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Information and Influence Propagation in Networks
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抖肩舞



Examples of Studies on Influence in Networks: 

Obesity and Stopping Smoking
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Christakis N A and Fowler J H. The spread of obesity in a large social network over 32 years. New England Journal of 
Medicine, 2007(357.4):370~379
Christakis N A and Fowler J H. The collective dynamics of smoking in a large social network. New England Journal of 
Medicine, 2008(358.21):2249~2258



Voting Mobilization: A Facebook Study

• Voting mobilization [Bond et al, Nature’2012]

– show a facebook msg. on voting day with faces of friends who voted

– generate 340K additional votes due to this message, among 60M people tested
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Influence Propagation Modeling and Optimizations

• How to model influence propagation in a social network?

– Stochastic diffusion models

• How to optimize the influence propagation effect?

– Influence maximization and its variants

• One core problem: Influence maximization

– Find a small number of individuals in a network to generate a large 

influence

– Applications in viral marketing, diffusion monitoring, rumor control, etc.
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Influence Maximization in a 

Nutshell
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Independent Cascade (IC) Model 

• Each edge (𝑢, 𝑣) has an influence 
probability 𝑝(𝑢, 𝑣)

• Initially seed nodes in 𝑆0 are activated

• At each step 𝑡, each  node 𝑢
activated at step 𝑡 − 1 activates its 
neighbor 𝑣 independently with 
probability 𝑝(𝑢, 𝑣)

• Influence spread 𝜎(𝑆): expected 
number of activated nodes

• Other models: linear threshold (LT), 
triggering, general threshold, etc.
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Influence Maximization

• Given a social network, a diffusion model with given parameters, 

and a number 𝑘, find a seed set 𝑆 of at most 𝑘 nodes such that 

the influence spread of 𝑆 is maximized. 

• Based on submodular function maximization

• [Kempe, Kleinberg, and Tardos, KDD’2003]
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Submodular Set Functions

• Sumodularity of set functions 𝑓: 2V → 𝑅

– for all 𝑆 ⊆ 𝑇 ⊆ 𝑉, all 𝑣 ∈ 𝑉 ∖ 𝑇, 
𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇)

– diminishing marginal return

– an equivalent form: for all 𝑆, 𝑇 ⊆ 𝑉
𝑓 𝑆 ∪ 𝑇 + 𝑓 𝑆 ∩ 𝑇 ≤ 𝑓 𝑆 + 𝑓 𝑇

• Monotonicity of set functions 𝑓: for all 𝑆 ⊆
𝑇 ⊆ 𝑉,

𝑓 𝑆 ≤ 𝑓(𝑇)
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Submodularity of Influence Spread Function 𝜎(𝑆)

• Independent cascade model is 
equivalent to

– sample live edges by edge 
probabilities

– activate nodes reachable from 𝑆 in 
the live-edge graph

• 𝜎 𝑆 = σ𝐿 Pr{𝐿} ⋅ |Γ 𝐿, 𝑆 |
– Γ 𝐿, 𝑆 ：set of nodes reachable 

from S in live-edge graph L

– |Γ 𝐿, 𝑆 | is a coverage function, easy 
to show it is submodular
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Greedy Algorithm for Submodular Function 

Maximization 

1: initialize 𝑆 = ∅ ;

2: for 𝑖 = 1 to 𝑘 do

3: select 𝑢 = argmax𝑤∈𝑉∖𝑆[𝑓 𝑆 ∪ 𝑤 − 𝑓(𝑆))]

4: 𝑆 = 𝑆 ∪ {𝑢}

5: end for

6: output 𝑆
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Property of the Greedy Algorithm

• Theorem: If the set function 𝑓 is monotone and submodular with 

𝑓 ∅ ≥ 0, then the greedy algorithm achieves (1 − 1/𝑒)
approximation ratio, that is, the solution 𝑆 found by the greedy 

algorithm satisfies: 

𝑓 𝑆 ≥ 1 −
1

𝑒
max𝑆′⊆𝑉, 𝑆′ =𝑘𝑓(𝑆

′)

• [Nemhauser, Wolsey and Fisher, 1978]

ISAAC'2019, Dec. 11, 2019 12

Nemhauser G L, Wolsey L A, and Fisher M L. An analysis of approximations for maximizing submodular set functions. 
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Challenges and Research Coverage

• Scalability challenge:

– In IC (and LT) models, computing influence spread 𝜎(𝑆) for any given 𝑆 is #P-hard 
[Chen et al. KDD’2010, ICDM’2010], and Monte Carlo simulation is slow

– Scalable influence maximization

• Adaptivity challenge:

– Can we adapt to partial feedbacks? --- adaptive influence maximization

• Learning challenge:

– How to learn the diffusion model?

