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ABSTRACT

Deep learning (DL) has become one of the most successful machine
learning techniques. To achieve the optimal development result,
there are emerging requirements on the interoperability between
DL frameworks that the trained model files and training/serving
programs can be re-utilized. Faithful model conversion is a promis-
ing technology to enhance the framework interoperability in which
a source model is transformed into the semantic equivalent in an-
other target framework format. However, several major challenges
need to be addressed. First, there are apparent discrepancies be-
tween DL frameworks. Second, understanding the semantics of a
source model could be difficult due to the framework scheme and
optimization. Lastly, there exist a large number of DL frameworks,
bringing potential significant engineering efforts.

In this paper, we propose MMdnn, an open-sourced, compre-
hensive, and faithful model conversion tool for popular DL frame-
works. MMdnn adopts a novel unified intermediate representation
(IR)-based methodology to systematically handle the conversion
challenges. The source model is first transformed into an interme-
diate computation graph represented by the simple graph-based IR
of MMdnn and then to the target framework format, which greatly
reduces the engineering complexity. Since the model structure ex-
pressed by developers may have been changed by DL frameworks
(e.g., graph optimization), MMdnn tries to recover the original high-
level neural network layers for better semantic comprehension via
a pattern matching similar method. In the meantime, a piece of
model construction code is generated to facilitate later retraining
or serving. MMdnn implements an extensible conversion architec-
ture from the compilation point of view, which eases contribution
from the community to support new DL operators and frameworks.
MMdnn has reached good maturity and quality, and is applied for
converting production models.

CCS CONCEPTS

« Software and its engineering — Interoperability.

KEYWORDS

deep learning, neural network, model conversion

“Most of this author’s work is done as an intern at Microsoft Research.
This author’s work is done as a full-time employee at Microsoft Research.
*Corresponding author.

Haoxiang Lin¥
Microsoft Research

Ru Zhang

Microsoft Research

Tingting Qin

Microsoft Research

Mao Yang

Microsoft Research

1 INTRODUCTION

Deep learning (DL) has become one of the most successful ma-
chine learning techniques, and is applied to various application
areas such as image recognition [18], natural language processing
(NLP) [16], and board games [51]. Developers use deep learning
frameworks to design layered data representations called deep neu-
ral networks or deep learning models, and train/serve them across
various computing hardware like CPU, GPU, and TPU. Such DL
frameworks provide high-level programming interfaces and basic
building blocks for the model construction, which greatly improves
programmability and boosts productivity. There are already many
widely used DL frameworks [63] for both research and production:
TensorFlow (TF) [1], PyTorch [41], Microsoft Cognitive Toolkit
(CNTK) [50], Caffe [25], Apache MXNet [8], Keras [11], Baidu Pad-
dlePaddle [4], Darknet [44], Apple Core ML [2], ONNX [37], ! etc.,
with each having its own uniqueness on expressivity, usability, and
runtime performance.

Recently, there are emerging requirements on the interoperabil-
ity [64] between the above DL frameworks that the trained model
files and training/serving programs could be easily ported and re-
utilized with another framework. This is because employing multi-
ple frameworks becomes a common practice towards the optimal
development result including not only model learning performance
but also programming experience and DevOps productivity. How-
ever, existing DL frameworks mainly focus on runtime performance
and expressivity while neglecting composability and portability,
which makes the framework interoperability rather difficult.

We think that the faithful model conversion is a promising tech-
nology to enhance the interoperability between DL frameworks.
The conversion works by transforming a source model into the
semantic equivalent in another framework format and in the mean-
time generating a piece of model construction code. Developers
may tune such code (e.g., writing custom pre- or post-processing
logic) for later retraining or serving. Model conversion is techni-
cally feasible because all current DL frameworks take the same
abstraction to represent models as similar tensor-oriented computa-
tion graphs whose syntax and semantics are well defined. However,
the following non-trivial challenges exist:

(1) There are apparent discrepancies in both the computation
graph constructs and the supported features between DL

!ONNX provides not only “an open source format for Al models” but also “a cross-
platform inferencing and training runtime” (aka.ms/onnxruntime).


aka.ms/onnxruntime

frameworks. For example, PyTorch provides the log1p oper-
ator (aka a mathematical operation) calculating log(1 + x),
which is not available in CNTK, Keras, and ONNX. Just cre-
ating a placeholder node in the target model does not work;
we must implement log1p with other defined operators (e.g.,
using Add plus the immediately followed log). Another ex-
ample is that not all DL frameworks support both NCHW and
NHWC tensor layouts [23]. Therefore, additional transposi-
tions of the data and learnable parameters may be needed in
the target model.

(2) The computational structure saved in a model file can be dif-
ferent and complex than that expressed by developers in the
original training program due to the framework scheme and
optimization. This makes semantic comprehension much
harder and may result in a conversion failure or a non-
optimal target model. For instance, TensorFlow translates
neural network layers to low-level optimized tensor opera-
tions. Another example is that PyTorch adopts the “define-by-
run” scheme such that a PyTorch model file stores a dynamic
computation graph defined by a real run and may lose the
conditional or loop information. Therefore, reverse syntax
transformation is important for a source model to recover
the original DL constructs.

(3) There are a large number of popular DL frameworks, bring-
ing potential significant engineering efforts. Such a problem
is very similar to that in compiler construction to support
various front-end programming languages and back-end ar-
chitectures. We could refer to compilers on the design and
implementation.

In this paper, we propose MMdnn: Model Management for deep
neural networks, an open-sourced, comprehensive, and faithful
model conversion tool [31]. Compared to other converters, our
work has three unique contributions.

