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ABSTRACT
Machine teaching (MT) is an emerging field that studies
non-machine learning (ML) experts incrementally building
semantic ML models in efficient ways. While MT focuses
on the types of knowledge a human teacher provides a ma-
chine learner, not much is known about how people perform
or can be supported in this essential task of identifying and
expressing useful knowledge. We refer to this process as
knowledge decomposition. To address the challenges of this
type of Human-AI collaboration, we seek to build foundational
frameworks for understanding and supporting knowledge de-
composition. We present results of a study investigating what
types of knowledge people teach, what cognitive processes they
use, and what challenges they encounter when teaching a learner
to classify text documents. From our observations, we intro-
duce design opportunities for new tools to support knowledge
decomposition. Our findings carry implications for applying
the benefits of knowledge decomposition to MT and ML.
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INTRODUCTION
Machine teaching (MT), as defined by [27, 34], is a field of
study that aims to enable anyone who has knowledge in an
application domain, but not necessarily in machine learning
(ML), to incrementally and iteratively teach that knowledge
to a machine in an efficient way. MT is a perspective on the
human-in-the-loop ML process used to create ML models
that focuses on optimizing the way in which humans transfer
subject-matter knowledge to machines instead of focusing
on optimizing the learning algorithms as in traditional ML
research. MT leverages peoples’ ability to teach and can lead
to models that are semantic, reusable and easy to maintain.
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Some commercial products like LUIS [21] and bonsai [5] are
examples of systems that apply nascent MT approaches.

In this paper, we define users as subject-matter experts in
the application that they want to build an ML model for, but
not necessarily experts in ML. A subject-matter expert could
be someone with a highly specialized knowledge (e.g., neu-
rology) or someone with a highly subjective definition of a
concept (e.g., interior design that I like); teaching ML to these
subject-matter experts and extracting models can be costly
or mining knowledge about these subjects can be impossible
through crowd sourcing. We refer to the person creating an
ML model through MT as a machine teacher, or teacher for
short, and we refer to the learning algorithm that produces
an ML model from the given knowledge input as a machine
learner, or learner. For example, consider a person who wants
to build an image classifier for dogs; they have knowledge
about how to identify dogs but no expertise in ML. The main
form of knowledge that they can provide through traditional
ML approaches is labels. However, one of the challenges of
this approach is that it often requires a large dataset of labeled
examples, which, for some subject matters, may or may not be
easily available. Another challenge of traditional ML solutions
is that they lead to black box models that provide predictions
based on opaque features with non-relatable semantics. For
example, after providing a large dataset of labeled examples,
a model-in-training may incorrectly predict that an image of a
muffin is a dog. The human is then left wondering why such a
prediction was made and how to fix the model.

MT provides answers to some of these challenges by leverag-
ing the fact that human teachers possess and can offer richer
forms of knowledge than just labels. For example, a teacher
may know about features, concepts, relationships, rules, and
other strategies that are useful for recognizing dogs. In ad-
dition to selecting specific examples of images and labeling
them as "Dog" or "Not Dog", the teacher can also provide
semantic explanations about why an image is labeled as such.
They can explain specific concepts that they look for, such
as the body parts of a dog (i.e., features like the eyes, ears,
nose, legs, etc.), relationships between those concepts, such as
how the nose is typically centered beneath the eyes, and many
others. Being able to express these richer forms of knowledge
to the machine can make the teaching process efficient; the
teacher can explicitly tell the machine about these semanti-
cally meaningful features through a few examples, rather than
requiring the machine to learn arbitrary features through a
large dataset of labeled examples. Through this approach, the



learner can also provide semantic explanations back to the user.
For example, after the user teaches the machine to recognize
the concept of "eyes", it might show that the reason why it
labeled an image of a muffin as "Dog" is because it recognized
the chocolate chips on it as "eyes". That would help the user
identify how to fix the model (e.g., by limiting the maximum
number of eyes to 2). This example is illustrative of main
teaching interactions (sampling, featuring, labeling, debug-
ging) and how ML models created through a MT process are
semantic and thus explainable by design.

We define knowledge decomposition1 as a process of identify-
ing and expressing useful knowledge by breaking it down into
its constituent parts or relationships. As the example above
highlighted, knowledge decomposition is critical to a success-
ful and effective MT process in which a teacher can articulate
richer forms of explanations for their labels to the learner. [34]
identified moments during a MT loop where it is appropriate
to add semantic features, but they do not indicate the specific
decomposition that should take place. Furthermore, because
humans use a lot of tacit knowledge to make decisions, it is
unclear how to build tools that help people select and express
that knowledge to a machine.

MT represents a shift in the research and design of ML model
creation tools from technical systems (focusing on what the
learner needs and can offer) to human-AI collaboration sys-
tems (focusing on what the human teacher needs and can offer
in addition to the what the learner needs and can offer). We
explore the unique challenges of such a collaborative approach
to ML model creation by building foundational frameworks
for understanding and supporting the knowledge decomposi-
tion process in MT. Understanding knowledge decomposition
process would help designers of future MT systems to support
integrating and engaging ML novices in the model building
loop. We conducted a formative study to observe what types
of knowledge people teach, how they organize/represent this
knowledge, what cognitive processes they use, and what chal-
lenges they encounter when teaching a learner to classify text
documents. (In this study, we use rich text format documents,
in which the text font has attributes such as size and weight.)
We synthesize our observations into a set of design oppor-
tunities for MT tools to support knowledge decomposition
and discuss how these design opportunities can inspire new
interventions beyond existing tools.