– How to use online feedback for optimization --- online influence maximization

• Complex model challenge:

– Other variants of influence diffusion models --- competitive and complementary 
influence maximization, non-submodular influence maximization, etc.
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Pushing the Limits of Optimization and Learning

• Influence maximization 

– Sitting at the boundary of feasibility

• Examples discussed in this talk

– Adaptive influence maximization: new variants in adaptive maximization

– Online influence maximization --- general combinatorial multi-armed bandit 
framework
• prior studies: linear rewards, exact offline oracle

• Online IM: nonlinear rewards, approximation oracle, probabilistically triggered arms
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Adaptive submodular Non-adaptive submodular

Independent feedback prior studies IC + myopic feedback 

Dependent feedback IC + full-adoption feedback LT + myopic/full-adoption feedback



Adaptive Influence 

Maximization
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Adaptive Influence Maximization: Model

• Influence propagation: IC Model

• Seed selection: one-by-one, instead of a 
batch of 𝑘 nodes
– After selecting each seed node, obtain 

feedback on the propagation from the 
seed --- can be used to help subsequent 
seed selection

• Two feedback models
– Full-adoption feedback: all downstream 

propagation from the selected seed, 
whether an edge passes through 
influence, whether a node is activated

– Myopic feedback: only immediate 
propagation from the seed to its out-
neighbors are given as the feedback
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Adaptive Submodularity

• Realization 𝜙: all randomness in a 
propagation (random live-edge graph)

• Partial realization 𝜓: feedback collected 
(partial propagation) from the currently 
selected seeds dom(𝜓)

• Adaptive Submodularity: a node 𝑢’s 
marginal influence is higher on a smaller 
partial realization than on a larger partial 
realization
– If 𝜓 ⊆ 𝜓′, Δ 𝑢 𝜓′ ≤ Δ(𝑢|𝜓)

• Adaptive Monotonicity: a node 𝑢’s marginal 
influence on any partial realization is 
nonnegative
– Δ 𝑢 𝜓 ≥ 0, as long as 𝜓 has non-zero 

probability to occur
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𝑖

dom(𝜓)

𝜙(𝑖) under 
full-adoption 
feedback

live edge

blocked edge

realization (live-edge graph) 𝜙
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𝑖

partial 
realization 𝜓



Important Results on Adaptive Submodularity

• Approximation ratio
– Adaptive Greedy Algorithm

• On every step, greedily select the next entry with the largest marginal influence: select 𝑣 =
argmax𝑢Δ(𝑢|𝜓)

– If the model is adaptive monotone and adaptive submodular, adaptive greedy 
algorithm is a 1 − 1/𝑒 approximation of the adaptive optimal solution. [GK11]

• Adaptivity gap: supremum ratio of the adaptive optimal vs. non-adaptive 
optimal: sup

G,k

𝑂𝑃𝑇𝐴(𝐺,𝑘)

𝑂𝑃𝑇𝑁(𝐺,𝑘)

– If the model is adaptive monotone and adaptive submodular, and the feedback are 
mutually independent, the adaptivity gap is at most 

𝑒

𝑒−1
. [AN16]
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Golovin D and Krause A. Adaptive submodularity: theory and applications in active learning and stochastic 
optimization. Journal of Artificial Intelligence Research, 2011
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Adaptive Submodularity on Influence Maximization

• IC+myopic not adaptive submodular

– Example to the right

– [GK11] conjectures that adaptive greedy is 

still a constant approximation

– We answer this conjecture affirmatively 

[NeurIPS’19]
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𝑤𝑢 𝑣
1 1 − 𝜀

𝑢 𝑣𝜓: Δ 𝑤 𝜓 = 𝜀

𝑢 𝑣𝜓′:

