

On Adaptivity Gaps of Influence Maximization under the Independent Cascade Model with **Full-Adoption Feedback**

Wei Chen 陈卫 Microsoft Research Asia

Binghui Peng 彭炳辉 Columbia University

ISAAC'2019, Dec. 11, 2019 1

Influence Propagation Modeling and Optimizations

- How to model influence propagation in a social network?
	- Stochastic diffusion models
- How to optimize the influence propagation effect?
	- Influence maximization and its variants
- One core problem: Influence maximization
	- Find a small number of individuals in a network to generate a large influence
	- Applications in viral marketing, diffusion monitoring, rumor control, etc.

Model and Problem

Independent Cascade (IC) Model

- Social graph $G = (V, E)$, $n = |V|$
- \bullet Each edge (u, v) has an *influence* p *robability* $p(u, v)$
- Initially seed nodes in S are activated
- At each step t , each node u activated at step $t - 1$ activates its neighbor v independently with probability $p(u, v)$
- Influence spread $\sigma(S)$: expected number of activated nodes

Influence Maximization

- Given a social network, a diffusion model with given parameters, and a number k , find a seed set S of at most k nodes such that the influence spread of S is maximized.
- Based on *submodular function* maximization
	- Submodularity of set functions $f: 2^V \rightarrow R$:
		- for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$, $f(S \cup \{v\}) f(S) \ge f(T \cup \{v\}) f(T)$
	- Monotonicity: for all $S \subseteq T \subseteq V$, $f(S) \leq f(T)$
- Influence spread function $\sigma(S)$ in IC model is submodular
- Greedy algorithm achieves $1 1/e$ approximation

Kempe D, Kleinberg J M, and Tardos É. Maximizing the spread of influence through a social network. KDD'2003

Feedback Model: Realization and Partial Realization

- Realization ϕ (Random realization Φ): all randomness in a propagation
	- In IC model, ϕ (or Φ) is a (random) liveedge graph: each edge (u, v) is selected with probability $p(u, v)$
	- $-$ For full-adoption feedback, for each node i , $\phi(i)$ is the full cascade sequence and edge status, i.e., all reachable edges and nodes in live-edge graph ϕ
- Partial realization ψ (random partial realization Ψ): feedback collected (partial propagation) from the currently selected seeds $dom(\psi)$

realization (live-edge graph) ϕ

Adaptive Influence Maximization

- Adaptive policy π : given any ψ , select the next node $\pi(\psi)$ – adaptive influence spread $\sigma(\pi)$: expected number of nodes activated by π
- Adaptive influence maximization: find best policy π^* that selects at most k nodes, and maximizes adaptive influence spread $\sigma(\pi)$

Adaptivity Gap

- Supremum ratio of the adaptive optimal vs. non-adaptive optimal sup G, k OPT_A (G, k) $\mathsf{OPT}_N(G, k)$
- Important to measure the effectiveness of adaptivity
- Related work (with two different approaches)
	- [ANS08, AN15]: stochastic submodular optimization on matroid, adaptivity gap: $\frac{e}{e}$ $e-1$
		- Approach: multilinear extension + Poisson process
	- [GNS16, GNS17, BSZ19]: stochastic probing, adaptivity gap: 2
		- Approach: decision tree + random-walk + fictitious hybrid policy
	- Implicitly rely on adaptive submodularity *and* feedback independence

Adaptive Submodularity

• Adaptive Submodularity [GK11]: a node u 's marginal influence is higher on a smaller partial realization than on a larger partial realization

 $-\psi \subseteq \psi' \Rightarrow \Delta(u|\psi') \leq \Delta(u|\psi)$

- Adaptive Monotonicity: a node u 's marginal influence on any partial realization is nonnegative
	- $-\Delta(u|\psi) \geq 0$, as long as ψ has non-zero probability to occur
- IC + Full-adoption is adaptive submodular [GK11]

ISAAC'2019, Dec. 11, 2019 9 Golovin D and Krause A. Adaptive submodularity: theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 2011

Adaptivity Gap in IC Model with Full-Adoption Feedback

IC Model + Full-Adoption Feedback

- But not feedback-independent:
	- Propagation from two nodes may overlap
	- And thus the feedback are dependent
- Thus prior results on adaptivity gap do not apply
- Adaptivity gap on general graphs is still open