First, MMdnn adopts a novel unified intermediate representation
(IR)-based methodology to systematically address the above chal-
lenges. We design a simple graph-based IR for model conversion
by reference to existing DL frameworks like ONNX. Its purpose
is to depict as many IR constructs of current frameworks as pos-
sible and eliminate their syntactic and semantic differences (e.g.,
the LRN [26] operator has different argument definitions in Caffe
and TensorFlow). The source model is first transformed into an
intermediate computation graph represented by our IR and then
to the target format, using a node-to-node translation technique
similar to the compiler’s instruction selection [6]. Hence, the en-
gineering complexity is significantly reduced from O(M X N) to
O(M+N), where M and N are the numbers of the source and target
frameworks, respectively. MMdnn also performs reverse syntax
transformation on the source model for better semantic compre-
hension via a pattern matching similar method (e.g., recovering
a TensorFlow fully-connected structure from a subgraph consist-
ing of several low-level computation nodes). We think that such
a unified IR-based methodology is general for AI/DL tooling and
could be further applied to other tools including DL transpiler (aka
source-to-source compiler), visual DL programming, full model
optimization, etc.
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Second, MMdnn implements an extensible conversion architec-
ture from the compilation point of view. It decouples the whole
conversion pipeline into three major phases: source model recon-
struction, intermediate model transformation, and target model
generation, with their interfaces being clearly and carefully de-
fined. Such an architecture enables modularization and automation,
which eases contribution from the community to support new DL
operators and frameworks.

Lastly, MMdnn has reached good maturity and quality for so-
phisticated models. A team of our company successfully converted
and deployed the production models (Caffe to ONNX). Up to now,
MMdnn is able to convert VGG [52], ResNet [18], ResNeXt [65],
Xception [10], Inception [53], MobileNets [20], SqueezeNet [21],
NasNet [66], FaceNet [49], YOLO [45], etc. models for the previously
mentioned DL frameworks.

The rest of the paper is organized as follows. In Section 2, we
describe the background. Section 3 presents our methodology. Sec-
tion 4 details the design and implementation of MMdnn. Section 5
demonstrates the evaluation results. We survey related work in
Section 6 and conclude this paper in Section 7.

2 BACKGROUND

Deep learning (DL) is a subfield of machine learning to learn lay-
ered data representations called models. Python is the most popular
programming language, while others like C++ or Julia [5] are also
used in certain cases. Being essentially a mathematical function,
a DL model is formalized by the frameworks as a tensor-oriented
computation graph. It is a directed acyclic graph (DAG) in which
each node represents the invocation of some mathematical opera-
tion (aka operator. e.g., matrix multiplication). The node takes a list
of tensors as the input and produces a list of tensors as the compu-
tation output. A tensor is a multi-dimensional array of numerical
values, and its order is the number of the dimensions. An output
tensor of some node A is delivered to another node B as one input
tensor through a directed edge. Such an edge also specifies the exe-
cution dependency between A and B. The node may additionally
contain some or even massive numerical learnable parameters (i.e.,
weights and biases), which are iteratively updated during training
until the model learning performance (e.g., accuracy and loss) meets
the expectation.

The intermediate representation (IR) for deep learning is an ab-
stract language used internally to represent computation graphs.
Different DL frameworks have their own unique IRs, and some
general IRs such as MLIR (Multi-Level Intermediate Representa-
tion) [27] and TVM Relay [46] are extended to represent programs
written in the host programming languages.

After training has finished, the whole model (including its graph
structure and learnable parameters) is serialized in some format
to one or more disk files. Note that a DL framework may support
multiple model formats. For example, TensorFlow provides three
options: checkpoint, frozen graph, and saved model [58].

2Currently, the Darknet and PaddlePaddle formats are for source only, and the ONNX
format is for target only, considering their popularity and our development resources.
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3 METHODOLOGY

Formally, a DL model is represented as a directed acyclic graph
(DAG):
M=V = {u )N E = {(ui, uj) }izjs P = {pi})

Each node u; invokes some operator denoted by u;.op. A directed
edge (uj, uj) delivers one of u;’s output tensors to the node u; as an
input tensor and specifies that u; can start execution only if u; has
finished. Each p; is a hyperparameter such as batch size, learning
rate, kernel size, and dropout rate. As mentioned above, the model
M is essentially a mathematical function denoted by Fas. We say
that Mg = (V;, Eg, Ps) is a submodel of M if Vi C V, Es C E, and
Pg=P3

Suppose that X;c[1,m], Lic[1,n] are tensors. We use tensor tuples
Xip = (X1, X2, ,Xmm) and Zyp = (Z1, L2, -+, Zn) to denote
the input and output of a node/operator, respectively. We favor the
tuple over the set because the tensor ordering can be critical to
certain operators such as matrix multiplication. The orderings of
tensors, edges, and nodes are actually determined by the program
statements written by developers to construct the computation
graph. Let %, be the mathematical function of the operator op
which takes m input tensors and returns n output tensors. Then,
op is denoted as follows:

(Z1. 22, Zn) = Fop({ X1, Xz, -+, X)) 1

The model M has some nodes without predecessors (e.g., reading
input data from disk), which provide initial values to activate the
DL computation. The tuple of their output tensors following the
tensor and node orderings is called the input of M. Similarly, M’s
output is denoted by the tuple of output tensors from the nodes
with no successors. For the submodel Mg, its input is the tensor
tuple with each element being either delivered from an outside node
or produced by some internal node as an input tensor of M. The
output of M can be defined similarly. With the above notations,
we describe the faithful model conversion.

Definition 3.1. A is a faithful model conversion algorithm if the
following two conditions are satisfied:

Syntactic Legality. Given an arbitrary source model M; =
(W1, E1, P1), alegitimate target model My = (V3, E2, P2) should
be produced:

M +q Mz A (P2 =P1)

Semantic Equivalence. Given an arbitrary valid input, the
source and target models should always return the same
result:

Ztp = Fm, (Xep) ba Zep = Fm, (Xep)
Ztp, Xip are the output and input tensor tuples, respectively.

