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Abstract—We present a challenging dataset, the TartanAir,
for robot navigation task and more. The data is collected
in photo-realistic simulation environments in the presence
of various light conditions, weather and moving objects. By
collecting data in simulation, we are able to obtain multi-
modal sensor data and precise ground truth labels, including
the stereo RGB image, depth image, segmentation, optical
flow, camera poses, and LiDAR point cloud. We set up a
large number of environments with various styles and scenes,
covering challenging viewpoints and diverse motion patterns,
which are difficult to achieve by using physical data collection
platforms. In order to enable data collection in such large
scale, we develop an automatic pipeline, including mapping,
trajectory sampling, data processing, and data verification.
We evaluate the impact of various factors on visual SLAM
algorithms using our data. Results of state-of-the-art algorithms
reveal that the visual SLAM problem is far from solved,
methods that show good performance on established datasets
such as KITTI don’t perform well in more difficult scenarios.
Although we use the simulation, our goal is to push the limits
of Visual SLAM algorithms in the real world by providing a
challenging benchmark for testing new methods, as well as large
diverse training data for learning-based methods. Our dataset
is available at http://theairlab.org/tartanair-dataset.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is one

of the most fundamental capabilities necessary for robots.

Due to the ubiquitous availability of images, Visual SLAM

(V-SLAM) has become an important component for many

autonomous systems [1]. Impressive progress has been made

with both geometric-based methods [2]–[5] and learning-

based methods [6]–[9]. However, developing robust and

reliable SLAM methods for real-world applications remains

a challenging problem. Real-life environments are full of

difficult cases such as changing light, low illumination,

dynamic objects, and texture-less scenes.

The community has been relying heavily on SLAM bench-

marks for testing and evaluating their algorithms. On one

hand, those benchmarks standardize the ways for evaluation,

comparison, and repeatability. Nevertheless, on the other

hand, there is a risk of over-fitting to a benchmark, which

means algorithms with a higher score do not necessarily
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perform better in real-world applications. Current popular

benchmarks such as KITTI [10], TUM RGB-D SLAM

datasets [11] and EuRoC MAV [12] cover relatively limited

scenarios and motion patterns compared to real-world cases.

Towards a more challenging benchmark or dataset, [13]

presents the RobotCar dataset that contains large scale data in

changing light and weather conditions for self-driving tasks.

Raincouver benchmark focuses on scene parsing tasks in

adverse weather and at night [14]. KAIST introduces a multi-

spectral dataset covering day/night cases for autonomous and

assisted driving [15]. However, these datasets, which focus

on the self-driving setting, only contain driving scenarios and

cover simple motion patterns restricted by the ground vehi-

cle’s dynamics. On the other hand, The TUM VI dataset [16]

and ScanNet dataset [17] cover a diverse set of sequences

in different scenes but are obtained with a constant light

condition in static environments.

Collecting data in the real world often relies on an

elaborate sensor setup and careful calibration. The ground

truth for the SLAM/VO task usually comes from other high-

accuracy sensors such as LiDAR, GPS or motion capture

system. With recent advances in computer graphics, many

synthetic datasets have been proposed [18]–[20]. There are

trade-offs: the simulation provides reliable ground truth la-

bels, with controllable noise and error; however, one biggest

issue known as the sim2real gap hampers the algorithm’s

performance when transferred from the simulation to the real

world, due to the distribution difference. On the other hand,

physical data collection tools are more difficult to setup. The

ground truth is more expensive yet less reliable. Besides, the

data distribution is often constrained by the physical property

of the hardware, e.g. the data collected by a ground robot

often has a fixed roll and pitch angle, most RGB-D cameras

are less reliable outdoors, etc.

To overcome the shortcomings on both sides, we propose

to collect a large dataset using photo-realistic simulation

environments. Furthermore, we try to minimize sim2real gap

by increasing diversity. A large number of studies show that

by domain randomization [21], [22], namely increasing the

diversity of the environment, the model learned in simulation

could be easily transferred to the real world. This has been

proved to be very effective in many tasks including object

detection [22], robot manipulation [21] and drone racing

[23]. Our proposed TartanAir dataset is the first such attempt

for SLAM-related problems.