Our work offers the following contributions to the fields of
MT research and HCI at large:

• An empirical study of knowledge decomposition during a
MT task (i.e. building a classifier for text documents).
• Frameworks for characterizing the types of knowledge that

people want to teach and how they organize/represent this
knowledge, as well as the steps and challenges they en-
counter during the knowledge decomposition process.
• A set of design opportunities for new MT tools to support

user needs during the knowledge decomposition process.
1We use the term "knowledge decomposition" in MT to indicate
something different from the term "knowledge decomposition" in
cognitive tutors literature (i.e., [10])

BACKGROUND AND RELATED WORK

Interactive Machine Learning and Machine Teaching
People interact with ML processes from different roles (e.g.,
data scientist, producer of labels, consumer of predictions,
etc.), and at different stages (e.g., algorithm selection and tun-
ing, labeling, data cleaning, etc.). While the above processes
may be called "interactive," we specifically use the term inter-
active machine learning (IML) as described and reviewed in
the literature such as [12, 13, 31]: "an interaction paradigm in
which a user [...] iteratively builds and refines a mathematical
model to describe a concept through iterative cycles of input
and review", where humans in the loop take part in "rapid,
focused and incremental learning cycles" [1].

MT 2 builds on IML by specifying the contract (the informa-
tion and knowledge exchanged) between the human in the
loop - in this case, the teacher - and the machine learner. [27]
presents MT’s fundamentals and describes it as a process
where any information processing skill teachable to a human
should be as easily taught to a machine. [34] introduces a
MT environment, MATE, and uses it to formalize aspects of
the MT process. Furthermore, they provide insight into ex-
pert teaching patterns to help novice users become expert-like
teachers. Microsoft’s LUIS [21] service supports creation of
simple language-understanding ML models on short sentences.
During a LUIS teaching session, users input labels, semantic
features and entities, and take advantage of predefined models,
features and entities. While both of these systems allow users
to engage in teaching, they do not provide comprehensive
support for knowledge decomposition.

We advance the MT research agenda by diving into under-
standing the knowledge decomposition process in the context
of a common MT task (i.e., building a classifier for text docu-
ments). Furthermore, we seek to identify design opportunities
for how MT tools can be designed to support the knowledge
decomposition process more explicitly (e.g., by providing
technological interventions at the proper teaching moments).

Knowledge Engineering
Expert Systems (ES) [14] were introduced in 1980’s as a
promising technology that implemented automated decision-
making and consisted of a knowledge base and an inference
engine that could reason over it. To build these systems,
Knowledge Engineers [29] interview subject-matter experts
and translate expert knowledge into the system’s knowledge
base. Although the task of collecting subject-matter knowl-
edge has been named Knowledge Elicitation (in ES context)
or Knowledge Decomposition (in MT context), Knowledge
Elicitation and Knowledge Decomposition differ in important
ways. Specifically, building an ES follows a waterfall model
where knowledge acquisition happens before its representation
and the system’s deployment. This process demands techni-
cal expertise and considerable resources from a knowledge
engineer [11, 16]. In contrast, when building a model through
MT, a teacher is the source of subject-matter knowledge and
takes part in an iterative, incremental knowledge exchange,
2[36] uses the term "machine teaching" to describe something dif-
ferent: finding the optimal training set, given a particular learning
algorithm and a target model.



through knowledge decomposition, with an always-learning
system. In a MT process, subject-matter experts are in control
of creating the ML model, while doing tasks previously re-
served to a knowledge engineer. These distinctions are critical
because they introduce new challenges with understanding
and supporting what non-ML experts need and can offer when
teaching directly to a learning algorithm, rather than to a hu-
man engineer. Our work explores these challenges by studying
the knowledge decomposition process during a MT session.

Knowledge and Decomposition
There are 2 ways that human knowledge can be used to train
learning algorithms. Unsupervised learning requires indirect
human knowledge as raw data, from which patterns and struc-
tures are extracted. Supervised learning requires direct human
knowledge as inputs, generally presented as labels that map
between pre-configured or automatically-extracted features
and prediction outputs. In both contexts, humans are treated
as data generators or label oracles. However, humans naturally
want to provide more than just raw data and labels [1], and
taking advantage of their domain knowledge throughout the
process of training a model has benefits. For example, humans
can jump-start an active learning system by explicitly search-
ing for and discovering positive items before learning starts [3,
7], suggest new or alter existing features [30], and directly
manipulate weights of features [18] or label features [8].

Knowledge decomposition is a cognitive process. Our research
builds on cognitive science theories of processes that humans
use to perform classification tasks in everyday life. For ex-
ample, the Prototype theory, the Exemplar theory, and the
Knowledge theory all posit that humans develop "concepts" or
mental representations of categories as they encounter things
throughout life, and every new thing is classified by compar-
ing it to the "concepts" that are stored in memory [22]. These
concepts are composed of many different forms of knowledge,
including features or dimensions, values along each dimen-
sion, weights (e.g., how important each feature or dimension
is), criterion levels, and schemas (e.g., relations or constraints
between features or dimensions). Neuroscience has shown
that the processes of learning, representing, and retrieving
concepts are automatically activated in the brain by recogniz-
ing, naming, imagining, and answering questions about the
concepts [4, 20, 23, 33]. Some cognitive research studies have
prompted people to explicitly decompose the knowledge they
use to mentally represent concepts by using a "property gener-
ation task," in which they are asked to list as many properties
as they can think of related to a given concept [25].

Our research expands on these prior works by extracting
the implicit knowledge and processes that people use when
teaching a machine how to perform an ML task (i.e., multi-
classification of text documents). Specifically, we sought to
answer the following research questions:

RQ1. What types of knowledge do people want to teach?
RQ2. What types of decomposition structures do people

use to represent the knowledge they want to teach?
RQ3. What cognitive processes do people use to identify and

express the knowledge they want to teach?

RQ4. What challenges do people face during knowledge de-
composition?

METHOD
The purpose of this exploratory study is to inform the design of
new MT tools by observing the knowledge and decomposition
processes that people naturally want to use when teaching a
machine. Thus, we used a pen-and-paper wizard-of-oz-styled
task with a think aloud and interview procedure in order to not
constrain participants’ behaviors to the limitations of existing
tools. This allowed them to express knowledge that they want
to teach in ways that current systems do not support yet by
explaining it to us through natural language.

