝑏 records.

This approximation is achieved by testing the cut on a

data sample. First, at algorithm initialization, we take a data

sample of ratio 𝑠 from the dataset (we find 𝑠 = 0.1% to 𝑠 = 1%

generally work well). All episodes (the exploration of trying

out different trees) reuse the fixed sample. The data sample is

assigned to the root node. Next, as a cut is made, we evaluate

the cut on the data sample, and obtain a subset of records

that satisfy it and a subset that does not. If both have more

than 𝑠 ·𝑏 records, we call the cut legal and allow it to proceed.

Lastly, if a current node 𝑛 has no legal cuts in action space,

we stop cutting on it and form a leaf.

5.2.2 Reward Calculation. After a tree𝑇 is produced,Wood-

block calculates rewards for all actions taken. The rewards

serve as important learning signals: they allow the agent to

learn to distinguish profitable cuts.

First, we define 𝑆 (𝑛), the number of skipped records under

node 𝑛 across all queries:

𝑆 (𝑛) :=
{
𝐶 (n.records) if 𝑛 is a leaf

𝑆 (n.left) + 𝑆 (n.left) otherwise

Recall from Equation 1 that 𝐶 (·) refers to the number of

records skipped across the workload. Here, n.records is the
set of records routed to node 𝑛 during tree construction—

thus a subset of the small data sample we take. Since the

sample is small, this ensures reward calculation is efficient.

We then assign a reward 𝑅 for every action taken, i.e., for

every intermediate node 𝑛 and corresponding cut 𝑝:

𝑅((𝑛, 𝑝)) := 𝑆 (𝑛)/(|𝑊 | · |n.records|)

Namely, we normalize number of skipped records under

𝑛 to [0, 1] by scaling with 1/(|𝑊 | · |n.records|), where the
denominator is the maximum number of skipped records

possible under 𝑛 (the best case of all queries skipping all its

records). The PPO update rule is then invoked with a list of

state-action-reward tuples.

5.2.3 Implementation. This section discusses detailed im-

plementation of the networks. The policy network 𝜋𝜃 and

the value network 𝑉𝜃 have shared weights, which are two

fully-connected layers, 512 units each, with ReLU activation.

Each network has its own output layer: for the policy net-

work, it is a |𝐴|-dimensional linear projection; for the value

network it is a scalar projection.

Each state is featurized as the concatenation of n.range
and n.categorical_mask. Due to the potentially large val-

ues in the former component, we binary-encode both vectors

(i.e., these vectors are encoded in bits). The action space is a

discrete categorical distribution, usually with a dimensional-

ity in a few hundreds.

We found that neural network computation is not a bot-

tleneck in our setup. Routing records and calculation of re-

wards, on the other hand, take up a significant portion of

tree construction time. We therefore only use CPUs for our

agent (although using a GPU for neural network computa-

tion yields a slight overall speedup).

5.2.4 Related Work. Our formulation of using deep RL to

learn a tree under custom quality metrics is inspired by Neu-

roCuts [27], a deep RL algorithm to construct packet classifi-

cation trees. We compare the two work below.

First,Woodblock adopts their overall approach of tree-

structured MDP: each node 𝑛 is treated as an independent

state, and receives a normalized reward as if the agent is

asked to start constructing a tree from that node. This means

the agent is tasked to solve each subproblem independently.

Second, while NeuroCuts assumes no knowledge of work-

load,Woodblock optimizes a target data-workload pair. This

affects the choice of the actions. Their action space includes

generic actions (e.g., “cut dim K in N equal parts”) while we

obtain our actions from the unary predicates of the target

workload. We find that such generic actions do not make

sense in our setting—the domain of an attribute can be large,

and cutting at non query-aligned literals is suboptimal.

Third, we make specific optimizations for our data analyt-

ics setting. A data sample is required for us to calculate in-

valid cuts and respect the layout constraints. We also propose

special treatment of categorical predicates in featurization.

We find our RL-based solution to already achieve within

20% of the true dataset selectivity, which is itself a lower

bound for the optimal solution, for the TPC-H benchmark

(Sec. 7). Therefore, we do not consider alternate DP approxi-

mation or optimization techniques [38, 39] in this work.

6 FRAMEWORK EXTENSIONS

Having described two algorithms to construct a qd-tree, we
are now in a position to discuss extensions to our framework.

6.1 Advanced Cuts

Thus far we have assumed the candidate cuts are single-

column predicates (Section 3.4). They are desirable because

their simplicity allows for fast evaluation during tree con-

struction. Nevertheless, qd-tree can be extended to support

binary cuts of the form (attr1, op, attr2). Recall from Table 1

there are two components of a node’s semantic description,

and neither of them can describe a binary cut. We append a

new component to each node 𝑛’s description:

n.adv_cuts: a bit vector of size |AC|

where the constant |𝐴𝐶 | denotes the number of advanced cuts
to support and is specified for each workload a priori. Each

position 𝑖 corresponds to “does this node contain records

that satisfy advanced cut 𝑖”, with zero indicating no and

one indicating potentially yes. This is the same semantics as

categorical_mask.
For instance, the TPC-H workload contains non-join bi-

nary filters such as:

• 𝐴𝐶0: c_nationkey = s_nationkey
• 𝐴𝐶1: l_shipdate < l_commitdate
• 𝐴𝐶2: l_commitdate < l_receiptdate

A vector of (0, 1, 1) thus indicates the first condition is defi-

nitely not met (i.e., it describes a subspace of records whose

c_nationkey does not equate s_nationkey).
Lastly, the same mechanism also handles LIKE predicates

or even stateless UDFs (with the caveat that, clearly, the

cost of evaluating the predicates depends on their inherent

complexities). The user can impose a limit on the maximum

number of advanced cuts to support.