In this work, a special focus of our dataset is on the

challenging environments with changing light conditions,

low illumination, adverse weather, and dynamic objects. We



Urban Rural Domestic Public ScifiNature

Fig. 1: An overview of the environments. Our dataset is designed to cover a wide range of scenes, which are roughly

categorized into urban, rural, nature, domestic, public, and scifi. Environments in the same category also have large diversity.

show in the experiment that state-of-the-art SLAM algo-

rithms struggle in tracking the camera pose in our dataset

and frequently get lost on challenging sequences. In order to

enable large scale data collection, we make a big effort to

develop an automatic data collection pipeline, which allows

us to process more environments with minimum human

intervention.

The contributions of this paper are (1) a large dataset

with multi-modal ground truth labels in diverse challenging

simulation environments, (2) a fully automatic pipeline for

data collection and verification, and (3) we verify the pro-

posed dataset by evaluating popular SLAM algorithms on

the dataset, and provide insights on existing problems and

future directions of the SLAM algorithms.



II. DATASET FEATURES

Although our data is synthetic, we aim to push the SLAM

algorithm towards real-world applications. To achieve this,

we follow a few design ideas. We want a dataset with 1) a

large size and high diversity, 2) realistic lighting, 3) multi-

modal data and ground truth labels, 4) diversity in motion

patterns, and 5) challenging scenarios.

We adopt the Unreal Engine, and collect the data using

the AirSim plugin developed by Microsoft [24]. The Unreal

Engine is designed to deliver photo-realistic rendered 3D

scenes with complex geometry, high-fidelity texture, dynamic

lighting and object motion. Collecting data in simulation

allows us to gather a much wider range of appearances,

sizes, and motion diversity. In particular, we have found

that traditional datasets have limited utility for learning-based

methods because they exhibit strong motion biases (e.g. car-

like motion at fixed pitch angles). We expect that using

simulation allows us to achieve better coverage of scenario

and motion patterns, e.g., near-collision actions, aggressive

rolling and pitching, which are difficult to gather or annotate

in the real world.

A. Large size diverse realistic data

We have set up 30 environments, which are chosen to

capture various styles and cover a wide range of scenarios

in the real world, from structured urban and indoor scenes, to

unstructured natural environments (Figure 1). We collected

a total of 4TB data, which consists of 1037 long motion

sequences. Each of the sequences contains 500-4000 data

frames associated with ground truth labels, resulting in more

than 1 million frames of data for visual SLAM research. The

last column of Table I shows that the proposed TartanAir

dataset is at least 1 order of magnitude larger than existing

datasets.

B. Ground truth labels

TartanAir dataset provides multi-modal sensor data and

ground truth labels as shown in Table I and Figure 2. Using

the AirSim interface, we are able to obtain synchronized

RGB stereo images, depth images, segmentation labels, and

corresponding camera poses. Based on these data, we devel-

oped automatic tools that can generate ground truth occu-

pancy grid map, optical flow, stereo disparity, and simulated

LiDAR measurements. Section III is dedicated to describing

the details of the data acquisition. By providing the large-

size multi-modal data, we enable research of visual SLAM in

multiple settings, including monocular SLAM, stereo SLAM,

RGB-D SLAM, visual LiDAR SLAM, etc. The data could

also facilitate a wide range of other visual tasks such as

stereo matching, optical flow, monocular depth estimation

and benefit the research in the multi-modal community.

C. Diversity of motion patterns

The existing popular datasets for SLAM such as

KITTI [10] and RobotCar [13] have a very limited motion

pattern, which is mostly moving straight forward combined

with small left or right turns. This regular motion pattern

Fig. 2: Examples of sensor data and ground truth labels. a)

The data provided by the AirSim interface. b) The ground

truth labels we calculated using the data.

has two limitations. First, the simple motion is insufficient

for evaluating a visual SLAM algorithm. We demonstrate in

the experiment section that as we increase the complexity of

motion patterns, the performance of SLAM algorithms drops

significantly. Second, learning-based algorithms trained on

these data cannot generalize to other tasks with different

motion patterns and thus becoming biased.