To simulate a MT task, we asked participants to teach a ma-
chine how to perform a multi-label classification task on text
documents. We chose the task of creating a classifier, because
it is a common one that has a variety of everyday applications
(e.g., organizing emails, news articles, etc.) and can be com-
plex enough to elicit a rich set of knowledge from participants.

Participants
In order to collect generalizable observations on knowledge de-
composition across people with different types of expertise, we
recruited participants from a diverse range of professional roles
and years of experience in each role. 20 employees from a
large technology company participated in our study (12 female,
8 male). All participants were between 18-59 years of age
(6 18-29 years, 5 30-39 years, 6 40-49 years, 3 50-59 years),
and held some form of university degree as their highest com-
pleted level of education (5 Bachelor’s, 12 Master’s, 3 Doc-
toral). Many participants had multiple years of experience in
multiple types of professional roles throughout their career,
including 10 Engineers (2-28 years), 6 People Managers (1-25
years), 7 Program/Project manager (1-21 years), 5 Design-
ers/Creatives (4-16 years), 10 Researchers/Scientists (1-10
years), 3 Administrators (2-30 years), and 1 Other (6 years).
Most participants were not ML experts: 12 reported that they
had heard of ML but never built a model, 4 reported that they
had taken some classes about ML but never built a model in
practice outside of those classes, 3 reported that they occa-
sionally build ML models in practice, and 1 reported that they
frequently build ML models in practice.

Materials
To simulate a multi-label classification task, we collected 60
recent online articles from a news aggregation service [35] –
we crawled 20 articles from news sites in each of the following
categories: "Food", "Business", and "Any." We restricted all
queries to articles in the English language. We chose "Food"
and "Business" as the 2 primary labels for our classification
task, because they are common news article topics that partici-
pants are likely to be familiar with, and subjective enough that
participants would bring their own subject-matter expertise to
labeling an article to be "Food", "Business", both, or none.

In addition to printed copies of the articles, we gave partici-
pants colored pens, markers, highlighters, Post-it flags, Post-it
notes, and large poster papers to help them communicate any
knowledge that they wanted to teach the machine.



Figure 1. Examples of participants’ completed deliverables for the label-
ing and annotation task (left), and knowledge summary task (right).

Procedure
Each participant’s study session lasted for 1 hour, during which
they performed a MT task, followed by a semi-structured
interview about their task experience.

For the MT task, participants were asked to teach a hypotheti-
cal learning machine how to assign the labels of "Food" and
"Business" to news articles. They were told that the two la-
bels are not mutually exclusive and that there were no right
or wrong answers, so they could use their own definitions for
"Food" articles and "Business" articles. As such, participants
were inherently experts in the subject-matter for the task: their
own opinion on article topic.

To elicit knowledge from participants, we asked them to per-
form 2 types of teaching tasks:

Labeling and annotation task. We asked participants to find
at least 2-3 examples of articles for each of the 2 labels (i.e.,
"Food", "Business"), and annotate which parts of the articles
helped them determine how to label them. We allowed partici-
pants to count a multi-label document as both an example of
"Food" and an example of "Business".

Knowledge summary task. We asked participants to create a
summary of all the useful knowledge they think the machine
needs in order to label articles as "Food" and/or "Business" by
writing and/or drawing them on Post-it notes and large poster
paper. We allowed participants to include any knowledge from
the articles or from their own memory and to structure their
knowledge summary in any way.

Figure 1 shows examples of a participant’s completed deliver-
able from each task. Since a primary goal of this study is to
observe participants’ natural processes for these MT tasks, we
instructed them to complete them in any order they would like
rather than prescribing a specific procedure.

During the tasks, we simulated the machine’s reactions to par-
ticipants’ teaching by asking think aloud questions. To avoid
researcher bias and maintain consistency across all participants
while eliciting knowledge during think aloud, we developed a
set of systematic rules and prompts to moderate study sessions.
For example, whenever a participant assigned a label to an
article, we asked "How do you know that this article is about
[label]?", and whenever a participant articulated a concept that
is not explicitly written in an article, we asked "How do you
know if an article is about or contains [concept]?"

Figure 2. The types of knowledge and number of participants who
wanted to teach each type for a text-based multi-label classification task
in our exploratory study.

After each participant completed the 2 teaching tasks, we con-
ducted a semi-structured interview to better understand their
cognitive process and challenges that they had encountered.

Data Analysis
We collected 3 forms of data from each participant: (1) La-
beled and annotated articles, (2) Knowledge summary, and (3)
Audio and video recording of study session, transcribed into
text via a third-party transcription service.

We used a grounded theory approach to qualitatively analyze
all 3 forms of data from each participant, following Strauss and
Corbin’s process of first open coding, followed by axial coding,
and finally selective coding [28]. For each research question,
coding was conducted in an iterative manner: the first author
developed an initial set of codes from the dataset, which the
second and third authors then reviewed and adjusted based
on their own interpretations of the dataset during a series of
immersive group meetings. All disagreements were resolved
through group discussion, and the updated set of consensus
codes was ultimately applied across the whole dataset.

RESULTS

RQ 1: Types of Knowledge
We identified 3 broad categories of knowledge types that par-
ticipants thought were useful for the learner to understand in
order to perform the multi-label classification task - concepts,
relationships, and rules - as well as sub-categories within each.

Concepts are ideas or notions related to the decision to be
made. We identified 5 sub-categories of concepts that partici-
pants wanted to teach:

Semantic concepts are dependent on label meanings (i.e., In
our study, the labels were "Food" and "Business"). Exam-
ples included "types of food," "food actions/verbs," "recipe,"
"types of business," "buying/selling," and "money." For many
semantic concepts, participants listed keywords or symbols
that are indicators of that concept (e.g., keywords like "cookie"
and "beef" are indicators of the concept "types of food").