6.2 Data Overlap

With the abundance of cheap storage in the cloud, one de-

sirable feature for an analytics system is to trade space for

potentially faster execution time. A fruitful line of work has

dedicated to this problem, e.g., materialized views, which

we review in related work. We now discuss how qd-tree can
also naturally support duplicating data.

Figure 4 shows a 2D synthetic dataset and four queries.

Naively invoking either Greedy or Woodblock to construct

a qd-tree for this dataset-workload is suboptimal. Any se-

quence of cuts—recall, the cut points are query literals, i.e.,

any of the edges in the figure—would lead to 4 blocks: one

with N+1 record, and three with N records. (This is due to

the binary nature of the cuts.) The three blocks would have

to fetch the singleton record they need from the first block.

Hence, a total of 3𝑁 extra tuples are read.

Attribute 1

At
tri

bu
te

 2

N N

N

N

Q1
Q2
Q3
Q4

Figure 4: A scenario where significant data skipping is

gained by replicating a single record. Each query selects𝑁 +1
records. The queries only overlap in the one tuple placed

at the center. If the space is naively cut in a binary fashion,

3 out of 4 queries each reads 𝑁 extra tuples. By handling

overlap, qd-tree replicates the singleton record to all four

N-record regions, so no queries touch unnecessary records.

We extend qd-tree construction to handle such data over-

lap cases as follows. Observe that the reason the “lucky”

(𝑁 + 1)-record block is not further cut is due to the mini-

mum block size constraint, 𝑏. We can instead launch either

of our construction algorithms with a relaxed cutting condi-

tion: allowing one of the children to have size smaller than 𝑏.

With this change the lucky block would be further cut into

an 𝑁 -record one and a block with the singleton record.

Once such a qd-tree is constructed, we loop through all

produced leaves, and partition them into two sets: those with

size ≥ 𝑏 and those with size < 𝑏 (the original constraint). We

then replicate each block in the small-size set to any of its

neighbor blocks in the large-size set. We define two blocks

to be neighbors if their hypercubes have 𝑁 − 1 dimension

boundaries in common and the intervals at the remaining

dimension are adjacent. This ensures that, with minor modifi-

cations to node metadata, the semantic descriptions preserve

completeness. With this scheme, our algorithms could reach

the optimal partitioning for the scenario in Figure 4 at virtu-

ally no extra storage cost.

6.2.1 Data andQuery Routing. Data routing occurs as be-
fore, with a row routed to all matching blocks. Rows landing

in a replicated block are simply copied to every replica. For

query processing, the candidate set of blocks to be consid-

ered includes all blocks that overlap with the query rectan-

gle. However, we can leverage the completeness property of

blocks to prune out blocks that are redundant. For example,

a query that asks only for the centre rectangle (with the sin-

gleton record) in the example above does not have to fetch

all blocks, even though the min-max index for all four blocks
includes it. This is because of our semantic descriptions and

completeness properties: we can prune away the other blocks

because the first block completely covers the query rectangle.

With overlap, the set of blocks scanned when evaluating a

query may contain duplicate rows. To eliminate them, when

scanning block ID 𝑖 , we can simply ignore tuples that match

the semantic description of any selected block with ID < 𝑖 . A

detailed evaluation of these strategies is left as future work.

6.3 Data Replication: two-tree approach

Full-copy data replication is a complimentary approach to

overlap in utilizing extra storage. The extension for qd-tree
construction to support such replication is natural.

First, we learn (using Greedy or RL) a qd-tree, 𝑇1, opti-
mized for the full workload𝑊 . Then, we can in fact build a

second qd-tree,𝑇2, tailored for the queries that experience the
worst skippability under tree 𝑇1. The second tree is a logical

copy of the entire dataset. When constructing the second

tree, we modify the reward function for RL (and the greedy

criterion for greedy), by accounting for the existence of the

first tree. For each query 𝑞 ∈𝑊 , we choose one of the two

trees which maximizes the skippability for 𝑞, and calculate

the number of skipped tuples 𝐶𝑞 using that tree. Then we

sum up the 𝐶𝑞 ’s for all 𝑞 ∈𝑊 . This change naturally guides

the construction of the second tree to focus on the queries

with low skippability by𝑇1. Additionally, the first tree𝑇1 can

be re-built and re-optimized with 𝑇2 fixed, and iterate. Since

the revised reward function keeps increasing and is upper

bounded, this process eventually converges. The idea may

also be extended to more than two trees if needed. Exploring

such extensions is a rich area for future work.

7 EVALUATION

We now experimentally evaluate our designs. We highlight

key findings from the evaluation:

• (Table 2) qd-tree-based layouts enable excellent data skip-

ping (1.8×–61× over the state-of-the-art).

• Greedy construction of qd-tree produces high skipping

ratios; yet, Woodblock, using a general-purpose RL algo-

rithm, can still produce up to 8.5× gains due to its opti-

mization of the long-term objective.

• (Sections 7.4, 7.5) qd-tree provides 1.6×–14× physical ex-

ecution speedup over a state-of-the-art baseline across

execution engines, storage formats, and workloads.

7.1 Setup and Metrics

We implement qd-tree as a lightweight Python library. It

includes a lightweight AST and associated query-processing

logic. We use the vectorized arithmetics in numpy and pan-

das. Woodblock, the RL agent, is implemented using Ray

RLlib [26, 31], a scalable reinforcement learning library. We

evaluate all systems using both logical and physical metrics.