Ideally, MMdnn performs the isomorphic graph transformation
or graph rewriting [47] on Mj: for each source node u; (e.g., a
TensorFlow Conv2D node), a new node v; with the same u;.op
operator (still Conv2D for the case) is generated in My; if u; has an
edge pointing from its k-th output tensor to the /-th input tensor of
uj (i.e, (uj,uj) € My), a corresponding edge from v;’s k-th output

3For simplicity, we require that the hyperparameter set is invariant under the faithful
model conversion.

to v;’s I-th input is added. The faithfulness clearly holds. However,
it may not always be possible or efficient to carry out such exact
one-to-one node translations; therefore, subgraph transformations
should be considered. We adopt the bottom-up approach to design
a general model conversion algorithm AMMdnn,

(1) AMMANN e htifies a finite partition Tl = {V1,1, V12, -+, Vit}
of V3. That is,

(V,inVyj=0) A (V1 = U{Vl,i})

For a node u € V, if u.op is already implemented in the
target DL framework, u must belong to some single-element
subset.
(2) For each submodel M;; = (V1,;, E1 N (V1,; X V1,5), P1), our
algorithm produces a corresponding My ; = (Vz;, E2;, P1):
(a) Eo; C Vo; X Vo ;, which is a set of intra-partition edges.
(b) My,; and My ; take the same input tensor tuple, and they
are semantically equivalent:

Z['p =M., (Xt,p) F AMMdnn -Zt/p = TMz,,-(Xt/p)

(3) Suppose that V7 ; has an edge to V1, which delivers the tensor
X. Let v; be anode of V2 ; which outputs X, and v; be a node
of V3 j which takes X as an input tensor. Then, AMMdnn

adds an inter-partition edge (v;,v;) to the auxiliary set E;.

Similarly, edges from V;  to V3,; are also added.

(4) Finally, AMMAn produces
Mo = (v, ((J{Bai) VES, Pr)

as the converted target model.

The above item 2b is the key to correctness. MMdnn employs the
operator selection technique to achieve the goal: it identifies known
subgraph patterns in advance and carefully builds the semanti-
cally equivalent subgraphs as templates; once a source subgraph
is matched, the target equivalent is produced. Details of operator
selection are presented in Section 4.4. By induction, it is not hard
to prove that the target model M3 is semantically equivalent to M.
Hence, AMMAN gatisfies the conditions of Definition 3.1.

4 DESIGN AND IMPLEMENTATION
4.1 Overview

Figure 1 shows the extensible architecture of MMdnn. As mentioned
earlier, the whole conversion pipeline is divided into three phases
from the compilation point of view: source model reconstruction,
intermediate model transformation, and target model generation.
In the first phase, a front-end parser reads the source model from
disk and reconstructs it to a computation graph represented by
the source framework’s intermediate representation (IR). We im-
plement one front-end parser for each supported model format
using the framework built-in model deserialization API. For ex-
ample, the PyTorch front-end parser calls torch.load() to dese-
rialize pickled object files to memory. Learnable parameters (i.e.,
weights and biases) are loaded into either individual graph nodes
or some global object depending on the framework implementa-
tion. Figure 2 demonstrates the simplified PyTorch front-end parser,
which uses a Python dictionary state_dict to store the learnable
parameters of each layer. If possible, the parser invokes frame-
work functionalities (e.g., TensorFlow’s strip_unused_lib and
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Figure 1: Architecture of MMdnn.

graph_transforms packages) to compact the source computation
graph by removing unnecessary nodes and folding constants.

In the second phase, an intermediate model generator traverses
the source computation graph in certain topological (linear) or-
dering and transforms it into an intermediate computation graph
represented by the simple unified IR of MMdnn (Section 4.3). The
generator employs operator selection,* a technique similar to com-
piler’s instruction selection [6], to perform the node-to-node trans-
lation (Section 4.4). Most often, the operator of a source node has
been defined or has an equivalent counterpart in MMdnn. Then,
macro expansion is used for adding a new node with the correspond-
ing operator to the intermediate computation graph. Properties of
the source node such as input tensors, output tensors, and attributes
are translated to comply with our syntax. Learnable parameters are
transformed into NumPy [36] tensors and stored in a global dictio-
nary object for centralized management. Furthermore, there exist
complex cases involving the subgraph transformation. An example
is to recover a TensorFlow fully-connected structure from low-level
computation nodes. DAG covering is used to match predefined sub-
graph patterns of the source framework and emit intermediate
subgraphs.

In the final phase, the intermediate computation graph is fed to
a target model generator, which also employs the operator selection
technique. However, it emits a piece of model construction code
implemented with the target framework instead of an in-memory
computation graph. Such code, together with the pre- and post-
processing templates, is finally presented to developers for later re-
training or serving. To export the target model file(s), the generator
saves the converted learnable parameters and runs a dynamically
crafted serialization program using the above model construction
code. Figure 3 illustrates a simplified MXNet serialization program
which constructs the MNIST [28] model, associates the saved learn-
able parameters with their belonging nodes, and calls the built-in
model serialization API

4.2 Technical Difficulties

In this section, we briefly mention some technical difficulties rooted
from the discrepancies between DL frameworks:

4The name comes from the fact that a graph node is completely determined by its
invoked operator.

1 class PyTorchParser(Parser):

2 def __init__(self, model_file_name, input_shape):

3 super (PyTorchParser, self).__init__()

4 # Load the model saved with torch.save().

5 model = torch.load(model_file_name)

6 self.weight_loaded = True

7 self.pytorch_graph = PyTorchGraph(model)

8 self.input_shape = tuple([1] + input_shape)

9 # Construct the intermediate computation graph.
10 self.pytorch_graph.build(self.input_shape)

1 self.state_dict = self.pytorch_graph.state_dict
12 self.shape_dict = self.pytorch_graph.shape_dict

Figure 2: Simplified PyTorch front-end parser.