Structural concepts are independent of label meanings, but
dependent on components of the data type (i.e., In our study,
the data type was text-based news articles). Examples included
"title," "sub-headers," "author," "paragraphs," "ordered lists,"
"sentences," and "words."



Stylistic concepts depend only on the overall data type (i.e., In
our study, the overall data type was text). Examples included
linguistic style concepts such as "language" (i.e., English),
"tone," "informality," and "figures of speech," as well as visual
style concepts such as "font type" and "font size."

Meta concepts are independent of label meanings, independent
of data type, and computable as a function of other types of
knowledge. Examples included implicit meta concepts that
require some level of subjective interpretation to determine,
such as "main subject," "intended audience," and "goal/intent"
of a news article, as well as explicit concepts that can be deter-
mined directly based on the article text, such as the "presence,"
"frequency," and "repetition" of keywords or concepts.

Task goal concepts are externally- or user-imposed constraints
that are not computable from the data itself. Examples in-
cluded "my personal interests/non-interests" such as "real or
fake news" and "Thai food", as well as "my objective" such as
speed and accuracy of the ML model.

Relationships, or schemas, describe relations and constraints
between concepts. We identified 2 sub-categories of relation-
ships that participants wanted to teach:

Semantic relationships are based on the meanings of labels and
concepts. Examples included taxonomical relationships (e.g.,
"types of food" is a sub-concept of "food"; "company" is an
example of "types of business"), positive/negative association
(e.g., "market" is associated with "business"; "business" and
"politics" are sometimes related, "suicide" is rarely related to
"food" or "business"), and mathematical relationships (e.g.,
word count is greater than five).

Structural relationships are independent of label or concept
meanings, but dependent on the data type. Examples included
co-occurrence (e.g., words/concepts appear together; presence
of certain words/concepts in the absence of other words or
concepts), and spatial relationships (e.g., "cookie" is in the
title; "$" is before a number).

Rules describe how to apply/combine concepts and relation-
ships to assign labels to documents. We identified 2 sub-
categories of rules that participants wanted to teach:

Procedures are sequences of steps or if-then statements for
how to assign labels to documents. These included instruc-
tions on the order in which actions should be performed (e.g.,
First look at the title and find these keywords. Next, look at
subsection headers. Then look at the body.) and criterion that
need to be met in order to assign labels (e.g., "If the frequency
of these keywords is greater than 5, then label it as "Food.").

Weights are degrees of strength or confidence that the user
subjectively assigns to each concept, relationship, procedure,
or label. Participants expressed this type of rule in many
different ways. For example, some used the words "strong" vs.
"weak" or a 1-3 star rating system to indicate the importance
of each keyword, concept, or relationship to a label, while
others assigned numerical confidence scores to each concept
(e.g., If you see this set of words, then 90% sure it’s this label.
If you see this other set of words, then 70% sure it’s this label.
If you see this final set of words, then 50% sure it’s this label.)

Figure 3. Schematic examples of participants’ decomposition structures
at low, medium and high points of the spectrum for each of the 3 key
dimensions from our exploratory study.

Figure 2 shows the number of participants who wanted to
teach each type of knowledge. For brevity, we refer to each
concept, each relationship, and each rule that a participant
identified as a "knowledge unit" from now on.

RQ 2: Types of Decomposition Structures
We observed 3 key dimensions along which the decomposition
structures in participants’ knowledge summaries varied: de-
gree of label distinction, degree of knowledge type distinction,
and degree of programmable rules. Figure 3 shows schematic
examples of participants’ decomposition structures at low,
medium, and high points of each dimension’s spectrum.

Degree of label distinction refers to how participants cate-
gorized each knowledge unit in relation to label categories.
For example, 7 participants created decomposition structures
with mutually exclusive categories of knowledge for each la-
bel (i.e., "Food" knowledge vs. "Business" knowledge). In
contrast, 11 participants created decompositions with a Venn
Diagram structure such that there were additional categories
of knowledge for multiple labels (i.e., "Food AND Business"
knowledge). The other 2 participants created decompositions
that did not organize knowledge units by label category, but
rather by knowledge type (see next paragraph).

Degree of knowledge type distinction refers to how partici-
pants categorized each knowledge unit in relation to knowl-
edge type. For example, 11 participants created decomposition



structures that contained separate groups for different knowl-
edge types (e.g., for semantic concepts, for structural concepts,
for relationships, for rules), while others did not segregate
knowledge units by type, but rather solely by label category.

Degree of programmable rules refers to how participants or-
ganized knowledge units together in relation to a set of step-
by-step operations. For example, 2 participants created decom-
position structures that were a complete set of logic statements
on what concepts and relationships to look for and how to
combine them together into a label decision on each document.
In contrast, other participants created decomposition structures
that were simply a set of concepts and relationships without
any specific procedures or only a few unconnected rules.

These 3 dimensions were orthogonal to one another (i.e., some
decomposition structures were high on multiple dimensions,
while others were high on 1 dimension and low on the other
dimensions). However, the choices that each participant made
on these dimensions reflected their mental model of how the
learner works. We discuss implications of this observation in
more depth in the upcoming section "RQ 4: User Challenges."

RQ 3: Knowledge Decomposition Processes
We found that participants used an iterative sensemaking pro-
cess to identify and express the knowledge that they wanted to
teach the machine. Specifically, we identified 5 discrete steps
that they performed, which we discuss through the lens of the
sensemaking process’s components outlined by Pirolli & Card:
the Foraging Loop and the Sensemaking Loop [24]. Figure 4
illustrates these 5 steps and the iterative nature in which they
were performed.

In the Foraging Loop, participants sifted through many ex-
amples to develop a rough idea of what types of documents
and knowledge units exist and which ones could be useful vs.
not useful for the classification task. No committed decisions
were made in the Foraging Loop.