Logical: Access Percentage.We report %tuples accessed

for the whole workload achieved by various partitioners.

This metric is lower bounded by the true workload selectivity,

and lower values indicate greater potential I/O savings.

Physical: Query Runtime.We report end-to-end execu-

tion time as queries are issued over several analytics systems:

• Single-Node Spark (v2.4): All layouts execute with Spark

over Parquet files stored on disk (HDD). After a qd-tree
is constructed, each leaf block is converted into a Parquet

file. Other baseline layouts are stored as Parquet files as

well in comparable number of blocks.

• Commercial DBMS:We use a commercial standalone black-

box optimized DBMS. We model a scenario where parti-

tioning (e.g., by tenant ID, query ID, or TPC-H month)

is used for parallelism at a higher level, by limiting each

individual query to a single degree of parallelism. We first

load the datasets under different layouts into the system,

which uses its own binary columnar storage format on a

local SSD.

• Distributed Spark: We use a 4-node Spark cluster hosted

on Microsoft Azure, each with 8 vCPUs, 56GB RAM, and

an SSD. All data is stored as Parquet files (as with single-

node Spark) on Azure Storage, a remote blob store. The

qd-tree is cached at the driver for query rewrites.

We ensure that all layouts have a comparable number of

blocks. To eliminate caching effects we clear the OS buffer

cache before each query run. To evaluate the benefit of qd-
tree query routing, we execute queries using explicit BID
filters (Section 3.3; the default), or without (called no route).

7.2 Workloads

We evaluate on (1) TPC-H and (2) two real-world workloads-

from a large commercial software vendor.

TPC-H.We generated TPC-H with a scale factor (SF) of

1000. Following prior work [45], we denormalize the TPC-H

schema for the purpose of obtaining a table that many filters

touch
1
. Due to the uniform nature of TPC-H data, we apply

all partitioning techniques to an one-month partition of the

dataset; the month-partition totals 77M tuples, 68 columns,

and 85GB. For queries, we include all templates that touch

the line_item fact table
2
. This includes the same 8 templates

(𝑞3, 𝑞5, 𝑞6, 𝑞8, 𝑞10, 𝑞12, 𝑞14, 𝑞19) that [45] uses, as well as 7

additional templates: 𝑞1, 𝑞4, 𝑞7, 𝑞9, 𝑞17, 𝑞18, 𝑞21. We use 10

random seeds to generate each template, resulting in a total

of 150 queries. The overall scan selectivity is 21.3%.

Real Datasets. Our first real dataset, called ErrorLog-

Int, consists of error logs collected from internal customers
of a large software vendor. The error logs correspond to ker-

nel crash dump reports and are collected in real-time and

loaded into a data warehouse for analysis. These error logs

1
Our technique can layout each table in the database independently using

predicates over that table. Jointly optimizing the layout of multiple tables

for complex join queries is left for future work.

2
Our goal is to find a table with a rich set of filters. To achieve this, we

denormalize all tables and include all templates that touch the fact table.

contain information such as a categorical event type (e.g.,

device crash, live kernel event, etc.) with 8 distinct values,

OS build date, OS version (string), client ingest date, and

entry validity (a boolean). The dataset has 50 columns. We

collect a sample of around one week of logs, amounting to

100million records and 85GB of raw data. The dataset is also

associated with a query workload imposed by automated

systems via an API and users through a user interface and

translated into stored procedures over the data. We extract

the predicates that are pushed to storage and extract a set of

1000 queries over 5 dimensions that represent a majority of

the workload. The overall workload selectivity is 0.0005%;

thus, individual queries return very few results on average,

usually less than 100. All queries are of the form of IN predi-

cates over the categorical data, along with date ranges and

LIKE and equality predicates over the string fields.

Our second real dataset, called ErrorLog-Ext, is also a

crash dump log, but is collected from external customers (ap-
plications) around the world. This dataset is fundamentally

different from the earlier one, collected over 15 days with 81

million rows (85GB), has more dimensions (58) and a much

larger categorical domain of around 3600 distinct values. We

also use 1000 queries, which return more results on average,

with an overall scan selectivity of 0.0697%.

7.3 Approaches

We compare layouts produced by different algorithms, span-

ning from heuristics used in industry practice to the state-

of-the-art approach in literature:

• Random baseline (TPC-H): a partitioner that simply shuf-

fles records into fixed-size blocks.

• Range baseline (real workloads): range-partitioning on an

ingest time column (the default scheme deployed for the

real workloads).

• Bottom-Up [45]: state-of-the-art row-grouping approach

based on clustering, described in Sec. 2.

• Greedy-constructed qd-tree (Sec. 4).
• Woodblock-constructed qd-tree (Sec. 5).

We ensure Bottom-Up, Greedy, and Woodblock have the

same search space: the same set of candidate cuts is fed to

the latter two approach, which is also fed to Bottom-Up

as input to their feature selection procedure. The feature

selection procedure first performs a topological sort of the

features according to the subsumption relationship, and then

select features one by one. The frequency of each feature

is initialized as the number of queries subsumed by that

feature. At each iteration, a feature not subsumed by any

others is chosen, and the frequency of all the other features

is discounted if the they subsume common queries with the

chosen feature. A feature will not be chosen if its frequency

is below a threshold. We configure Bottom-Up to use up to

Workload Baseline Bottom-Up Greedy (ours) RL (ours)

TPC-H 56% 46.1% 26.3% 25.8%

ErrLog-Int 100% 5.6%∗ 3.1% 0.4%

ErrLog-Ext 100% 12.2%∗ 1.7% 0.2%

Table 2: Logical I/O costs: percentage of tuples accessed un-

der different layout schemes, compared to full scan. Base-
line is a random shuffler for TPC-H, and range partitioning

on an “ingest time” column for the two ErrorLog workloads.