Random realization Φ

Our Results

- In-arborescences: \boldsymbol{e}
- $e-1$, $2e$ $e-1$
	- In -arborescence: a tree structure with directed edges all pointing towards the root
- Out -arborescences: \boldsymbol{e} $e-1$, 2
	- Out -arborescence: a tree structure with directed edges all pointing towards the leaves
- One-directional bipartite graphs: \boldsymbol{e} $e-1$
	- Directed edges all pointing from one side to the other side

Analysis for In-Arborescence, Gap ≤ 2*e* $e-1$

- Adapted from the approach in [AN16]
	- Multilinear extension + Poisson process + handling correlated feedback
- Multilinear extension F of influence spread function $\sigma(S)$

$$
F(x_1, \dots, x_n) = \sum_{S \subseteq V} \left[\left(\prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i) \right) \sigma(S) \right]
$$

- Poisson process, with parameters $(x_1, ..., x_n)$
	- n independent Poisson clocks $C_1, ..., C_n, C_i$ has rate x_i
	- when c_i signals, node i is selected as a seed, and get feedback $\phi(i)$
	- $-\Psi(t)$ is the partial realization by time t, process stops at $t=1$

Asadpour A and Nazerzadeh H. Maximizing stochastic monotone submodular functions. Management Science, 2016

Connecting Multilinear Extension to Poisson Process

- ► Lemma 3.2. $\mathbb{E}[f(\Psi(1))] = F(1 e^{-x_1}, \ldots, 1 e^{-x_n}) \leq F(x_1, \ldots, x_n)$.
- $\Gamma(\psi)$: set nodes activated from seeds in $dom(\psi)$, based on feedback ψ
- Function $f(\psi) = |\Gamma(\psi)|$, number of activated nodes in ψ
- Proof:

$$
\mathbb{E}\left[f\left(\Psi(1)\right)\right] = \sum_{S \subseteq V} \left[\left(\prod_{i \in S} (1 - e^{-x_i})\right) \prod_{i \notin S} \left(e^{-x_i}\right) \sigma(S)\right]
$$

$$
= F(1 - e^{-x_1}, \dots, 1 - e^{-x_n}) \le F(x_1, \dots, x_n)
$$

Parametrized Optimal Adaptive Influence Spread Function

$$
f^+(x_1,\ldots,x_n) = \sup_{\pi} \left\{ \sigma(\pi) : \Pr_{\Phi \sim \mathcal{P}} \left[i \in V(\pi,\Phi) \right] = x_i, \forall i \in [n] \right\}
$$

 \bullet f^+ : the adaptive influence spread of the best adaptive policy, among all adaptive policies π guaranteeing that node *i* is selected as a seed with probability x_i (for all *i*)

Connecting Poisson Process with Optimal Adaptive Influence Spread

Lemma 3.3. For any $t \in [0,1]$ and any fixed partial realization ψ , we have

$$
\mathbb{E}\left[\frac{df\left(\Psi(t)\right)}{dt} \mid \Psi(t) = \psi\right] \geq f^+\left(x_1,\ldots,x_n\right) - \boxed{\sigma\left(\Gamma(\psi)\right)}.
$$
 due to feedback correlation

- Intuition: differential on process $\Psi(t)$ is related to adaptive marginal $\Delta(i|\psi)$
- Poisson process is the bridge linking non-adaptive influence spread (Lemma 3.2) with adaptive influence spread (Lemma 3.3)
- $\sigma(\Gamma(\psi))$ is due to feedback correlation.
	- If feedback were independent, it would be $|\Gamma(\psi)|$ [AN16]
	- resulting in the extra factor of 2 in adaptivity gap
- Require $\Gamma(\psi) \subseteq \Gamma(\psi') \Rightarrow \Delta(u|\psi') \leq \Delta(u|\psi)$, slightly stronger than adaptive submodularity