Search for knowledge - In this step, participants searched
through examples either from their own memory or from the
documents in front of them to find knowledge units that could
be useful for the classification task. This step was performed in
the beginning of the task and sometimes returned to during the
Testing steps of the process. When performed in the beginning
of the task, participants specifically searched for positive and
negative examples for each label category. When performed
during the Testing steps, participants searched for examples
containing specific knowledge units that they were testing.

Shoebox knowledge - In this step, participants stored poten-
tially useful documents and knowledge units, either by phys-
ically marking and putting them aside for later examination
or by mentally making note of them. Documents were often
shoeboxed into separate piles, according to participants’ ini-
tial categorizations (i.e., Food, Business, Both, Neither, Not
Sure). Knowledge units were often shoeboxed by annotating
(e.g., highlighting, underlining, circling) them directly on the
documents and/or scribbling them on Post-it notes that were
temporarily stored for later testing.

Figure 4. The knowledge decomposition process that participants used
to identify and express the knowledge that they wanted to teach the ma-
chine in our exploratory study. !’s indicate points where major user chal-
lenges occurred. *’s indicate points where participants reported wanting
specific supporting resources.

In the Sensemaking Loop, participants took each knowledge
unit that they identified in the Foraging Loop and individually
tested and articulated the unit to inform their decision on
if/how to incorporate it into the knowledge summary that they
want to teach the machine for the classification task.

Test usefulness of knowledge - In this step, participants used a
variety of strategies to find supporting or counter evidence for
whether a knowledge unit can be reliable used to inform what
label to assign documents. These strategies included: word
association (in which a knowledge unit was deemed useful if it
automatically made the participant think of the label), search-
ing for other positive examples (in which a knowledge unit
was deemed useful if was consistent across other documents
with the same label), and searching for counter examples (in
which a knowledge unit was deemed unuseful if the participant
could identify situations in which the knowledge unit would
identify other documents without the same label). Participants
added useful knowledge units to their knowledge summaries,
and excluded unuseful ones.

Articulate knowledge - In this step, participants externalized
knowledge units to the machine by verbalizing them using
natural language and writing or drawing them on paper. Con-
cepts were expressed as words or phrases written on Post-it
notes or on the poster. Relationships were expressed through
written descriptions on Post-it notes or on the poster, spatial
arrangements of Post-it notes (e.g., physical distance indicat-
ing semantic distance between concepts), and/or annotations
around Post-it notes (e.g., drawing circles or boundaries be-
tween groups of Post-it notes). Rules were also expressed
through written instructions on Post-it notes or on the poster,
spatial arrangements of Post-it notes (e.g., sequential steps
placed in a vertical line; concepts with higher weight placed
in the center and concepts with lower weight placed in the pe-
riphery), and/or annotations around Post-it notes (e.g., arrows
to indicate the order in which procedures are to be performed;
stars to indicate the weight of each concept).

Test understandability of knowledge - In this step, partici-
pants sought feedback on whether the way in which they artic-
ulated a knowledge unit was understandable by the machine,
or whether they needed to further decompose it into simpler
terms that the machine could understand. During the study,
participants recognized the think aloud prompts (e.g., "How
do you know if an article is about or contains [concept]?")
as helpful signals for testing the understandability of their
knowledge articulations, and relied on our questions to know



when to continue or stop decomposing. Some participants
even proactively asked whether we had any questions after
articulating knowledge units to test their understandability.

RQ 4: User Challenges
We identified 2 major challenges that participants faced during
knowledge decomposition: understanding how the learner
works, and articulating abstract and implicit knowledge.

Understanding how the learner works - Each participant
came into the study with their own preconceived notions about
how a learner works, which biased the types of documents and
knowledge units that they searched for and articulated in their
knowledge summary.

A common limiting assumption that participants had was that
the learner is building a decision tree. This was reflected in par-
ticipants’ decomposition structures with high degrees of label
distinction. Participants with this assumption were strongly
biased towards teaching semantic concepts that are mutually
exclusive to 1 label category, intentionally excluding semantic
concepts that could be useful for multiple label categories.
These participants found it particularly challenging to teach
the machine how to handle documents with multiple labels.
Some even avoided assigning multi-labels to documents all
together, as P04 explained:

“You saw me hem and haw on the multi-label thing. That was
clearly challenging... I find multiple labels to be less helpful
than single labels, and so I feel like it’s a bit of a cop-out...

’Cause look, they all have both food and business items in it.
Now you’ve just called it both and move on, but I don’t think
that’s as valuable... And so, I just wanted to be, I guess, a
little bit more cautious about the multi-labeling thing. But that
implies a whole bunch of judgment around balance and that
type of thing, which is hard to explain.”

This assumption was also reflected in participants’ decom-
position structures with high degrees of programmable rules.
For example, participants with this assumption thought that
they needed to assign explicit weights and procedures to each
knowledge unit in order for the machine to know how to com-
bine them into a label decision, which limited the types of
knowledge that they articulated to only those for which they
could define specific rules (e.g., lists of keywords and if/then
rules around word frequency). P16 explained:

“I did look at if I were to code this, how would I code it, right? So
that somewhere was in my head because like, I try to [identify]
words which would mean something in an if-then statement.”

Articulating abstract and implicit knowledge - 7 participants
reported that the most challenging knowledge units to artic-
ulate were abstract and implicit concepts, relationships, and
rules. For example, P09 explained about abstract knowledge:

“Business is so abstract... There are a lot of foods that you
could put into a list of foods - it seems like a probably never
ending list, but I feel like that’s a lot easier. It’s just more
concrete to think of than something like business, where there
are probably tons and tons of sub-concepts. Food you can
group in different ways, like where it’s from and a lot of that

sort of thing, but I feel like people have a lot, probably wider
interpretation of how to group different types of business.”