(
∗
Results of BU

+
, our tuned version. The untuned version

fares at 100% and 96.9%, respectively.)

15 features, which follows the number reported in [45]. We

set 𝑏, the minimum number of records per block, to 100K for

TPC-H and 50K for the two ErrorLog workloads.

7.4 TPC-H

Table 2 shows the percentage of tuples accessed for different

layouts on the TPC-H workload. Overall, qd-tree layouts

provide up to 1.8× savings compared to Bottom-Up.

7.4.1 Physical execution. We report the execution runtime

of TPC-H on (1) a distributed Spark cluster, and (2) a single-

node commercial DBMS.

Distributed Spark. Figure 5a shows the mean runtime per

template on distributed Spark (each template has 10 random

instances). In total, qd-tree yields a speedup of 1.6× (closely

matching the logical ratio in Table 2). When excluded tem-

plates that need to scan all data, the speedup is 2.6×.
The top three templates where qd-tree exhibits the most

absolute runtime reduction are 𝑞21, 𝑞5, 𝑞19. For 𝑞21, the ad-

vanced cut l_commitdate < l_receiptdate allows many blocks

to be skipped, substantially speeding up a self-join. 𝑞5 has fil-

ters on supplier’s r_name, a categorical with diverse literals—
qd-tree yields a 16.8× speedup on this template. 𝑞19 is an OR

of three complex 6-filter blocks; qd-tree is able to optimize

for this complex template and provides 5.5× speedup over

Bottom-Up. Bottom-Up is faster only on 𝑞1 and 𝑞18, both of

which require the full month worth of data.

Commercial DBMS. We move to a second execution en-

gine, the commercial DBMS, to investigate whether qd-tree
still provides physical runtime execution. Results are shown

in Figure 5b. Over all templates, qd-tree has a speedup of 1.3×
and when excluding the scan-all templates, the speedup is

1.7×. Consistent with SparkSQL results, templates 𝑞21, 𝑞5, 𝑞19
exhibit large speedups of 1.3×, 8.6×, 9.1× respectively. Rel-

ative ratios for other templates are also consistent, which

suggests that the benefits from improved layouts carry over.

Performance of data and query routing. Figure 6a re-

ports the throughput of routing records through a qd-tree
(i.e., ingestion). We vary the number of ingestion threads on

1 3 4 5 6 7 8 9 10 12 14 17 18 19 21

Template

0

10

20

30

40

R
u

n
ti

m
e

(s
) bottom-up

qd-tree

(a) Distributed Spark

1 3 4 5 6 7 8 9 10 12 14 17 18 19 21

Template

0

50

100

R
u

n
ti

m
e

(s
) bottom-up

qd-tree

(b) DBMS

Figure 5: TPC-H execution runtimes, grouped by each template.

1 2 4 8 16 32 64

Num Threads

0

200K

400K

re
co

rd
s/

s

(a) Data routing

0 5 10 15

Latency (ms/query)

0.00

0.25

0.50

0.75

1.00

C
D

F

(b) Query routing

Figure 6: Performance of routing data and queries.

the same machine; linear scalability is achieved with up to

16 threads, and at 64 threads, our prototype implementation

in Python (which uses vectorized operations when possible)

can reach 400K records/second. Higher throughput can be

reached still, by either an optimized implementation in a

compiled language, or by scaling out to multiple nodes.

Figure 6b shows the latency CDF for routing all 150 queries—

the time it takes to check each query against a qd-tree to
determine intersecting blocks (Section 3.3). The maximum

time it takes for a query is less than 16ms, with most un-

der 10ms. The latencies for checking against the semantic

descriptions are not homogeneous, because queries have

varying number of filters (of varying complexity).

Robustness.We generated 10× more queries (100 queries

per template) using distinct random seeds from before. This

enlarged “test” set includes substantially more query liter-

als that the qd-tree did not use for construction. The mean

runtime of these 1500 queries on the same qd-tree layout as
Figure 5a is 7776ms, compared to that figure’s 7752ms, the

mean of the 150 “train” queries. This suggests that qd-tree is
robust for this templated workload with unseen literals.

7.5 ErrorLogs

We now discuss ErrorLog-Int and ErrorLog-Ext. Table 2 re-

ports the logical metrics for all approaches.

The default range-partitioner (“Baseline”) accesses all tu-

ples. Further, we found that the original feature selection

method in Bottom-Up ends up choosing a predicate with

very high frequency but also very high selectivity as a fea-

ture. It prunes other predicates due to the frequency discount

used in the original paper, and its skipping power is poor.

BU+ QD-Tree no route
0

2500

5000

7500

R
u

n
ti

m
e

(s
)

8890

627 753

(a) ErrorLog-Int

BU+ QD-Tree no route
0

10000

20000

R
u

n
ti

m
e

(s
)

19325

3859 4126

(b) ErrorLog-Ext

0 25 50 75 100 125 150 175

Speedup

0%

25%

50%

75%

100%

%
o

f
Q

u
er

ie
s

ErrorLog-Int

ErrorLog-Ext

(c) CDF of per-query speedups over BU
+

Figure 7: ErrorLog execution runtimes.