Unavailable operators. A source operator may not be avail-
able in the target framework. If it can be composed of other
defined operators (e.g., PyTorch’s log1p), MMdnn translates
the source node to a semantically equivalent subgraph. Oth-
erwise (e.g., PyTorch’s adaptive_avg_pool2d), MMdnn de-
fines it with a unified syntax and emits the placeholder code.
Users need to implement such an operator in the target
framework by reference to its original source code.

(2) Inconsistent tensor layouts. Some operators of the tar-
get framework may not support the original input tensor
layout (NCHW vs. NHWC [23]). For example, the convolutional
operators of PyTorch support only NCHW on GPU devices.
Therefore, the target model generator must carefully trans-
pose input/output tensors at the proper places, modify the
learnable parameters and attributes, or even re-implement
such operators to ensure the faithfulness. Details are pre-
sented in Section 4.5.

Unsupported padding. Convolutional operators need an
asymmetric padding if the kernel size is even. However, a few
DL frameworks like Caffe only support symmetric padding
which may cause conversion failures. MMdnn first pads a
tensor with the maximum paddings and then crops it to the

—
—
~

—
[SY)
=

correct shape.
Incompatible argument type. Non-constant operator ar-
guments are usually defined as tensor variables; however,

—
N
=
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1 def mnist_cnn():

2 conv2d_inp = mx.sym.var('conv2d_inp")

3 conv2d = mx.sym.Convolution(conv2d_inp,

4 kernel=(3,3), stride=(1,1), dilate=(1,1),

5 pad=(0,0), num_filter=32, num_group=T1,

6 no_bias=False, layout='NCHW', name='conv2d'

7 )

8 conv2d_act = mx.sym.Activation(data=conv2d,

9 act_type='relu', name='conv2d_act")

10 ... # Omit some layers.

1 maxpool2d = mx.sym.Pooling(conv2d_2_act,

12 global_pool=False, kernel=(2,2), pad=(9,0),

13 stride=(2,2), pool_type='max',

14 name="maxpool2d"')

15 dropout = mx.sym.Dropout(data=maxpool2d, p=0.25,

16 mode="training', name='dropout')

17 ... # Omit some layers.

18 dense = mx.sym.FullyConnected(dropout, num_hidden=10,
19 no_bias=False, name='dense')

20 dense_act = mx.sym.SoftmaxOutput(dense, 'softmax"')
21 model = mx.mod.Module(dense_act, context=mx.cpu(),
2 data_names=['conv2d_inp'])

23 return model

»s def set_params(model, params_file_path):

26 arg_params = get_arg(params_file_path)

27 aux_params = get_aux(params_file_path)

28 model.bind(False,

29 data_shapes=[('conv2d_inp', (1,1,28,28))1)
30 model.set_params(arg_params, aux_params, True)
31 return model

32

33 if __name__ == '__main__":

34 model = mnist_cnn()

35 model = set_params(model, saved_params_file_path)
36 model . save_checkpoint('mnist_cnn', epoch_num)

Figure 3: Simplified serialization program to output the
MXNet MNIST model whose source framework is Keras.
mnist_cnn() constructs the model structure, set_params()
associates the converted learnable parameters to their be-
longing nodes, and model.save_checkpoint() exports the
model file.

some DL frameworks allow to use Python objects instead.
For example, the begin argument of the MXNet slice oper-
ator is a Python tuple [34]. Currently, MMdnn translates a
Python object from or to a tensor variable by value. If the
argument is not a constant, users need to fill in the most
likely value. However, this method may lead to a conversion
failure since the full computation history of the argument
is lost. The root cause is that the computation of Python is
separate from that of deep learning. It is possible to tackle
the problem by performing code analysis on the entire DL
program. A more complete solution depends on a general IR
(e.g., MLIR) which can uniformly represent the above two
kinds of computation.

4.3 Intermediate Representation

The intermediate representation of MMdnn plays an important
role to represent models from various DL frameworks as unified
general-purpose computation graphs. We reject the ad-hoc direct
conversion between every two frameworks to make MMdnn more
extensible and reduce the difficulty of implementation and debug-
ging. The goal of MMdnn is converting models faithfully instead of
formulating a common model format; hence, the IR design can be
simplified to focus on the graph syntax without caring a lot about
the implementation of various IR constructs.

MMdnn refers to existing DL frameworks like ONNX and uses
Protocol Buffers [59] to describe the following graph schema:

(1) GraphDef. This is the top-level construct for representing
a computation graph. Edges are not explicitly defined since
the node input tensors encode them.

(2) NodeDef. It represents a graph node with the fields of a
name, an operator type, a list of zero or more named input
tensors of type string, and a map of zero or more named
attributes. Each input tensor has the “dep_node : dep_output”
format which means that it is actually an output tensor
named “dep_output” of the “dep_node” node. Therefore, the
graph edges can be implicitly constructed from the corre-
sponding tensor/node names. We also take the output tensors
away because they are defined in the operator data structure.

(3) AttrValue. Attributes represent the node/operator argu-
ments other than the input tensors. An attribute value is
a runtime constant specified by developers or inferred by
frameworks. Attribute names are not stored together since
they appear in the node and operator data structures.

(4) op. This represents an operator, the mathematical operation

invoked by a node. It consists of a name, two lists for the

input and output tensor arguments respectively, and a list
of named attributes.

TensorShape and LiteralTensor. A tensor shape is a list of

element numbers in each dimension, where —1 stands for an

unknown dimension. A literal tensor represents a serialized
tensor value which consists of a tensor shape, an element
data type, and a flattened array of elements.