Similarly, P20 explained about implicit knowledge:

“I think the concept of something implied, that’s not in the
article, was hard to explain. A lot of my prior knowledge was
the reason I was able to classify these articles. There may not
have been the information in the article itself, so it was hard
to say what was native to the article.

Examples of implied knowledge that participants reported hav-
ing difficulty explaining how to recognize included "intended
audience" of an article (P18) and "context" (P16).

In addition to these 2 major challenges, participants also re-
ported 4 categories of supporting resources that they wanted
to facilitate their knowledge decomposition process. While
some of these reflect the limitations of our study setup, we still
find them useful for informing the design of future MT tools:

Ability to search through more and varied samples - Most
participants reported feeling their knowledge summaries were
incomplete at the end of the session. To address the gaps in
their knowledge summaries, 12 participants wanted the ability
to search and filter through a greater number and variety of
articles. They said that this would help them identify more
useful knowledge units that are common across articles of
each label, and to test whether knowledge units that they had
identified in one article are generalizable and strong signals
across other articles. For example, P16 said:

“...read more articles on these two subjects to get more identi-
fying words and identifying sequence of words for context... I
think that would certainly help. And because it will also help
identifying those core common words ... Because I think in
this [Food] article, the really common words, like meat, drink,
food, beverage, dining... Here [in this Business article] it’s all
about these words like market segmentation and trends... So I
would like to identify more of those common words, which are
like the intersection words, if you may, across these articles
which fall in that bucket or this one.”

Access to existing lists, dictionaries, and lexicons - During
the task, many participants expressed semantic concepts by re-
ferring to real or imaginary databases of keywords, synonyms,
definitions, or examples related to those concepts (e.g., "types
of food," "Fortune 500 businesses"). In addition, during the
post-task interview, 9 participants explicitly reported that be-
ing able to pull these from existing resources would make it
easier to teach broad concepts to the learner in a more efficient
way. For example, P03 said:

If I had a dictionary of global company names that restaurants,
diners, bars, cafes... then I’m somehow able to automatically
apply it to the article... then I’m done. Like existing vocabu-
laries dictionaries that I can apply to my search automatically.
Similarly, "food vocabulary" - like I think this category should
have existing dictionaries that I can apply to and that will
automatically get this done real quickly so I don’t need to
come up with those words.”



Flexibility to revise knowledge decomposition - During the
task, many participants rearranged the Post-it notes and anno-
tations on their knowledge summary as they iterated between
the Foraging Loop and the Sensemaking Loop. Also, dur-
ing the post-task interview, 2 participants explicitly reported
wanting the freedom and tools to revise their knowledge sum-
mary, as their mental representation of some concepts (e.g.,
abstract ones like "business"), relationships, and rules evolved
as they read more articles and encountered new knowledge units.
For example, P07 said:

“If I can mark things a certain color, and I build that distinc-
tion, and then I have the flexibility to keep moving, so ... some
container that enables me to drag concepts, and as you drag
those concepts, drag elements that will be related to those
concepts. ... So eventually as you were elaborating and re-
fining your map, you might want to create super categories
and sub-categories to refine it. So that flexibility, the ability to
easily drag things and coloring the way... that would help me
see things visually and easily.”

Feedback on knowledge usefulness and understandability -
While many participants relied on our think aloud prompts to
test the understandability of their knowledge unit articulations
during the study session, most participants reported during
the post-task interview that they felt unsure about whether the
knowledge they had articulated in their summaries are useful
to the learner. In addition, 5 participants said they wanted
more feedback in order to test whether the knowledge units
they had identified are indeed useful and/or understandable
to the machine for the classification task and to help them
evaluate or debug their knowledge summaries. For example,
some participants requested feedback on the ML model’s label
predictions and confidence levels on new articles given the
knowledge that they had articulated so far in order to identify
situations in which the machine’s predictions are incorrect and
how to improve their knowledge summary. P01 explained:

“I would like to get feedback from the AI. Immediate feedback...
You can start even with as simple as a smile, like, did you
understand? ’Cause if you don’t understand, I have to find
another way to describe the same thing... Or it can be very
specific ... the results say [this document label] now is this and
that. And I can go through there and see how dirty it is, and
then clean by getting better... I would imagine it will... come
out like this [with my assigned labels]. And if it didn’t come
out like this, then I will have to say, where you went wrong,
and I would try to do better.”

DISCUSSION
Synthesizing the findings from our exploratory study, we iden-
tified 5 design opportunities for MT tools to support knowl-
edge decomposition. We incorporated the types of knowledge
that we identified from RQ1, the decomposition structures
that we identified from RQ2, and the user challenges that we
identified from RQ4 to generate a set of user needs, and we
used the knowledge decomposition process that we identified
from RQ3 as a framework to describe when each user need
could be better supported by new design interventions.

Design Opportunities
For each design opportunity below, we describe the underlying
user needs and when in the knowledge decomposition process
to support them, we discuss how existing tools address (or do
not address) the design opportunity, and we provide examples
of how our findings could inspire new design ideas.

Support useful mental models of how the learner works
Our findings revealed that users need an accurate or at least
useful mental model of how the learner works before the
knowledge decomposition process even begins. We found that
a user’s mental model may consist of incorrect assumptions
about what types of knowledge the learner can use and how
the predictions work (e.g., whether it is a strictly rule-based
system), and that some users have natural preferences for la-
bel distinctions (e.g., exclusivity between target classes). To
support these user needs, teaching tools should be designed to
reduce misguided user decisions during knowledge decompo-
sition by preempting or correcting such misconceptions.

Existing ML, IML, and MT tools use tutorials, explanations,
and system feedback to help users develop useful mental mod-
els of how the overall learning system works. For example,
AuPair users received a 30-minute introductory tutorial with
illustrated examples on how the system determines music rec-
ommendations, the types of features it "knows" about, and
how it extracts this information from audio files [19], and
novice MATE users received introductory tutorial materials
on what types of knowledge the system needs (i.e., samples,
labels, features) in order to make label predictions [34], while
EluciDebug provides feedback on how features were used to
predict the topic of email messages [18].