We randomize the motion distributions and combinations,

in order to cover diverse motion patterns in 3D space. We

compare the motion patterns between the KITTI dataset and

our dataset in Figure 3 using Principle Components Analysis

(PCA). We compute the principle motion components from

the translation sequence T and rotation sequence R respec-

tively, where T ∈ R3×n concatenates n frames of translation

motion (∆x,∆y,∆z), and R ∈ R3×n includes n rotation

motions in SE(3) format. The principal components of a
motion sequence (T,R) could be decomposed in Eq. (1)
and (2).

Utransdiag(t1, t2, t3)V
∗

trans = T (1)

Urotdiag(r1, r2, r3)V
∗

rot = R (2)

where t1, t2, t3 and r1, r2, r3 represent the principle motion

of a given sequence. At the same time, we obtain 3 eigen-

vectors, which define a new vector space. Then we project

each frame to this new vector space and plot the values in

Figure 3. As expected, the data from KITTI has one dominant

axis in both translation and rotation. In our case, we are

able to achieve more diverse motion patterns. One can also

deliberately add constraints in the simulation (e.g. fix roll

and pitch angles), so as to mimic a ground robot’s motion

pattern.



Dataset
Sensors/Ground Truth Label Conditions Motion

Pattern
Seq
NumStereo Flow Depth Lidar Pose Light Weather Season DynObj

Kitti [10] � � � � �    � Car 22
Virtual Kitti [19] � � �  �  �  � Car 50
EuRoC MAV [12] �    �     MAV 11
TUM RGB-D [11]   �  �    � Hand 15
ICL-NUM [25]   �  �     Hand 8
SceneNet [18]   �  �     Scan 34
RobotCar [13] � � �   � �  � Car -
North Campus [26] � � �    �  � Robot -
DISCOMAN [20] � � �    �  � Robot 200
OURS � � � � � � � � � Random 1037

TABLE I: Comparison of SLAM datasets on sensor data, ground truth labels, scene diversity, motion diversity, and size.
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(a) KITTI Dataset
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(b) Our Dataset

Fig. 3: Visualization of the motion pattern of one sequence

from KITTI and TartanAir. The result shows that KITTI has

one dominant axis in rotation and translation motion, while

the motion pattern in our dataset is more diverse.

Name KITTI EuRoC TUM RobotCar Ours

σ 0.005 0.207 0.196 0.047 0.95

TABLE II: Comparison of the diversity of the motion pattern

under the propose metric. Larger value means the motion is

more diverse.

Furthermore, we propose a new metric to evaluate the

diversity of motion patterns. We define the motion diversity

metric as:

σ =
1

2
(

√
t2t3

t1
+

√
r2r3

r1

) (3)

We present the σ of SLAM datasets under this metric in

Table II. A small σ indicates that the motion is dominated

by one dimension. σ converges to 1 as the diversity of

the motion pattern increases. According to our evaluation,

the TUM dataset collected with a handheld camera and

the EuRoC MAV dataset collected with MAV also get low

scores, which indicate the motion pattern is constrained by

the MAV dynamics and human habits.

Fig. 4: Challenging scenarios.

D. Challenging Scenes

TartanAir contains a large number of challenging environ-

ments, including dynamic light condition, low illumination,

adverse weather, and dynamic objects (Figure 4).

Utilizing the Unreal Engine allows us to render realistic

3D scenes with dynamic lighting. TartanAir covers scenar-

ios with strong lighting change, shadows, over-exposure,

reflections of glass or puddle. The light sources range from

road lamps, neon lights to sunlight and moonlight. When

collecting data through AirSim, the cameras can be con-

figured to an auto-exposure mode, similar to real cameras.

This feature adds another layer of dynamics in response to

dynamic lighting.