Δ 𝑤 𝜓′ =1

𝑤

IC model LT model

Full-adoption 
feedback

adaptive submodular not adaptive submodular

Myopic feedback not adaptive submodular not adaptive submodular



Adaptivity Gap on Influence Maximization

• Related to adaptive Submodularity and feedback independence
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Adaptive submodular Non-adaptive submodular

Independent feedback 𝑒

𝑒−1
[AN16] IC + myopic feedback

𝑒

𝑒−1
, 4 [PC19]

Dependent feedback IC + full-adoption feedback
Partial answers on specific graphs [CP19]:

In-arborescences: 
𝑒

𝑒−1
,
2𝑒

𝑒−1

Out-arborescences: 
𝑒

𝑒−1
, 2

Bipartite graphs: 
𝑒

𝑒−1

LT + myopic/full-adoption feedback
?

Triggering + full-adoption: unbounded 
[CPST20]

Triggering+myopic
?

Peng B and Chen W. Adaptive influence maximization with myopic feedback, NeurIPS’2019
Chen W and Peng B. On adaptivity gaps of influence maximization under the independent cascade model with full 
adoption feedback. ISAAC’2019
Chen W, Peng B, Schoenebeck G, and Tao B. Adaptive greedy versus non-adaptive greedy for influence maximization. 
AAAI’2020



Implications on IC + Myopic Feedback

• Adaptive greedy is 
1

4
⋅ 1 −

1

𝑒
approximation of the adaptive 

optimal solution

– Adaptive greedy is 1 −
1

𝑒
approximation of the non-adaptive optimal

– Non-adaptive optimal is ¼ of the adaptive optimal

• Answers the open conjecture by Golovin and Krause (2011)

• First study on adaptive maximization with a non-adaptive 

submodular model
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Idea on the Analysis, IC + Myopic, Gap ≤ 4

• Decision tree representation of 

adaptive policy 𝜋

• Random walk non-adaptive policy 

𝒲 𝜋 : Select dom(𝜓ℓ) with 

probability 𝑝ℓ
• Fictitious hybrid policy ത𝜋 and 

aggregate adaptive influence 

spread ത𝜎(ത𝜋)

• Show: 𝜎 𝜋 ≤ ത𝜎 ത𝜋 ≤ 4𝜎(𝒲 𝜋 )
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∅

Decision tree of policy  𝜋

Node 𝑠: a partial realization 𝜓𝑠, 
also for the next seed selected

Edge: random feedback 
obtained from the next seed

Leaf ℓ: partial realization 𝜓ℓ, 
also final seed set dom(𝜓ℓ), 
with probability 𝑝ℓ

∅

Path from root: random walk 



Fictitious Hybrid Policy ത𝜋 and Aggregate Adaptive 

Influence Spread ത𝜎(ത𝜋)

• Work simultaneously on three independent realizations 

Φ1, Φ2, Φ3

• ത𝜋 selects seeds adaptively exactly like 𝜋 working on Φ1

• But for each selected seed 𝑢, it has three independent chances to 

activate its out-neighbors, according to Φ1, Φ2, Φ3

• The expected number of activated nodes is the aggregate 

adaptive influence spread ത𝜎(ത𝜋)

• Obviously, 𝜎 𝜋 ≤ ത𝜎 ത𝜋
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Connecting Aggregate Adaptive Spread ത𝜎(ത𝜋) with 

Non-Adaptive Spread 𝜎(𝒲 𝜋 )
• 𝑡-th aggregate influence spread 𝜎𝑡(𝑆) and 𝑡-th aggregate adaptive 

influence spread 𝜎𝑡(𝜋), 𝑡 = 1, 2, 3
– each seed gets 𝑡 independent chances of activating its out-neighbors

– ത𝜎 ത𝜋 = 𝜎3(𝜋), 𝜎 𝒲 𝜋 = 𝜎1(𝒲 𝜋 )

• Represent 𝜎𝑡 𝒲 𝜋 and 𝜎𝑡(𝜋) by non-adaptive marginal gains 
Δ𝑓𝑡 𝑢 dom 𝜓𝑠 and adaptive marginal gains Δ𝑓𝑡 𝑢 𝜓𝑠 , respectively