—
wl
=

Initially, the operator set includes essential operators available
in various frameworks, such as basic mathematical operators of
addition, exponentiation and division, and layer operators of convo-
lution and batch normalization [24]. To be noted, it is possible that
DL frameworks have different syntax on the same operator. Let
us take the local response normalization (LRN) [26] as an example.
ONNX defines a size attribute (argument) which represents an
odd number of channels to sum over. However, TensorFlow uses
depth_radius instead, being equal to | $12¢ | (rounding down). In
CNTK (BlockApiSetup.lrn), n is used and equals fSizze] (rounding
up). MMdnn unifies the operator syntax: naming and ordering of
input tensors, output tensors, and attributes. For instance, MMdnn
refers to ONNX and adopts size as the formal attribute name of
our LRN operator, whose definition is shown in Figure 4. Thus,
when converting a TensorFlow LRN node, MMdnn should store
(depth_radius x 2 + 1) to the size attribute.

The operator set gradually grows on demand. When a new frame-
work operator is met, we usually define it and formalize its syntax,
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1op {

2 name: "LRN"

3 input_arg {name: "x" type_attr: "T"}

4 output_arg {name: "z" type_attr: "T"}

5 attr {name: "size" type: "int"}

6 attr {name: "alpha" type: "float"}

7 attr {name: "beta" type: "float"}

8 attr {name: "bias" type: "float"}

9 summary: "Local Response Normalization."
10 }

Figure 4: Definition of the LRN operator in MMdnn. The
descriptions of each field are not shown.

1 def Exp_from_tf(self, source):
2 ir = self.IR_Graph.add()

3 ir.op = 'Exp’

4 ir.name = source.name

5 ir.inputs = convert_input(source.inputs)

6 ir.attrs = convert_attribute(source.attrs)

Figure 5: Macro expansion from a TensorFlow Exp (expo-
nentiation) node to an intermediate Exp node.

even if it is semantically equivalent to a composition of other de-
fined operators. To achieve an optimal converted model, MMdnn
avoids decomposing a source operator at the phase of intermediate
model generation since some target frameworks may have already
implemented it. Note that a framework operator can act quite dif-
ferently with certain framework-specific arguments. For example,
the TensorFlow MatMul (matrix multiplication) operator has four
unique Boolean arguments to control whether the two input ten-
sors should be transposed and conjugated in advance [55]. Under
such circumstances, adding all arguments to the formal operator
definition for deferred processing, decomposing the source opera-
tor, or defining multiple new operators (e.g., TransposedMatMul) is
possible depending on the complexity.

4.4 Operator Selection

Operator selection is used by the intermediate and target model
generators for the node-to-node translation. Given a computation
graph, the generators traverse it and apply macro expansion on a
node or DAG covering on a subgraph.

Macro expansion works by checking the operator of a node,
locating the matched expander function, and executing the func-
tion code. Most often, a single node with the same or equivalent
operator is emitted. Figure 5 and Figure 6 illustrate two expander
functions that translate a TensorFlow Exp (exponentiation) node to
an intermediate Exp node and then to a piece of code for generating
a CNTK Exp node. Note that the expander function can emit a
subgraph under certain cases (e.g., expanding a log1p node to an
Add node followed by a log).

The input computation graph is sometimes complicated and
huge by the alteration of DL frameworks. For example, the Ten-
sorFlow FullyConnected and BatchNormalization nodes have been

1 def Exp_to_cntk(self, ir):

2 parent = self.parent(ir, pos=0)

3 code = "{} = cntk.exp({}, name="{}"')"
4 .format(ir.name, parent.name, ir.name)
5

6 return code

Figure 6: Macro expansion from the intermediate Exp node
in Figure 5 to a piece of code for generating a CNTK Exp
node.

optimized to subgraphs of low-level computation in the model file.
Although translating one node by another using macro expansion
ensures the correctness, it may not achieve an optimal converted
model if the target framework has implemented the same high-level
operators. MMdnn uses DAG covering to recover the original user-
specified graph structures by searching for predefined subgraph
patterns on the input computation graph. For instance, the Fully-
Connected structure is implemented in TensorFlow by a MatMul
node, a Variable node as MatMul’s grandfather, and surrounding
others. Figure 7 and Figure 8 demonstrate how to recover such a
TensorFlow FullyConnected structure from representative MatMul
and Variable nodes and then translate it to an equivalent Caffe node
using the InnerProduct operator.

RNN (recurrent neural network) [61] patterns are usually more
sophisticated because DL frameworks unroll an RNN node (e.g.,
LSTM [19] and GRU [12]) to a cell sequence whose length is not
explicitly specified in the source model. Furthermore, TensorFlow
unfolds each RNN cell to a subgraph of low-level computation
nodes too. After having identified all the RNN cells by matching
cell patterns, MMdnn infers the sequence length from the shape
of RNN weights to recover the original RNN node. Nevertheless,
when handling a TensorFlow RNN structure, we sometimes no-
ticed unexpected degradation of the model learning performance
no matter a high-level RNN node or a sequence of RNN cells were
generated in the target model. We guess that the target frameworks
may implement RNN cells in a different internal computation or-
dering. One workaround is to craft a sequence of custom nodes
with each invoking a synthesized cell function identical to that of
the corresponding TensorFlow RNN cell.

4.5 Tensor Layout

As mentioned earlier, tensors are multi-dimensional arrays. The
tensor layout refers to the dimensional ordering, which is impor-
tant because such dimensions usually have specific semantics. For
example, 4D image tensors have four dimensions: N, C, H, and W,
which represent the batch size, color channel, height, and width,
respectively. Depending on whether the C dimension ranks ahead
of the H and W dimensions, two tensor layouts NCHW (channels first)
and NHWC (channels last) are widely used by different computing
devices [23].