Our work identifies several design opportunities for new MT
tools to expand on these approaches to help guide users toward
accurate understandings of how to affect learning or prediction
behaviors through knowledge decomposition. For example,
illustrated examples of each type of concept, relationship, and
rule can be provided prior to the start of a MT session to
break limiting preconceptions about the types of knowledge
that users can teach, and inspire them to provide more diverse
forms than only keywords and if-then statements. Another ex-
ample could be designing systems where teachers can directly
manipulate the learner’s parameters, the predictor’s parame-
ters, or both. Opportunities include expansions on interven-
tions like the ones presented in [34], where a system can advise
at certain points during a teaching session that instead of pro-
viding more labeled examples, a teacher should instead add
new semantic features. Tools can also be designed to support
awareness of different types of knowledge that can be taught
by providing different sections of the interface or different
types of interactions for inputting different types of knowl-
edge (e.g., text entry for keywords and semantic concepts;
spatial manipulation of visual elements for relationships). Ad-
ditionally, misconceptions about a strictly rule-based system
might be broken by designing feedback functions showing
the user that the model is capable of combining all articulated
knowledge units into valid label predictions without the user
explicitly specifying weights and step-by-step operations on
each concept or relationship.



Support user search and filter through many varied samples
During the Searching step in the Foraging Loop of the knowl-
edge decomposition process, user needs that we identified
included finding: positive and negative examples of target
labels, examples containing target knowledge units, and exam-
ples with new knowledge units that have not been encountered
before. To support these user goals, MT tools should be de-
signed to enable efficient identification of each of these types
of documents and knowledge units.

Prior work has evaluated machine-initiated or user-initiated
techniques in searching for useful samples. For example, ac-
tive learning methods in ML use a machine-initiated approach
to algorithmically identify unlabeled samples in the dataset
that may improve the model and query users to label those
samples [26]. IML tools such as AnchorViz [31] support user-
initiated approaches to exploring samples in the dataset by
visualizing the similarity between semantic concepts or doc-
uments, and allowing users to decide which samples to label.
MT tools such as MATE [34] have sampling functionalities
that allow users to specifically search for positive examples of
documents with target labels or target keywords.

Building on these existing approaches, our work identifies sev-
eral design opportunities for new MT tools to support knowl-
edge unit-based search in addition to document-based search.
For example, we might design tools that help users identify
new knowledge units by visually clustering documents and
inspecting for commonalities or algorithmically extracting
commonalities between documents to suggest new knowledge
units for the user to consider. Additionally, we might design
tools that identify specific knowledge units that require addi-
tional examples before being useful for learning. Expanding
beyond search through examples in the sample set, we might
also design tools that help users search through examples in
their own memory by prompting them with suggestions or
questions that break them out of fixation on the limited sample
set, and make them think about more diverse knowledge units
from other hypothetical examples.

Support flexible user knowledge evolution
During iterative transitions between the Foraging Loop and the
Sensemaking Loop of the knowledge decomposition process,
a user need that we identified is the flexibility for knowledge
evolution, as users encounter new data that changes their men-
tal representation of a target concept or their evaluation of
whether certain knowledge units are still useful. To support
this need, MT tools should enable users to dynamically add,
remove, edit, and restructure knowledge units, and provide a
temporary design space for underdeveloped knowledge units.

Existing ML, IML, and MT tools offer limited support for
knowledge evolution. For example, traditional ML tools typ-
ically require users to re-label large numbers of samples to
reflect updated mental representations of concepts. Some IML
tools use structured labeling techniques to facilitate more effi-
cient re-labeling during concept evolution [17], but they are
not designed to address evolution of other knowledge types.
MT tools like MATE [34] allow users to add, remove, and
edit concepts in the model through text entry, but are also not
designed to support evolution of other knowledge types.

Our work identifies design opportunities for new MT tools
to better support evolution of different knowledge types. For
example, we might design interfaces that align more closely
with users’ knowledge decomposition processes by providing
separate spaces for conducting intermediary steps (e.g., tem-
porarily shoeboxing documents and knowledge units during
the Foraging Loop vs. articulating useful knowledge units and
comparing different versions of articulations for a knowledge
unit during the Sensemaking Loop). Alternatively, we might
design a functionality that allows users to toggle individual
knowledge units "on" or "off" to easily edit the model without
necessarily removing knowledge that they may later decide to
add again. Additionally, to expand evolution support beyond
concepts, we might design interactions that allow users to ex-
plicitly revise previously articulated relationships or rules by
adding newly identified conditions or exceptions.

Support user articulation of varied knowledge types
During the Articulating step in the Sensemaking Loop of the
knowledge decomposition process, user needs that we identi-
fied included the articulation of semantic, structural, stylistic,
meta, and task goal concepts, as well as semantic and struc-
tural relationships, and rules in the form of procedures and
weights. To support these needs, MT tools should provide
interaction languages for the user to express these varied types
of knowledge (including abstract and implicit ones).

Existing ML, IML, MT tools are limited in the types of knowl-
edge articulation that they support. A typical ML process only
supports human labels as a form of input while using auto-
mated feature selection methods (e.g., bag-of-words), which
is successful in practice but hard for humans to interpret. Se-
mantic dictionaries can be articulated manually by the domain
experts [32] or imported from external sources such as Word-
Net [15], but these features are typically limited to semantic
concepts. Similarly, MT tools, such as LUIS and MATE [34],
support the articulation of labels and (semantic) features that
are computed from raw text, as well as some forms of semantic
relationships. However, these tools do not currently consider
concepts relating to text structure or style.