– telescoping series on node 𝑠 along a path in the decision tree

• Δ𝑓3 𝑢 𝜓𝑠 ≤ 2Δ𝑓2 𝑢 dom 𝜓𝑠 ⇒ 𝜎3(𝜋) ≤ 2𝜎2 𝒲 𝜋
– key lemma, crucially relying on (a) feedback independence and (b) (non-

adaptive) submodularity of influence utility function on live-edge graphs

• 𝜎2 𝒲 𝜋 ≤ 2𝜎 𝒲 𝜋
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Greedy Adaptivity Gap

• Motivation: 

– optimal solutions cannot be reached

– Practical algorithms are mostly greedy-based

• Greedy Adaptivity Gap: ratio between adaptive greedy vs. non-adaptive greedy

• Results:
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IC model LT model Triggering model 
(more general)

Full-adoption tight lower bound: 1 − 1/𝑒 tight lower bound: 1 − 1/𝑒 Upper bound: unbounded

Myopic tight lower bound: 1 − 1/𝑒 tight lower bound: 1 − 1/𝑒

Chen W, Peng B, Schoenebeck G, and Tao B. Adaptive greedy versus non-adaptive greedy for influence maximization. 
AAAI’2020



Many Open Problems

• Adaptivity gap:

• Greedy adaptivity 
gap:

• Better adaptive 
algorithms than 
greedy?
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IC model LT model Triggering model 
(more general)

Full-adoption result on general graphs?
tighter result for special graphs?

? unbounded

Myopic 𝑒

𝑒−1
, 4 , tight result? ? ?

IC model LT model Triggering model 
(more general)

Full-
adoption

upper bound? upper bound? lower: 1 − 1/𝑒
upper: unbounded

Myopic upper bound ≤
4𝑒

𝑒−1

tight upper bound?

upper bound? upper bound?



Online Influence Maximization
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Online Influence Maximization

• Edge influence probabilities are unknown, need to be learned

• Multiple rounds of online influence maximization. In each round,  

– select 𝑘 seeds to influence the network

– observe the diffusion paths and results

– collect the reward --- the number of nodes activated

– use the observed feedback to update learning statistics, which is used 

for seed selection in later rounds

• Falls into the online learning (multi-armed bandit) framework
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Multi-Armed Bandit Problem

• There are 𝑚 arms (machines)

• Arm 𝑖 has an unknown reward distribution on [0,1] with unknown mean 
𝜇𝑖
– best arm 𝜇∗ = max 𝜇𝑖

• In each round, the player selects one arm to play and observes the 
reward

• Performance metric: Regret:
– Regret after playing 𝑇 rounds =𝑇𝜇∗ − 𝔼[σ𝑡=1

𝑇 𝑅𝑡(𝑖𝑡
𝐴) ]

• Objective: minimize regret in 𝑇 rounds

• Balancing exploration-exploitation tradeoff
– exploration: try new arms

– exploitation: keep playing the best arm so far

• Wide applications: Any scenario requiring selecting best choice from 
online feedback
– online recommendations, advertising, wireless channel selection, social 

networks, A/B testing
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Classical MAB Algorithm: UCB1
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1: for each arm 𝑖: ො𝜇𝑖 = 1 (empirical mean), 𝑇𝑖 = 0 (number of observation)

2: for 𝑡 = 1, 2, 3, … do

3: for each arm 𝑖: 𝜌𝑖 =
3 ln 𝑡

2𝑇𝑖
(confidence radius)

4: for each arm 𝑖: ҧ𝜇𝑖 = min{ ො𝜇𝑖 + 𝜌𝑖 , 1} (upper confidence bound, UCB)

5:       𝑗 = argmax𝑖 ҧ𝜇𝑖
6:       play arm 𝑗, observe its reward 𝑋𝑗,𝑡

7:       update ො𝜇𝑗 = (ො𝜇𝑗 ⋅ 𝑇𝑗 + 𝑋𝑗,𝑡)/(𝑇𝑗 + 1); 𝑇𝑗 = 𝑇𝑗 + 1

6: end-for

For exploration

For exploitation



Guarantee of the UCB1 Algorithm

• Finite-horizon regret:

– distribution dependent:𝑂 σΔ𝑖>0
1

Δ𝑖
ln 𝑇 , Δ𝑖 = 𝜇∗ − 𝜇𝑖

– distribution independent: 𝑂( 𝑚𝑇ln 𝑇)