However, DL frameworks do not always support any tensor
layouts. For instance, on GPU devices, TensorFlow accepts both
NCHW and NHWC but PyTorch supports NCHW only. An unexpected
tensor layout can cause the conversion to fail. Suppose that we
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1 def FullyConnected_from_tf(self, source):

2 # self is a MatMul node.

3 parent = self.parent(source, 1)

4 W = self.parent(parent, 0)

5 if 'Variable' in W.type:

6 ir = self.IR_Graph.add()

7 ir = self.copy(source, 'FullyConnected")
8 units = source.attr['units']

9 ir.attr['units'].i = units

10 self.set_weight(source.name,

1 'kernel', self.ckpt[W.name])

12 add_node = self.child(source, 0)

13

14 if add_node is not None:

15 add_node.covered = True # Cover the add node.
16 B = self.parent(self.parent(source, 1), 0)
17 if B is not None:

18 self.set_weight(source.name,

19 'bias', self.ckpt_data[B.namel)
20 ir.attr['use_bias'].b = True

21 else: # No bias.

22 assign_ir(ir, {'use_bias': False})

Figure 7: Simplified DAG covering from a subgraph contain-
ing TensorFlow MatMul, Variable, etc. nodes to an interme-
diate FullyConnected node.

1 def FullyConnected_to_caffe(self, ir):

2 # check whether to transpose the weights

3 if self.check(ir):

4 transpose_ir_weight(ir)

5

6 code = "n.{:<15} = L.InnerProduct(n.{}, num_output={},
— bias_term={}, ntop=1)"

7 .format(ir.name, self.parent_name(ir),

8 ir.layer.attr["units"].1,

9 ir.get_attr('use_bias', False))

11 return code

Figure 8: Macro expansion from the intermediate FullyCon-
nected node in Figure 7 to a piece of code for generating an
equivalent Caffe node using the InnerProduct operator.

are converting a TensorFlow model trained with NHWC input data
to the PyTorch format. We assume that the target model still uses
NHWC input data. If the source model contains Conv2D, MaxPooling,
BatchNormalization, etc. nodes, the converted PyThorch model will
produce totally wrong results. This is because the target Conv2D
etc. nodes encounter an inconsistent tensor layout other than NCHW,
which is either unsupported (e.g., NHWC) or completely unknown
(e.g., the input is produced by another convolutional node which
has not handled the layout issue). Simply inserting an NHWC-to-NCHW
tensor transpose just before and an NCHW-to-NHWC immediately after
each of them does not solve the problem. The reason is that their

learnable parameters and attributes, being part of the operator im-
plementation, are bound to the source NHWC layout and should be
amended too. In fact, the root cause comes from that tensor trans-
pose and certain operators are not commutative. In the following,
we give the formal notations [40] and definition.

Assume that set S = {1,2,---,n}, X is an n-order tensor, o is
a permutation of S, and o~ ! is the inverse of 0. ¢ is actually a
one-to-one function from S onto S and is denoted as follows, with
o (l) = ki:

(1 2 3 - on
“\ki ks ks - kn
We call o a tensor layout of X. For instance, if we take NHWC as the
identity layout (permutation), NCHW and its inverse are then denoted
as follows:

(12 3 4 (1 2 3 4
ONCHW =11 4 2 3 ONCHW = =11 3 4 2

An n-order tensor Y is called the transpose of X associated with
o and denoted by X7, if

Y(ig(1)sio(2)s io(n)) = X(i1, 02, ,in)
Let X;p = (X1,Xz,-++,Xm) be a tensor tuple which represents
the input or output of a node/operator. ozp = (01,02, ,0m) isa
permutation tuple with each o; being a permutation of X;’s S set.

o1p is called a tensor layout of X;,. We then denote the transpose
of Xy as follows:

XepTotw = (XyTor, X T2, oo Xy Tom )

Now we define the commutativity of tensor transpose and oper-
ators.

Definition 4.1. Assume that op is an operator, and
Xip = (X, X2, -+, X)), Zip ={Z1, 22+, Zn)
are op’s input/output tensor tuples satisfying Equation 1.

otp =01,02,- - ,0m), 0'tp=(0"1,0"2,-+-,0"n)
are tensor layouts of X}, and Z;p, respectively. The operator op is

called to be transpose-commutative associated with oy, if

Ty T,
Zip 7P = Fop(Xep o) )
In case oy is arbitrary and there always exists the corresponding
o’ tp, op is transpose-commutative.

It is not hard to realize that operators such as tensor element-wise
addition, subtraction, and multiplication with a scalar are transpose-
commutative, while the above mentioned Conv2D, MaxPooling, and
BatchNormalization are not. If a transpose-commutative operator
(associated with certain permutations) encounters an inconsistent
tensor layout, inserting two tensor transposes just before and im-
mediately after it guarantees the correctness, given the previously
mentioned oyp and ¢’yp. The core task is to pre-identify the tar-
get nodes whose operators are non-transpose-commutative under
current tensor layout assumption. We then make them transpose-
commutative associated with the assumed tensor layout by modi-
fying the learnable parameters/attributes or re-implementing the
operators. For the TensorFlow-to-PyTorch example, we transpose
the PyTorch Conv2D node’s filters from [filter_height, filter_width,



in_channels, out_channels] to [out_channels, in_channels, fil-
ter_height, filter_width]. Note that some DL frameworks implement
self-adaptive operators to support multiple tensor layouts. Users
only need to explicitly specify the actual input tensor layout. For
instance, the TensorFlow Conv2D operator has an optional string
argument data_format which defaults to NHWC. Hence, we think
that Conv2D is transpose-commutative associated with oychw in
TensorFlow, assuming that onywc is the identity permutation. Algo-
rithm 1 suggests a general approach to handle inconsistent tensor
layouts, with the optimization of eliminating consecutive reciprocal
tensor transposes.