Thus, the access ratio is close to 100%. This a weakness of

frequency-based feature selection without taking selectivity

into account. We tuned it by ignoring predicates with selec-

tivity > 10%. This tuning, which we call BU
+
, improves the

access ratio of Bottom-Up to 5–12% (listed in Table 2).

Our greedy qd-tree, on the other hand, achieves excellent

skipping capability, accessing only 3.1% and 1.7% of tuples

for ErrorLog-Int and ErrorLog-Ext, respectively. The RL qd-
tree improves them to 0.4% and 0.2% respectively, an up to

8.5× improvement.

7.5.1 Physical execution. We measure the actual execution

runtime for both real datasets on an optimized single-node

SparkSQL instance. Each workload consists of 1000 queries.

Figures 7(a) and (b) show the aggregate runtimes.

We find that qd-tree dominates Bottom-Up
+
with a 14×

lower runtime for ErrorLog-Int. On ErrorLog-Ext, the speedup

becomes 5× because of its higher selectivity. For qd-tree, we
report runtimes using qd-tree routing (adding BID IN (...)
predicates) and using the default partition pruning (no route).
On SparkSQL with Parquet, we observe that qd-tree-based
routing is better than no route by 16% for ErrorLog-Int and

6.4% for ErrorLog-Ext.

Figure 7(c) shows the CDF of per-query speedups. We

observe that 50% of queries have a speedup of at least 25×

0 1000 2000
25%

30%

35%

40%

S
ca

n
R

a
ti

o

TPC-H

0 1000 2000
0.15%

0.20%

0.25%

0.30%

Elasped Time (sec)

ErrorLog-Ext

Figure 8: Learning curve of Woodblock. On TPC-H, most

quality improvement is learned in the first ∼10 minutes;

on ErrorLog-Ext, high quality is achieved immediately (.3%)

and continuously improved when given more time budget.

The trend for ErrorLog-Int is similar (not shown).

(ErrorLog-Int) and 20× (ErrorLog-Ext), respectively. Thus,

the excellent skipping benefits reflected in the logical metrics

translate well into physical runtime reduction.

Lastly, we executed a subset of the ErrorLog-Int queries

on the commercial DBMS. Briefly, the trends remain consis-

tent as before. Query execution with qd-tree query routing

is ∼ 400× faster than the range-partitioned baseline which

needs to touch all blocks. Unlike Parquet, however, we found

that no route performed significantly worse than qd-tree
routing. We believe this is due to a lack of block-level in-

dexes (dictionaries) for categorical fields, which prevents

categorical predicates from pruning blocks in no route.

7.6 Time to Produce Layouts

While quality of data layout is the primary metric of concern

in this study, we next discuss the wall-clock time required

to produce good data layouts.

TPC-H. Bottom-Up took 71 minutes to produce its layout

due to large number of records and queries. It produces a

layout only on termination. In contrast, the RL agent Wood-

block produces trees immediately and continuously, with

quality improving over time. Figure 8 plots the learning

curves of Woodblock. There are several key takeaways.

First, at random initialization,Woodblock immediately

produces partitioning trees with a scan ratio of ∼ 39%. This,

in fact, significantly exceeds the quality of the Random parti-

tioner reported in Table 2 (56%). The reason is that, at initial-

izationWoodblock produces a tree drawn randomly from
the search space, which is defined with a candidate cut set ex-

tracted from query workload. Leveraging these informative

cuts is much better than disregarding workload information.

Second,Woodblock enables the user to explicitly trade-

off computation time vs. the quality of layouts produced. As

the agent constructs more trees, it learns to bias the cuts that

are observed to more profitable, but it also keeps a non-zero

probability for exploration. We see that most of the improve-

ment is learned in the first 10 minutes. Further speedups may

result from (1) implementing our tree library in a native lan-

guage rather than in Python, and (2) switchingWoodblock’s

learning algorithm to a distributed learner [14].

Tree Depth
0

10

20

Nu
m

 C
ut

s

sn_name (127)
l_shipmode (95)
l_quantity (75)
l_returnflag (61)
l_discount (57)
AC 1 (42)
p_container (34)
sr_name (29)
cn_name (20)

p_brand (14)
l_receiptdate (8)
l_shipdate (5)
AC 0 (2)
cr_name (1)
p_size (1)
p_type (1)
AC 2 (1)

Figure 9: AWoodblock-produced top-performing qd-tree
for TPC-H. The number after each legend indicates the total

number of cuts on that column (or advanced cut).

ErrorLogs. A uniform workload like TPC-H is, in fact, a

more challenging task for RL because the uniform distribu-

tion of data and queries has higher entropy. On both real

ErrorLog workloads, Woodblock produces top-performing

trees within 30 seconds (Fig. 8). The run time is much short-

ened, due to the abundant correlations to be exploited in

the real-world data/workload. With the existence of corre-

lations, exploration of the space is significantly faster. On

ErrorLog-Int, Greedy and Bottom-Up finished in 12 min-

utes and 432 minutes, respectively. On ErrorLog-Ext, these

numbers became 12 minutes and 565 minutes, respectively.

7.7 Interpreting Learned qd-trees
To gain insights, we now analyze a top-performing qd-tree
(constructed byWoodblock) found for the TPC-H workload.

Figure 9 plots the dimensions cut across tree levels. We

make a few observations. First, the variety of cuts is high: 8
columns are cut at least 20 times throughout all tree levels.