In-arborescence --- Shrinking Boundary

- $\partial(\psi)$: boundary of ψ , nodes separating internal nodes in $\Gamma(\psi)$ from outside nodes in $V \setminus \Gamma(\psi)$
- Boundary $\partial(\psi)$ shrinks from $dom(\psi)$ in in-arborescences
- **Lemma 3.7.** When the influence graph is an in-arborescence, for any partial realization ψ , we have $|\partial(\psi)| \leq |\text{dom}(\psi)|$. $\Gamma(\bm{\psi})$
- \blacktriangleright Lemma 3.8. For any partial realization ψ

 $\sigma(\Gamma(\psi)) \leq |\Gamma(\psi)| + \sigma(\partial(\psi)).$

Moreover, when the influence graph is an in-arborescence, we have

 $\sigma(\Gamma(\psi)) \leq |\Gamma(\psi)| + \text{OPT}_N(G, |\text{dom}(\psi)|).$

Weak Concaveness of $\mathbf{OPT}_N(G, k)$

Lemma 3.9. For any fixed influence graph G, let X be a random variable taking value from $\{0,1\ldots,n\}$, with mean value $\mathbb{E}[X] = k$. Then we have

$$
\mathbb{E}\left[\operatorname{OPT}_{N}(G,X)\right] \le \frac{e}{e-1}\operatorname{OPT}_{N}(G,\mathbb{E}[X]) = \frac{e}{e-1}\operatorname{OPT}_{N}(G,k). \tag{17}
$$

- Non-adaptive optimal solution $\mathbf{OPT}_N(G, k)$ is weakly concave over k
- Prove through greedy solution, which is concave over k by submodularity

Putting Together

• Differential inequality

$$
\frac{d}{dt}\mathbb{E}\left[f\left(\Psi(t)\right)\right] \ge f^+(x_1,\ldots,x_n) - \frac{e}{e-1}\text{OPT}_N(G,k) - \mathbb{E}\left[f(\Psi(t))\right]
$$

- Solution, when $t = 1$:
 $\mathbb{E}[f(\Psi(1))] \geq \left(1 \frac{1}{e}\right) \left[f^+(x_1, \dots, x_n) \frac{e}{e-1} \text{OPT}_N(G, k)\right]$
- By pipage rounding, and previous results:

$$
\text{OPT}_N(G, k) = \sup_{x_1 + \dots + x_n = k} F(x_1, \dots, x_n)
$$

\n
$$
\geq \sup_{x_1 + \dots + x_n = k} \mathbb{E}\left[f(\Psi(1))\right]
$$

\n
$$
\geq \sup_{x_1 + \dots + x_n = k} \left(1 - \frac{1}{e}\right) \left[f^+(x_1, \dots, x_n) - \frac{e}{e - 1} \text{OPT}_N(G, k)\right]
$$

\n
$$
\geq \left(1 - \frac{1}{e}\right) \text{OPT}_A(G, k) - \text{OPT}_N(G, k).
$$

\nISAAC2019, Dec. 11, 2019

Other Results

• Out-arborescences, gap ≤ 2 : – multilinear extension but no Poisson process $-$ direct linking multilinear extension F with optimal adaptive solution f^+ • $2F(x_1, ..., x_n) \ge f^+(x_1, ..., x_n)$ • by observation: each node is only influenced by its closest ancestor seed • In- (out-) arborescences, gap ≥ \boldsymbol{e} $e-1$ – directed line of length kt , edge probability $1 - 1/t$ \bullet best non-adaptive solution: one seed every t nodes • best adaptive solution: select next node not activated as a seed • One-directional bipartite graph – gap $\leq \frac{e}{a}$ $\frac{e}{e-1}$: direct showing $F(x_1, ..., x_n) \geq \left(1 - \frac{1}{e}\right)$ \boldsymbol{e} $f^+(x_1, ..., x_n)$ – gap $\geq \frac{e}{a}$ $e-1$ $:$ [PC19], myopic feedback = full-adoption feedback here ISAAC'2019, Dec. 11, 2019 20 \boldsymbol{t} \boldsymbol{t} $t\,$ $1 - 1/t$ $1 - 1/t$

Many Open Problems

• Adaptivity gap:

• Greedy adaptivity gap:

• Better adaptive algorithms than greedy?

Thanks!

ISAAC'2019, Dec. 11, 2019 22