At the beginning of this section, we assume that the target model
uses the same initial input tensor layout as the source model. There-
fore, necessary tensor transposes must be inserted, which may sig-
nificantly reduce the runtime performance. A more attractive idea
is transposing only the initial input and final output to avoid those
inserted tensor transposes. However, such a method requires that
we can always determine the actual input and output tensor layouts
of each node/operator, which is challenging due to the dynamic
node/operator amendment. Moreover, extra tensor transposes may
also be imposed. It remains an interesting future research problem
to seek the best initial tensor layout that achieves both correctness
and optimal runtime performance.

5 EVALUATION

MMdnn is implemented in Python with over 29,000 lines of code.
We choose official TensorFlow/PyTorch/CNTK/MXNet/Caffe ResNet-
152 models [7, 14, 32, 43, 57] and TensorFlow/PyTorch/CNTK/MXNet
Inception-V3 models [13, 33, 42, 56] as our experimental objects.
The target frameworks additionally include Keras (TensorFlow back-
end) and ONNX. The source models were trained using ImageNet
classification dataset with 1,000 classes of objects [48]. Except that
the source and target models of TensorFlow use the NHWC tensor
layout, other models use NCHW. The framework versions are shown
in Table 1 and the MMdnn version is v0.2.5. Our experiments are
conducted on an Ubuntu 16.04 workstation with 16 Intel Xeon
E5-2665 CPUs and 128 GB main memory.

We randomly select 4,000 images in RGB/BGR formats from
COCO [29] 2017 Test dataset® to evaluate the effectiveness of
MMdnn. The test images are preprocessed by size refactoring (to
224), normalization, and transposition. Normalization includes the
following three methods:

(1) Standard: divide each pixel by 255, then subtract 0.5, and
finally multiply by 2.

(2) Zero Center: subtract 123.68, 116.779, and 103.939 from the

three color channels, respectively.

(3) Identity: no processing.

Suppose that m is the number of test images and X1, X2, - - - , X
denote the image tensors. Let y; and z; (i € [1, m]) be two result
vectors in the Euclidean space R", computed by the source and
target models on Xj, respectively. n is the number of object classes,
which equals 1,000.° y;; and z;; denote the j-th components of y;
and z;, respectively. To evaluate whether the target model classifies

SThere are 41,000 images in total.
®n = 1,001 for the source TensorFlow Inception-V3 model “since 0 is reserved for the
background class” [54].
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Algorithm 1: Handle inconsistent tensor layouts at the
target model generation phase.

Input: The intermediate model inter_model;
Output: The target model target_model with inserted tensor
transposes and possible node amendment;
1 inter_topo « GetTopologicalOrder (inter_model) ;
2 foreach node € inter_topo do

3 new_node « EmitNode (target_model, node) ;

4 old_in_layout < GetInputLayout(new_node) ; // A tuple
(ly,-+-,Ln) whose I; is the layout of i-th input tensor.

5 allowed_input_layouts «—
GetTargetAllowedInputLayouts(new_node.op) ;

6 if old_in_layout € allowed_input_layouts then

7 ‘ continue;

8 end

9 old_out_layout < GetOutputLayout(new_node) ;

10 new_in_layout « SelectTargetInputLayout(new_node,
allowed_input_layouts) ;

// Assume old_in_layout is the identity layout.

1 if not IsCommutativeInTarget(new_node, old_in_layout,
new_in_layout) then

12 MakeCommutativeInTarget(new_node, old_in_layout,
new_in_layout) ;

13 end

// Emit necessary tensor transposes for input tensors.

14 parents « GetParents(inter_model, node) ;

15 for i < 1 to parents.GetLength() do

16 parent « parents [i] ;

17 parent_transpose « GetOutputTranspose(target_model,
parent, new_node) ; // Emitted by parent at Line 33

18 if parent_transpose # NULL then

19 I} « old_in_layout [i] ;

20 Iy < new_in_layout [i] ;

21 if IsInverse(parent_transpose, I, I;) then

‘ // Optimize parent_transpose away.
22

RemoveNode (target_model, parent_transpose) ;
23 else

24 EmitInputTranspose(target_model, new_node,

L, )
25 end
26 end
27 end
// Emit necessary tensor transposes for output tensors.

28 new_out_layout « GetOutputLayout(new_node.op,

new_in_layout) ;
29 for i < 1 to old_out_layout.GetLength() do
30 Iy « old_out_layout [i] ;
31 I < new_out_layout [i] ;
32 if I, # [, then

// Emit an l,-to-l; tensor transpose.
33 EmitOutputTranspose(target_model, new_node, I3,
h)s

34 end
35 end
36 end
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Table 1: Evaluation results of ResNet-152 models.

Data Preprocessing Target TensorFlow PyTorch CNTK MXNet Caffe  Keras ONNX
Source (Version: 1.13.1) (0.4.0) (2.6) (1.2.0) (1.0) (224) (142
Top-10 ACC (%): 100 100 100 100 100 100 100
TensorFlow Zero Center MRE: 4.25¢-6 7.11e-6 0443  7.37e-6  6.68¢-6 0 0.254
PyTorch Standard 100 100 100 100 100 100 100
Transposition 6.78e-6 2.00e-6  6.72e-6 3.80e-6 5.57e-6 7.31e-4 6.76e-6
CNTK Identity 100 100 100 100 100 100 100
Transposition 0.359 6.45e-6  4.96e-6 6.74e-6 8.13e-6  0.359  5.82e-6
MXNet Identity 100 100 100 100 100 100 100
Transposition 6.73e-6 2.28e-6  5.59e-6 0 3.95e-6 4.22e-6 6.87e-6
Caffe Zero Center 100 100 100 100 100 100 100
Transposition 4.39%¢-6 3.75e-6  5.99e-6 3.82e-6 0 1.22e-5  1.552

Table 2: Evaluation results of Inception-V3 models.