Both categorical (e.g., l_shipmode) and numerical columns

(e.g., l_discount) contribute to skipping. This indicates fine-
grained cutting, as is done by RL-learned qd-tree, is ben-
eficial. Second, advanced cuts are leveraged (AC; Sec. 6.1),

indicating their skippability benefits in complex workloads.

The cuts made at the root and the first two children are:

• p_container IN (LG CASE,LG BOX,LG PACK,LG PKG);
• (First two children) 𝐴𝐶0: c_nationkey = s_nationkey.

The next level’s cuts involve l_shipdate and p_brand. Over-
all, it is clear that existing partitioning techniques (hash or

range) do not equate the sophisticated combination of cuts

produced by a qd-tree layout.

8 RELATEDWORK

Physical Design & Partitioning. Traditionally, data ware-

houses employ partitioning for the purpose of scaling out

computation and load balancing. Data is either chunked into

blocks based on arrival time, or partitioned using range or

hash partitioning schemes [25] or their improvements [6, 51].

Our technique may be applied within partitions created by

such static schemes. Automated physical design tools pro-

vide auto-tuning capabilities based on what-if analyses and

integrated into the query optimizer [1, 2, 15, 18, 41]. Au-

toAdmin [1, 2, 33, 36, 48, 52] optimizes a database and its

physical design using machine learning and data mining.

Some systems perform partitioning based on workload ac-

cess patterns [2, 3, 9], while other systems are based on

graph-based workload modeling techniques [10, 40, 44]. Sun

et al. [45, 46] (discussed in this paper) extract features from

each workload operation based on its predicates. Casper [4]

offers a general partitioning design tool based on navigat-

ing a three-way tradeoff between read performance, update

performance, and memory utilization.

Adaptive Physical Design. The cost of periodic automated

physical design can be amortized in an online pay-as-you-go

fashion. This line of research can roughly be categorized

into two approaches. Online analysis [7, 8, 42] uses available

system cycles between query execution and offline analysis

to optimize physical design. Database cracking [21, 22] im-

mediately starts executing queries, and treats each query as a

hint to reorganize parts of the data during query processing,

usually based on sort attributes. This approach optimizes

and adapts the data layout over time.

In contrast, a qd-tree performs data layout using fine-

grained descriptions based on a workload set. Our technique

learns at coarse-grained time boundaries and emits a syn-

thesized qd-tree data structure to enable data layout. We

do not react to individual query execution, but our result-

ing data structure may be used for continuous ingestion

or bulk loading. We find this approach to be suitable for

modern data formats such as Parquet, where incremental re-

organization is expensive. An interesting direction of future

work is to integrate cracking with qd-tree. Since a qd-tree
represents a way to layout data, cracking would allow us to

incrementally refine the qd-tree over time. A possible ap-

proach, left as future work, would be to include the cost of

data re-organization into the qd-tree cost model, so that we

can enable efficient incremental re-organization over time.

LearnedDatabases. There is increasing interest in automat-

ing core database functionality and design decisions. This

line of research leverages recent advancements in deep learn-

ing algorithms and scalable hardware (GPU) to improve data-

base systems. Closest to our work is a proposal of learned

partition adviser using deep RL [19]; it focuses on replica-

tion and coarse-grained partitioning (e.g., hash) along entire

attribute(s), unlike qd-tree which partitions based on a rich

set of fine-grained candidate cuts. In this space, machine

learning has also been used to revisit tuning [47], workload

forecasting [28], data structures and indexes [12, 20, 23, 32],

and query optimization [13, 24, 29, 50]. Our qd-tree may

be viewed as a learned physical design or indexing tool: it

optimizes for scan-based workloads, common in big data

analytics, to minimize the I/O cost of block accesses.

Traditional Indexing. Database indexing is a well-studied

space. For one dimensional indexing, B-Trees form the state

of the art. Multi-dimensional indexes such as k-d tree [5] and
R-tree [17] have been proposed to index data over more than

one dimension, but they do not adapt to high dimensional

data or the specific query workload. These indexes are not

a good fit for analytical workloads due to the cost of each

index lookup. Modern systems instead use scan-oriented pro-

cessing over columnar row-groups. Our work may be viewed

as workload-aware multi-dimensional indexing adapted to

the needs of analytical scan-based workloads.

Partition Pruning.Most scan-oriented databases employ

indexing over the blocks to make it easy to skip blocks. Ex-

amples include min-max based pruning, also known as small

materialized aggregates (SMA) [30], zone maps [16], and

data skipping [45, 46]. Here, the system maintains the data

distribution information for each block. Depending on the

query predicates, these values can be used to determine that

a given block might not be needed for a given query. They

are commonly employed in systems such as Oracle [35], Post-

gres [37], Microsoft SQL Server [25], and Snowflake [11]. The

most popular SMA is the min-max index, which maintains

the minimum and maximum value for each field, per block.

Snowflake also maintains SMAs for auto-detected columns

in semi-structured data. They are used for simple predicates

as well as more complex predicates, such as IN. We leverage

such block-level indexes in this paper as well. During query

processing, we use a combination of tree routing and SMA

indexes to achieve maximum skippability.

9 CONCLUSION

Running queries at interactive speeds on large datasets is

increasingly important. In this paper, we address the problem

of best assigning records to data blocks on storage, with

a goal to optimize for the important metric of number of
blocks accessed by a query. This metric directly relates to

the I/O cost, and therefore performance, of most analytical

queries. Current techniques based on hash and time-based

partitioning or clustering are unable to exploit the workload

fully and provide blockswith complete semantic descriptions,

which is useful for caching, exploiting additional storage, etc.