Our work identifies design opportunities for new MT tools to
support the articulation of more types of concepts, relation-
ships, and rules. For example, to better support the articulation
of semantic concepts, we might design tools that help suggest
related words or phrases to users by enabling them to query ex-
isting knowledge graphs and databases such as ConceptNet [9].
To better support the articulation of structural concepts, we
might design tools that enable users to indicate specific compo-
nents of the document, either through a markup language like
HTML or through direct manipulation like a click-and-drag
interaction. To better support the articulation of relationships
and rules, we might design tools that enable the user to input
multiple data types, including textual data (e.g., keywords)
and graphical data (e.g., spatial arrangements of words on a
2D canvas; circles, lines, arrows between words).

Support user testing and learner feedback on knowledge
During the Testing step in the Sensemaking Loop of the knowl-
edge decomposition process, user needs that we identified
included feedback on: the usefulness of each knowledge unit,



the understandability of each knowledge unit articulation, and
the performance of the under-construction model.

Existing tools offer some forms of feedback, but are lacking
in others. For example, ML tools provide feedback on the
overall model performance (e.g., F1 score, precision, recall),
but not on knowledge units. IML tools, such as [2, 6], provide
feedback to help users assess the usefulness of knowledge
units through increases or decreases in overall model perfor-
mance scores after their addition or removal. MT tools, such
as MATE [34], also provide feedback to help users assess
the usefulness of knowledge units through changes in label
predictions for documents in the sample set after the addition
or removal of knowledge units. However, none of these tools
provide feedback on the understandability of knowledge units.

Our work identifies several design opportunities for supporting
more nuanced feedback on the usefulness and understandabil-
ity of individual knowledge units. For example, to provide
feedback that helps users assess the usefulness of knowledge
units, we might design tools that help users interpret the dis-
criminatory power of a knowledge unit across positive vs.
negative samples of each label by visualizing how often it ap-
pears across different subsets of documents in the sample set.
(i.e., If a knowledge unit appears exclusively in documents of
1 label and not other labels, then it is likely useful for discrim-
inating between the labels). Similarly, to provide feedback
on the understandability of knowledge units, we might design
tools that help users compare their own expectations of what
an articulated knowledge unit means to what the learner thinks
it means by visualizing areas of documents where the machine
recognizes the presence vs. absence of the knowledge unit.
(i.e., If the learner indicates the presence of a knowledge unit
in a place where the user does not think it is present, then this
indicates an understandability issue.). In addition, to provide
feedback on how confused the learner is about the understand-
ability of a knowledge unit, we might design tools that sort
such visualizations by the model’s confidence level on the
presence/absence of knowledge units in each document.

Limitations and Future Work
Our exploratory study findings and the design opportunities
that we derived from them help build foundational frameworks
for understanding and supporting knowledge decomposition,
and pave the way for future MT research and design. Be-
low, we describe 2 areas in which our work can be further
expanded.

Evaluating knowledge decompositions
The pen-and-paper wizard-of-oz-styled task was appropriate
for our exploratory purposes. However, a trade-off of this
approach is that we were not able to implement any of the
knowledge that participants wanted to teach into a real ML
model or provide feedback on model performance. Future
work is needed on how to implement each type of knowledge,
and to measure how different types of knowledge units and
decompositions affect model performance.

More broadly, we need more work on how to evaluate knowl-
edge decompositions beyond traditional ML metrics (e.g., F1
score, precision, recall). The reusability of model components

(i.e., the ability to share knowledge units across MT tasks),
the transparency of model predictions and explanations, and
the ease of the knowledge decomposition process for non-ML
experts are all important to the success of MT and require sys-
tematic evaluation. The types of knowledge and dimensions
of decomposition structure that we developed from this study
can provide a foundation for evaluation rubrics, but additional
work is needed to understand which types of knowledge and
which types of processes are more effective in what contexts.

Knowledge decomposition for other ML tasks
While the findings, frameworks, and design opportunities pre-
sented in this paper stem from a study on classification of text
documents, we hypothesize that they can generalize across
different data types (e.g., images, videos) and across other MT
tasks (e.g., for regression, clustering, etc.) as well. For ex-
ample, the types of knowledge that we identified in our study
can guide the ideation of tools for knowledge articulation with
images and videos: To support the articulation of structural
concepts and structural relationships in images, we might
design tools that enable users to indicate components of the
image as "foreground," "background," "on top of," "bottom
left corner," etc.; in videos, components such as "first 5 sec-
onds", "center of frame", "end credit". Similarly, to support the
articulation of stylistic concepts in images, we might design
tools that enable users to indicate the art style (e.g., abstract,
minimalist, realist, etc.) or art medium (e.g., pencil, acrylic,
digital, etc.); in videos, film styles (e.g., animated, live-action,
black-and-white, etc.) or film genre (e.g., action, comedy,
horror, etc.). Future work should apply our frameworks across
a variety of additional data types and ML tasks to see whether
there are other knowledge or processes used for them that are
not yet captured by the current study.

Furthermore, although we recruited participants from a diverse
sample of professional experiences within the constraints of
our resources, future work should also validate our frame-
works with a larger, more varied population outside of large
technology company employees. Together, these extensions
of our work will help build a more comprehensive framework
to inform the design of future tools that support knowledge
decomposition in a broader range of contexts.

CONCLUSION
MT is a promising approach to building ML models in a more
accessible, efficient, and semantic way than traditional ML ap-
proaches by allowing users to teach richer forms of knowledge
to the machine learner than simply labels. To guide the design
of effective MT tools, we built foundational frameworks for
understanding and supporting knowledge decomposition by
conducting an exploratory study on the knowledge and pro-
cesses that people want to use when teaching a machine how
to perform an ML task. From our findings, we derived a set of
design opportunities to better support user needs during key
points in the knowledge decomposition process. In the future,
we encourage researchers and designers to build on our work
by further exploring these design opportunities and expanding
upon them in the context of different types of ML tasks.
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