Data Preprocessing Target TensorFlow PyTorch CNTK MXNet Caffe  Keras ONNX
Source (Version: 1.13.1) (0.4.0) (2.6) (1.2.0) (1.0) (2.2.4) (1.4.1)
Top-10 ACC (%): 100 100 100 100 100 100 100
TensorFlow Standard MRE: 2.94¢-5 7.29¢-5  437e-5 1206 1.206 0 d46des
Standard 100 100 100 100 100 100 100
PyTorch .\
Transposition 2.38e-5 5.0le-6  1.74e-5  0.196 0.196  1.99e-5 2.31e-5
CNTK Identity 100 100 100 100 100 100 100
Transposition 1.40e-5 1.44e-5 1.29e-5  0.284 0.284  2.67e-4 9.84e-6
MXNet Identity 100 100 100 100 100 100 100
Transposition 0.305 0.305 0.305 0 3.32e-5  0.305 0.305

an image correctly, we use Top-10 accuracy: if the indices of the 10
largest components in z; are identical to those in y;, the accuracy
on X; (ACG;) is 1; otherwise, it is 0. We also calculate relative error
(RE;) [62] to assess the distance between y; and z;.

1 if y; and z; have identical
ACC; = Top-10 component indices,
0 otherwise.
Zii— Uit
RE;; = |24 —Y4
Yij
n
i—1 REjj
RE; = =1
n

Then, we measure the experiment using Top-10 accuracy (ACC)
in percent and mean relative error (MRE):

Xm ACC
m

% ACC = X 100

MRE = ﬁ

A larger ACC means that the learning performances of the source
and target models are closer; a smaller MRE indicates that the two
result vectors have minor difference.

Table 1 and Table 2 demonstrate the evaluation results of ResNet-
152 and Inception-V3 models. Each cell has two lines of values,
reporting Top-10 accuracy and MRE, respectively. From the results,

we find that MMdnn achieves perfect Top-10 accuracy (100%), con-
firming its effectiveness. We also notice that MRE < 0.001 in many
cases, which indicates that the overall difference between the two
result vectors is small. Some MRE values are relatively large, for
example, MRE of the Caffe-to-ONNX case in Table 1 reaches 1.552.
However, since the Top-10 accuracy is 100%, we think that the dif-
ferences come from insignificant vector components and do not
influence the model learning performance.

6 RELATED WORK

Machine learning/deep learning compilers. TVM [9] is a deep
learning compiler stack that compiles models into minimum deploy-
able modules on diverse hardware backends. Flux [22], built upon
the Julia programming language [5], provides a new and elegant
machine learning stack for Julia developers. TensorFlow XLA [1]
and DLVM [60] are domain-specific compilers, optimizing on high-
level computation graphs. Such compilers aim at achieving the
optimal training/serving runtime performance. Although MMdnn
adopts compiler principles (e.g., IR and processing phases), it only
focuses on the faithful model conversion.

Common model formats. ONNX [37] and NNEF [35] are open
neural network exchange formats, with a similar motivation for
the framework interoperability. They include essential operators
which are less than those in popular DL frameworks. For example,
there are about 137 and 115 operators in ONNX v1.5 and NNEF 1.0.1
respectively, while TensorFlow r1.13 has more than 500. Therefore,



if the source model uses an out-of-range operator, it cannot be con-
verted or directly exported’ to such two formats. ONNX and NNEF
need to keep pace with the frameworks and hardware vendors to
support new operators, which limits their extensibility. MMdnn
refers to the syntax of ONNX and other frameworks to design its
simple yet unified IR, with the purpose of an intermediate medium
to describe as many IR constructs as possible. For a source operator,
it is more likely that the target framework has already implemented
the same or an equivalent operator. In addition, MMdnn can extend
its operator set via operator decomposition and porting. Hence,
MMdnn has the potential to quickly support more DL operators,
models, and frameworks for the model conversion.

Model converters. There are a number of model converters
such as caffe-tensorflow [15], ONNXMLTools [38], WinMLTools [30],
Core ML Tools [3], tf2onnx [39], NNEF-Tools [17], etc. They provide
unidirectional conversion, requiring that the operators are from
the intersection of both source and target frameworks. MMdnn
adopts a unified IR-based methodology to perform bidirectional
conversion between more DL frameworks and support a broader
range of operators.

7 CONCLUSION AND ON-GOING WORK

MMdnn is an open-sourced, comprehensive, and faithful model con-
version tool to enhance the interoperability between popular DL
frameworks. It adopts a novel unified intermediate representation-
based methodology and implements an extensible conversion ar-
chitecture to ease contribution from the community. MMdnn has
reached good maturity and quality, and is applied for converting
production models.

One immediate on-going work is to convert NLP pre-trained
models like BERT [16], which requires to support more operators
such as LayerNorm, BatchMatMul, Cast. We also wish to support
control-flow constructs (e.g., tensorflow::ops::Switch, mxnet.ndarray.
contrib.while_loop, and ONNX Loop) and dynamic RNNs (e.g., tf-nn.
dynamic_rnn). Since the number of operators is increasing rapidly,
it is inefficient to manually understand their semantics, identify the
equivalents, and port them to another framework. Some program
analysis techniques may be developed to facilitate the process. How-
ever, we think that using some standard domain-specific language
(DSL) to define both syntax and semantics of the operators could
help not only convert models but also increase the training/serving
runtime performance. DL frameworks are evolving fast, so we will
continuously keep up with their latest versions. Another work is
to reduce the overhead of inserted tensor transposes when han-
dling the inconsistent tensor layout. We also hear from developers
that they want to port existing DL programs to another frame-
work faithfully for training, which needs a new DL transpiler (aka
source-to-source compiler).
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