We propose a new framework called a query-data routing
tree, or qd-tree, to address this gap. Further, we develop two

novel algorithms for qd-tree construction: one based on a

greedy approach and the other based on deep reinforcement

learning. Experiments over benchmark and real workloads

show that a qd-tree can provide physical speedups of more

than an order of magnitude compared to current blocking

schemes, and can reach within 2× of the lower bound for

data skipping based on selectivity, while providing complete

semantic descriptions of created blocks.

REFERENCES

[1] Sanjay Agrawal, Nicolas Bruno, Surajit Chaudhuri, and Vivek R

Narasayya. 2006. AutoAdmin: Self-Tuning Database Systems Technol-

ogy. IEEE Data Eng. Bull. 29, 3 (2006), 7–15.
[2] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating

Vertical and Horizontal Partitioning into Automated Physical Data-

base Design. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’04). ACM, New York,

NY, USA, 359–370. https://doi.org/10.1145/1007568.1007609

[3] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging

the archipelago between row-stores and column-stores for hybrid

workloads. In Proceedings of the 2016 International Conference on Man-
agement of Data. 583–598.

[4] Manos Athanassoulis, Kenneth S Bøgh, and Stratos Idreos. 2019. Op-

timal column layout for hybrid workloads. Proceedings of the VLDB
Endowment 12, 13 (2019), 2393–2407.

[5] Jon Louis Bentley. 1975. Multidimensional binary search trees used

for associative searching. Commun. ACM 18, 9 (1975), 509–517.

[6] Bishwaranjan Bhattacharjee, Sriram Padmanabhan, Timothy Malke-

mus, Tony Lai, Leslie Cranston, and Matthew Huras. 2003. Efficient

Query Processing for Multi-Dimensionally Clustered Tables in DB2.

In VLDB.
[7] Nicolas Bruno and Surajit Chaudhuri. 2006. To tune or not to tune?:

a lightweight physical design alerter. In Proceedings of the 32nd in-
ternational conference on Very large data bases. VLDB Endowment,

499–510.

[8] Nicolas Bruno and Surajit Chaudhuri. 2007. An online approach to

physical design tuning. In 2007 IEEE 23rd International Conference on
Data Engineering. IEEE, 826–835.

[9] Craig Chasseur and Jignesh M Patel. 2013. Design and evaluation

of storage organizations for read-optimized main memory databases.

Proceedings of the VLDB Endowment 6, 13 (2013), 1474–1485.
[10] Carlo Curino, Evan Jones, Yang Zhang, and SamMadden. 2010. Schism:

a workload-driven approach to database replication and partitioning.

Proceedings of the VLDB Endowment 3, 1-2 (2010), 48–57.
[11] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov,

Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Mar-

tin Hentschel, Jiansheng Huang, et al. 2016. The snowflake elastic

data warehouse. In Proceedings of the 2016 International Conference on
Management of Data. 215–226.

[12] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,

Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,

Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An Up-

datable Adaptive Learned Index. In Proceedings of the 2020 International
Conference on Management of Data.

[13] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek

Narasayya, and Surajit Chaudhuri. 2019. Selectivity estimation for

range predicates using lightweight models. Proceedings of the VLDB
Endowment 12, 9 (2019), 1044–1057.

[14] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad

Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dun-

ning, Shane Legg, and Koray Kavukcuoglu. 2018. IMPALA: Scalable

Distributed Deep-RL with Importance Weighted Actor-Learner Archi-

tectures. In Proceedings of the 35th International Conference on Machine
Learning (Proceedings of Machine Learning Research), Vol. 80. PMLR,

1407–1416.

[15] S. Finkelstein, M. Schkolnick, and P. Tiberio. 1988. Physical Database

Design for Relational Databases. ACM Trans. Database Syst. 13, 1
(March 1988), 91–128. https://doi.org/10.1145/42201.42205

[16] Goetz Graefe. 2009. Fast loads and fast queries. In International Confer-
ence on DataWarehousing and Knowledge Discovery. Springer, 111–124.

[17] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial
searching. Vol. 14. ACM.

[18] Theo Härder. 1976. Selecting an optimal set of secondary indices.

In Conference of the European Cooperation in Informatics. Springer,
146–160.

[19] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2019. Towards

learning a partitioning advisor with deep reinforcement learning. In

Proceedings of the Second International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. 1–4.

[20] Stratos Idreos, Niv Dayan,Wilson Qin, Mali Akmanalp, Sophie Hilgard,

Andrew Ross, James Lennon, Varun Jain, Harshita Gupta, David Li,

et al. 2019. Design Continuums and the Path Toward Self-Designing

Key-Value Stores that Know and Learn. In CIDR.
[21] Stratos Idreos, Martin L Kersten, StefanManegold, et al. 2007. Database

Cracking. In CIDR, Vol. 7. 68–78.
[22] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011.

Merging what’s cracked, cracking what’s merged: adaptive indexing

in main-memory column-stores. Proceedings of the VLDB Endowment
4, 9 (2011), 586–597.

[23] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.

2018. The case for learned index structures. In Proceedings of the 2018
International Conference on Management of Data. ACM, 489–504.

[24] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein,

and Ion Stoica. 2018. Learning to optimize join queries with deep

reinforcement learning. arXiv preprint arXiv:1808.03196 (2018).
[25] Per-Åke Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson,

Mostafa Mokhtar, Michal Nowakiewicz, Vassilis Papadimos, Susan L.

Price, Srikumar Rangarajan, Remus Rusanu, and Mayukh Saubhasik.

2013. Enhancements to SQL server column stores. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013. 1159–1168.

[26] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,

Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica.