We augment the outdoor environments with various ef-

fects of weather conditions and seasonal changes. We have

collected data at different times-of-day and different seasons,

while it is raining, snowing, and foggy.

TartanAir contains dynamic objects that consist of simu-

lated humans, vehicles, machinery, dynamic vegetation such

as waving leaves and grass. The motion of the objects can

be configured to different levels of dynamics.

In the experiment, we compare the SLAM algorithm with

and without these challenging settings. Results show that the

SLAM algorithms are heavily affected by these challenging

conditions.



Fig. 5: An overview of the data collection pipeline.

III. METHOD

In order to collect the raw data in such a large scale, we

rely on a fully automatic pipeline, which allows us to easily

scale up to 30 diverse environments. We develop a robust

system as well as many tools using autonomous robotic

exploration techniques, as shown in Figure 5. The whole

pipeline includes 4 modules which are incremental mapping,

trajectory sampling, data processing, and data verification.

The mapping process traverses the target environment and

reconstructs an accurate occupancy map for obstacle avoid-

ance and path planning. Based on the maps, the trajectory

sampling process generates a large amount of collision-free

trajectories, while maximizing the diversity of viewpoints

and motion patterns. Then we dictate virtual cameras to move

along the trajectories and collect multi-modal sensor data,

e.g. camera poses, RGB, segmentation and depth images.

Based on the collected data, the data processing process

calculates other ground truth labels including optical flow,

LiDAR, and stereo disparity. At last, the data verification

module verifies the correctness of the data. The entire system

can autonomously run with minimal human interventions,

which is the key to enabling a large scale data collection

process.

A. Incremental Mapping

Incremental mapping refers to the process of actively

perceiving unknown environments and collecting as much

information as possible. One such map representation is

an occupancy map [27]. We utilize the depth image and

camera pose as the input of the mapping process. We

implement a frontier-based algorithm, which automatically

calculates the next exploring location (Figure 5 a). We use

the RRT* planning algorithm [28] to calculate the collision-

free trajectories, which guide the exploration in free space.

The mapping process ends when there are no more frontiers

in the region. The time for mapping an environment with

a size of 100m x 100m x 10m at a resolution of 0.25m is

about 1 hour.

B. Trajectory Sampling

Trajectory sampling consists of a graph generation process

and a data collection process. During the graph generation,

we randomly sample N nodes in the free space. Then we

apply RRT* to plan a safe trajectory between each pair

of nodes. The nodes and edges are stored in a graph data

structure. After a large number of samples, a trajectory

graph that encodes the feasible paths of the environment is

generated (Figure 5 b). Then we sample loop trajectories

from the graph. The trajectories are further processed using

spline smoothing techniques while avoiding the obstacles. In

the data collection process, we randomize the incremental

distance and angles along the trajectory. The poses are sent

to a virtual camera in the simulation environment, and all

the required data is recorded through the AirSim interface.

C. Data Processing

As discussed previously, camera poses, RGB and depth

images, and semantic segmentation labels are directly ob-

tained from the environment. The ground truth data such as

optical flow, stereo disparity, and simulated LiDAR measure-

ments are generated from these raw data.

Optical flow The ground truth optical flow is calculated

for static environments by image warping. For each pair of

camera poses along a trajectory, we refer the first camera

as reference camera Cref and the second as test camera

Ctst, and define Dref and Dtst as two depth images. Optical

flow values are calculated for each pixel by transforming

the entire Dref from Cref to Ctst according to the camera

poses. In practice, we convert Dref to a 3D point cloud

and project the point cloud to the image plane of Ctst. Let

(xp, yp)
ref

r
be the image coordinate of a pixel p in Cref and

(xp, yp)
tst

r
be its transformed image coordinate in Ctst. We

use subscript r to denote an entity originally observed in
C

ref . Optical flow is directly measured as fp = (fx, fy)p =

(xp, yp)
tst

r
− (xp, yp)

ref

r
, where fp = (fx, fy)p is the optical

flow of p observed in Cref . Figure 6 shows a sample optical

flow visualized similar to the KITTI [10] dataset.