• [Auer, Cesa-Bianchi, and Fischer, 2002]
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Auer P, Cesa-Bianchi N, and Fischer P. Finite-time analysis of the multiarmed bandit problem. Machine Learning 
Journal, 2002(47.2-3):235~256



Challenges Applying UCB1 to Online IM

• exponential number of seed sets

– cannot treat each seed set as an arm

• non-linear reward functions

• offline problem is already NP-hard

• probabilistically triggering new arms in a play
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Extending the MAB Framework

• Extend MAB to combinatorial MAB framework with probabilistically 
triggered arms (CMAB-T)
– Model: In each round one action/super-arm is played, which triggers a set of 

base arms (triggering may be probabilistic)

– precisely characterize the bounded smoothness condition required to solve 
CMAB-T

– propose the CUCB algorithm based on an offline approximation oracle

– distribution-dependent and distribution-independent regret analysis

– applicable to a large class of combinatorial online learning problems

• [Chen et al JMLR’2016, Wang and Chen, NIPS’2017]
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Chen W, Wang Y, Yuan Y, and Wang Q. Combinatorial multi-armed bandit and its extension to probabilistically 
triggered arms. Journal of Machine Learning Research, 2016 
Wang Q and Chen W. Improving regret bounds for combinatorial semi-bandits with probabilistically triggered arms 
and its applications. NIPS’2017



CUCB Algorithm
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1: for each arm 𝑖: ො𝜇𝑖 = 1 (empirical mean), 𝑇𝑖 = 0 (number of observation)

2: for 𝑡 = 1, 2, 3, … do

3: for each arm 𝑖: 𝜌𝑖 =
3 ln 𝑡

2𝑇𝑖
(confidence radius)

4: for each arm 𝑖: ҧ𝜇𝑖 = min{ ො𝜇𝑖 + 𝜌𝑖 , 1} (upper confidence bound, UCB)

5:       𝑆 = OfflineOracle( ҧ𝜇1, … , ҧ𝜇𝑚)

6:       play action/super-arm 𝑆, observe triggered arm outcomes {𝑋𝑗,𝑡}

7:       for each observed 𝑗: update ො𝜇𝑗 = (ො𝜇𝑗 ⋅ 𝑇𝑗 + 𝑋𝑗,𝑡)/(𝑇𝑗 + 1); 𝑇𝑗 = 𝑇𝑗 + 1

6: end-for



Regret Bounds

• 𝑂 σ𝑖
1

Δmin
𝑖 𝐵1

2𝐾ln 𝑇 distribution-dependent regret

– 𝑖: base arm index

– 𝐵1: one-norm bounded-smoothness constant

– 𝐾: maximum number of arms any action can trigger

– 𝑇: time horizon, total number of rounds

– Δmin
𝑖 : minimum gap between 𝛼 fraction of the optimal reward and the reward of 

any action that could trigger arm 𝑖 (𝛼 is the offline approximation ratio)

• 𝑂 𝐵1 𝑚𝐾𝑇ln 𝑇 distribution-independent regret

• For influence maximization, 𝐵1 is the largest number of nodes any node can 
reach

• Main technical contribution: (a) characterizing the exact conditions (b) more 
sophisticated techniques in the analysis
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Open Problems in Online Influence Maximization

• More efficient algorithms specific to influence maximization?

• Regret lower bound?

• Online IM with nonstationary distribution?
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Conclusion and Future Work

• Influence maximization is a rich ground for studying many 

optimization and learning tasks

– Right at the boundary of feasibility --- pushing the tasks to new limits

– Other directions beyond adaptive and online influence maximization: 

• Scalable algorithms (well studied)

• Learnability of influence functions (some studies)

• Optimization from samples (initial study)

• Non-submodular influence maximization (some studies)

• Influence maximization + game theory (some initial studies)
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Reference Resources

• Search “Wei Chen Microsoft”

• Monograph: “Information and Influence 

Propagation in Social Networks”, Morgan & 

Claypool, 2013

• my papers and talk slides

• My upcoming book (in Chinese): 大数据网络传
播模型和算法 (Network Diffusion Models and 

Algorithms for Big Data)
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Thanks!
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video

https://www.bilibili.com/video/av75971597