2018. RLlib: Abstractions for Distributed Reinforcement Learning. In

International Conference on Machine Learning (ICML).
[27] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural Packet

Classification. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM ’19). ACM, New York, NY, USA, 256–269.

https://doi.org/10.1145/3341302.3342221

[28] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew

Pavlo, and Geoffrey J Gordon. 2018. Query-based workload forecasting

for self-driving database management systems. In Proceedings of the
2018 International Conference on Management of Data. 631–645.

[29] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad

Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019.

Neo: A Learned Query Optimizer. PVLDB 12, 11 (2019), 1705–1718.

[30] Guido Moerkotte. 1998. Small materialized aggregates: A light weight

index structure for data warehousing. (1998).

[31] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,

Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,

Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-

ing AI applications. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 561–577.

[32] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska.

2020. Learning Multi-dimensional Indexes. In Proceedings of the 2020
International Conference on Management of Data.

[33] Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis, Manos

Athanassoulis, and Anastasia Ailamaki. 2017. Slalom: Coasting

through raw data via adaptive partitioning and indexing. Proceed-
ings of the VLDB Endowment 10, 10 (2017), 1106–1117.

[34] OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/.

[35] Oracle. 2019. https://oracle.com/.

https://doi.org/10.1145/1007568.1007609
https://doi.org/10.1145/42201.42205
https://doi.org/10.1145/3341302.3342221
https://blog.openai.com/openai-five/
https://oracle.com/

[36] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware

automatic database partitioning in shared-nothing, parallel OLTP sys-

tems. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. 61–72.

[37] PostgreSQL. 2019. https://www.postgresql.org/.

[38] Warren B Powell. 2007. Approximate Dynamic Programming: Solving
the curses of dimensionality. Vol. 703. John Wiley & Sons.

[39] Warren B Powell. 2016. Perspectives of approximate dynamic pro-

gramming. Annals of Operations Research 241, 1-2 (2016), 319–356.

[40] Abdul Quamar, K Ashwin Kumar, and Amol Deshpande. 2013. SWORD:

scalable workload-aware data placement for transactional workloads.

In Proceedings of the 16th International Conference on Extending Data-
base Technology. 430–441.

[41] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Au-

tomating Physical Database Design in a Parallel Database. In Pro-
ceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’02). ACM, New York, NY, USA, 558–569.

https://doi.org/10.1145/564691.564757

[42] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis.

2006. Colt: continuous on-line tuning. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data. 793–795.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[44] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf

Aboulnaga, andMichael Stonebraker. 2016. Clay: Fine-grained adaptive

partitioning for general database schemas. Proceedings of the VLDB
Endowment 10, 4 (2016), 445–456.

[45] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin.

2014. Fine-grained partitioning for aggressive data skipping. In Inter-
national Conference on Management of Data, SIGMOD 2014, Snowbird,

UT, USA, June 22-27, 2014. 1115–1126.
[46] Liwen Sun, Michael J. Franklin, Jiannan Wang, and Eugene Wu. 2016.

Skipping-oriented Partitioning for Columnar Layouts. PVLDB 10, 4

(2016), 421–432. https://doi.org/10.14778/3025111.3025123

[47] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang.

2017. Automatic database management system tuning through large-

scale machine learning. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1009–1024.

[48] Eugene Wu and Samuel Madden. 2011. Partitioning techniques for

fine-grained indexing. In 2011 IEEE 27th International Conference on
Data Engineering. IEEE, 1127–1138.

[49] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke,

Yinan Li, Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann,

and Rajeev Acharya. 2020. Qd-tree: Learning Data Layouts for Big
Data Analytics. Technical Report. Microsoft Research, https://aka.ms/

qdtree-tr.

[50] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan

Duan, Xi Chen, Pieter Abbeel, Joseph M Hellerstein, Sanjay Krish-

nan, and Ion Stoica. 2019. Deep Unsupervised Cardinality Estimation.

Proceedings of the VLDB Endowment 13, 3, 279–292.
[51] Jingren Zhou, Nicolas Bruno, andWei Lin. 2012. Advanced Partitioning

Techniques for Massively Distributed Computation. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’12). ACM, New York, NY, USA, 13–24.

[52] Daniel C Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm,

Christian Garcia-Arellano, and Scott Fadden. 2004. DB2 design advisor:

integrated automatic physical database design. In Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30.
1087–1097.

https://www.postgresql.org/
https://doi.org/10.1145/564691.564757
https://doi.org/10.14778/3025111.3025123
https://aka.ms/qdtree-tr
https://aka.ms/qdtree-tr

	Abstract
	1 Introduction
	1.1 Our Solution
	1.2 Contributions

	2 Preliminaries
	2.1 Problem Definition
	2.2 Current Approaches

	3 Qd-tree
	3.1 Routing Data
	3.2 Semantic Description of Nodes
	3.3 Query Processing
	3.4 Choosing Candidate Cuts

	4 Greedy Construction of qd-tree
	5 Qd-tree using Deep RL
	5.1 Motivation for RL
	5.2 Woodblock: the Deep RL agent

	6 Framework Extensions
	6.1 Advanced Cuts
	6.2 Data Overlap
	6.3 Data Replication: two-tree approach

	7 Evaluation
	7.1 Setup and Metrics
	7.2 Workloads
	7.3 Approaches
	7.4 TPC-H
	7.5 ErrorLogs
	7.6 Time to Produce Layouts
	7.7 Interpreting Learned qd-trees

	8 Related Work
	9 Conclusion
	References