Fig. 6: Sample optical flow. (a)(b) Reference and test images.

(c) Optical flow. (d) Color mapping.

We also provide two masks over the optical flow image

(Figure 7): the occlusion mask and the out-of-FOV (field of

view) mask. We check occlusion for each pixel considering

the change of camera pose and obstacles that are only visible

in Ctst. The out-of-FOV mask records all the pixels in Dref
r

which fall out of the FOV of Ctst. Objects observed in Cref

may be located behind the camera center of Ctst. Pixels in

such cases are labeled as invalid and are also saved in the

out-of-FOV mask.



Fig. 7: Optical flow with masks. (a) Both masks. (b) Out-of-

FOV mask only. (c) Occlusion mask only.

Disparity The disparity value is calculated from the depth

image and the camera intrinsic value. We also calculate the

disparity mask similar to the optical flow calculation. Similar

to optical flow, we produce the occlusion mask and the out-

of-FOV mask. The disparity images correspond to Figure 6

(a) are shown in Figure 8.

Fig. 8: Stereo disparity with masks. (a) Both masks. (b) Out-

of-FOV mask only. (c) No masks. Color: Purplish and dark

pixels have large disparity, reddish and bright pixels have

small disparity, masked pixels are black.

LiDAR We extract LiDAR points by sampling depth value

from a virtual camera and mimicking a LiDAR device. We

put 4 90°-FOV cameras at the same spatial position with

a resolution such that every extracted LiDAR point does

not share a same pixel with its neighbor LiDAR points.

The distance of a LiDAR point is interpolated over the

nearest depth pixels. Figure 9 shows a LiDAR point cloud

by simulating a 32-line LiDAR [29].

Fig. 9: Extracted LiDAR points. (a) Virtual environment. (b)

32-line LiDAR points.

D. Data Verification

A particular issue we encountered in the early stage of

data collection is that the camera pose and the depth image

are not synchronous. We add the pause feature to the AirSim

to ensure the synchronization. To verify the synchronization

among camera poses, RGB and depth images, we perform

verification using the calculated optical flow results. For a

consecutive image pair, the pixels of Cref are projected to

Ctst according to the optical flow and then the mean photo-

metric error (RGB channels) is evaluated. Due to viewing

angle, lighting, and surface reflection model of the texture,

some projected pixels have photo-metric error. However, the

averaged error is roughly constant and small. By monitoring

the error we effectively verify the synchronization between

different data. As an example, the sequence containing the

data shown in Figure 6 has approximately 700 images. The

maximum mean photo-metric error over all the consecutive

image pairs is less than 5 with the maximum possible value

being 255
√
3. In addition, we detect images with a large area

of occlusion by the optical flow masks. The depth images are

used to verify there is no collision with the environment.

IV. EXPERIMENTAL EVALUATION

We show experimental results of applying ORBSLAM-

Monocular (ORB-M), ORBSLAM-Stereo (ORB-S) [3] and

DSO-Monocular [5] to 6 representative environments with

interesting features, as shown in Figure 11.

A. Testing environments

The Soul-city is an outdoor raining environment with cam-

era lens flare effects. The Slaughter is an indoor scene with

challenging blinking lights in some parts of the hallway. The

Japanese-alley is a night scene switching between indoors

and outdoors. The Autumn-forest is a dynamic environment

with a lot of falling leaves. The Winter-forest is covered by

snow which results in fewer features on the ground. The

Ocean environment has fish flock and bubbles moving in

the water.

Fig. 10: Selected environments for baseline comparison. a)

Raining, lens flare. b) Changing light condition (blinking

lights). c) Low illumination, indoor/outdoor switching. d)

Falling leaves. e) Less feature on the ground. f) Dynamic

objects: fish and bubbles.

B. Metrics

We use 3 metrics, namely absolute trajectory error (ATE),

relative pose error (RPE) and success rate (SR), to evaluate

the algorithms. Because monocular methods cannot recover

the absolute scale information, we perform a scale correc-

tion before calculating the ATE and RPE for monocular

algorithms [10]. The SR is defined as the ratio of non-lost

sequences to the number of total sequences.

We find that for challenging datasets as ours, the SR metric

better captures the performance of the algorithms. While

ATE and RPE are less reliable because they can only be

calculated on successful trajectories. For harder sequences,

algorithms that are less robust fail more often to track the

camera poses, thus they do not return ATE and RPE scores.

As a result, less robust algorithms could get higher ATE and

RPE since they give up hard sequences.



Env Name
Motion
Pattern

ORB-M ORB-S DSO
ATE RPE SR ATE RPE SR ATE RPE SR

Soul-city
Easy 0.18 40.48 0.48 0.17 46.53 0.91 0.30 48.80 0.4
Mid 0.05 45.10 0.68 0.38 63.14 0.79 0.63 64.62 0.36
Hard 0.07 52.06 0.25 1.82 59.58 0.13 3.39 70.90 0.06

Slaughter
Easy 0.16 38.32 0.51 0.28 52.67 0.75 0.65 52.36 0.5
Mid 0.07 40.22 0.28 0.71 58.11 0.49 1.12 55.47 0.3
Hard 0.07 29.23 0.13 1.79 50.47 0.03 2.07 59.47 0.1

Japanese-alley
Easy 0.15 46.96 0.98 0.05 45.14 1.0 0.14 43.39 1.0

Mid 0.34 52.79 0.63 0.36 59.97 0.77 0.69 61.56 0.85

Hard 0.29 49.87 0.28 1.39 67.32 0.25 1.58 65.72 0.44

Autumn-forest
Easy 0.06 34.84 0.45 0.03 51.80 0.98 0.53 22.21 0.08
Mid 0.08 36.27 0.30 0.40 67.70 0.67 - - 0
Hard 0.01 22.81 0.07 1.64 55.20 0.02 - - 0

Winter-forest
Easy 0.04 39.16 0.86 0.02 47.02 1.0 - - 0
Mid 0.08 46.25 0.47 0.20 66.36 0.87 1.03 57.68 0.23
Hard 0.03 30.59 0.32 1.43 50.80 0.16 2.55 68.57 0.1

Ocean
Easy 0.17 33.76 0.78 0.36 41.62 0.98 1.20 35.61 0.75
Mid 0.15 35.60 0.53 0.70 61.99 0.75 2.49 67.53 0.65
Hard 0.19 32.52 0.09 1.92 57.16 0.04 4.11 63.60 0.4

TABLE III: Comparison of SLAM methods in multiple environments.

On the other hand, the SR is affected by the length of the

trajectory, since a longer sequence is often more difficult to

complete. Consequently, we cut the sequences to the same

length of 200 frames.

C. Evaluation results

We collect 30-50 sequences from each environment for

testing. In addition, we define 3 difficulty settings in terms

of motion pattern (Table IV). In the easy mode, pitch and

roll angles are fixed, which is similar to a ground robot

setting. The medium and hard modes have 6 DoF motion. We

increase the maximum translation and rotation speed from

easy to hard.

Motion DoF MaxTrans (m) MaxAngle (°)

Easy Trans+Yaw ±0.2 ±3
Medium 6 DoF ±0.3 ±5
Hard 6 DoF ±0.5 ±10

TABLE IV: The settings of 3 levels of difficulties. Motion

DoF indicates the motion complexity. In the easy mode

we fix the pitch and roll rotation. MaxTrans represents the

randomized range of translations and MaxAngle represents

the randomized range of rotation.

We compare ORB-M, ORB-S, and DSO-M on the afore-

mentioned 3 metrics in 3 difficulty levels. Since ORBSLAM

and DSO are non-deterministic, we repeat the experiments 5

times and report the mean value. As shown in Table III,

the SR drops remarkably as the difficulty of the motion

pattern increases. Even with the easy motion pattern, the

monocular algorithms have a low SR score, which indicates

they suffer from the challenges in the scenes. We observe

a few interesting outcomes from the experiment. First of

all, as expected, the ORB-S is more robust than ORB-M

and DSO in all 6 of easy mode cases, 5/6 of medium

cases. But ORB-S performs worse than ORB-M in all 6 of

hard cases (the difference is small though). The accuracy

and robustness of DSO are generally worse, one reason

could be it does not have a loop closure. However, DSO

performs best in Japanese-alley, which is challenging due

to low illumination. This reflects the advantage of DSO as

a direct method compared to the feature-based method in a

low feature environment. We find that the failure cases are

consistent with those reported in the real world [30]. The

visual SLAM algorithm is vulnerable to factors like moving

objects, suddenly appeared close obstacles, low illumination,

changing lighting, repetitive features, etc. We further verify

this in Section IV-D.

D. Controlled experiment on challenging cases

One of the key questions is that whether and how much do

those challenging features (e.g. day/night, weather, dynamic

objects) bother the SLAM algorithms. To demonstrate the

effect of those challenging features, we design a controlled

experiment, where we collect same trajectories twice, only

switching the challenging feature on and off.

Concretely, we utilize 5 environments (Table V): 1)

Autumn-forest: w/ and wo/ falling leaves. 2) Factory: w/ and

wo/ moving machinery. 3) Soul-city: w/ and wo/ rain. 4) End-

of-world: outdoor debris w/ and wo/ storm. 5) Abandoned-

factory: day and night. We sample 3-5 trajectories in each

environment using medium motion pattern, and run ORB-M

and ORB-S on each trajectory for 5 times.

Fig. 11: Environments: a) Autumn-forest. b) Factory. c) Soul-

city d) End-of-world. e) Abandoned-factory.

As shown in Table V, with challenging features, in 9 out of

10 tests (2 algorithms x 5 environments), the SR or accuracy

drops compared to no challenging features. Specifically, we

see from the comparison:

1) The dynamic object has limited effect on SR, but

remarkably decreases the ATE (3 out of 4 trajectories have

a significant drop in ATE). In the Autumn-forest, the leaves

appear in most of the frames but only take small part of the



Env Feature
ORB-M ORB-S

ATE* SR ATE* SR

Autumn
-forest

Static 0.093 0.333 0.087 0.9

Dynamic 0.110 0.333 0.113 0.867

Factory
Static 1.108 1.0 0.059 1.0
Dynamic 0.786 0.889 0.835 1.0

Soul-city
No-rain 0.165 0.667 0.401 1.0
Rain 0.764 0.375 0.348 1.0

End-of-world
No-storm 0.106 0.611 0.116 1.0

Storm 0.129 0.333 0.292 0.778

Abandoned-
factory

Day 0.165 1.0 0.0824 1.0

Night 9.385 0.833 0.2407 1.0

TABLE V: Compare the same trajectory w/ and wo/ chal-
lenging feature. *For a fare comparison of the ATE, we remove failure
trajectories on both sides when calculating the ATE.

image, while in the Factory, the assembly line moves in only

a few frames but take large part of the image. The experiment

shows the latter has larger impact on the accuracy.

2) The weather features including rain and storm hurt the

SR. ORM-S is more robust to the adverse weather than ORB-

M. The SR drops more than 50% with the rain and storm

for the ORB-M, and 22% with storm for the ORB-S.

3) Low illumination harms SLAM algorithms, but there

are limitations in simulating the dark scene. We observe that

the SLAM algorithm can still extract many features from

dark scenes, because of the insufficiency of synthetic data in

simulating camera noise or motion blur, which often present

in the night scenes in the real world. This would be our

future work to investigate image noise models to augment

the dark scenes.

V. CONCLUSION

We propose TartanAir dataset for visual SLAM in chal-

lenging environments. We hope that the proposed dataset and

benchmarks will complement others and help to reduce over-

fitting to datasets with limited training or testing examples

and contribute to the development of algorithms that work

well in practice. We hope to push the limits of the current

visual SLAM algorithms towards real-world applications.
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