

Influence Maximization: Integrating and Expanding Classical Algorithms into the Social Network Context

Wei Chen 陈卫 Microsoft Research Asia

CNCC'2019, Classical Algorithms Forum, Oct. 18, 2019

Social Network Mining

- Social network mining
 - Community detection
 - Influence propagation and maximization
 - Link prediction
 - frequent pattern mining
 - etc.

Classical Algorithms

- Meta algorithms (algorithmic techniques):
 - greedy
 - dynamic programming (1955),
 - linear programming (~1939)
 - divide and conquer (~1945)
- Graph algorithms:
 - BFS/DFS, Dijkstra shortest path algorithm (1959)
- Online learning:
 - Thompson sampling (1933)
 - UCB1 (2002)

Research on Influence Maximization

Influence Propagation Modeling and Influence maximization task

- Stochastic diffusion models: how information/influence propagates in social networks
 - Its properties, e.g. submodularity
- Influence maximization: given a budget *k*, select at most *k* nodes in a social network as seeds to maximize the influence spread of the seeds
 - Applications in viral marketing, diffusion monitoring, rumor control, etc.

Independent cascade model

- Each edge (u, v) has a influence probability p(u, v)
- Initially seed nodes in S_0 are activated
- At each step t, each node uactivated at step t - 1 activates its neighbor v independently with probability p(u, v)
- Influence spread $\sigma(S)$: expected number of activated nodes
- Other models: linear threshold (LT), general threshold, etc.

Influence maximization

- Given a social network, a diffusion model with given parameters, and a number *k*, find a seed set *S* of at most *k* nodes such that the influence spread of *S* is maximized.
- Based on *submodular function* maximization
- [Kempe, Kleinberg, and Tardos, KDD'2003]

Kempe D, Kleinberg J M, and Tardos É. Maximizing the spread of influence through a social network. KDD'2003

Active Research on Influence Maximization

- Scalable influence maximization
 - make the algorithm run efficiently on large networks
- Variants of influence maximization
 - seed minimization, profit maximization, time-constraint IM
- Adaptive influence maximization
 - adaptive to feedback from already selected seeds
- Online influence maximization
 - learn propagation model parameters while doing maximization
- Multi-item influence maximization
 - competitive IM, complementary IM, welfare maximization

Basic Solution: Based on the Greedy Algorithm

Submodular set functions

- Sumodularity of set functions $f: 2^V \rightarrow R$
 - for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$, $f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$
 - diminishing marginal return
 - an equivalent form: for all $S, T \subseteq V$ $f(S \cup T) + f(S \cap T) \le f(S) + f(T)$

• Monotonicity of set functions f: for all $S \subseteq T \subseteq V$,

 $f(S) \le f(T)$

Greedy algorithm for submodular function maximization

- 1: initialize $S = \emptyset$;
- 2: for i = 1 to k do
- 3: select $u = \operatorname{argmax}_{w \in V \setminus S}[f(S \cup \{w\}) f(S))]$
- 4: $S = S \cup \{u\}$
- 5: end for
- 6: output *S*

Property of the greedy algorithm

• Theorem: If the set function f is monotone and submodular with $f(\emptyset) \ge 0$, then the greedy algorithm achieves (1 - 1/e) approximation ratio, that is, the solution S found by the greedy algorithm satisfies:

$$f(S) \ge \left(1 - \frac{1}{e}\right) \max_{S' \subseteq V, |S'| = k} f(S')$$

- [Nemhauser, Wolsey and Fisher, 1978]
- Widely used in data mining and machine learning (as approximation algorithms or heuristics)
 - Document summarization, image segmentation, decision tree learning, influence maximization

Nemhauser G L, Wolsey L A, and Fisher M L. An analysis of approximations for maximizing submodular set functions. Mathematical Programming 1978

Submodularity of influence spread function $\sigma(S)$

- Independent cascade model is equivalent to
 - sample live edges by edge probabilities
 - activate nodes reachable from S in the live-edge graph
- $\sigma(S) = \sum_{L} \Pr\{L\} \cdot |\Gamma(L, S)|$
 - $\Gamma(L, S)$: number of nodes reachable from S in live-edge graph L
 - $-|\Gamma(L,S)|$ is a coverage function, easy to show it is submodular

Challenges to the Basic Greedy Solution

- Scalability challenge:
 - In IC (and LT) models, computing influence spread $\sigma(S)$ for any given S is #P-hard [Chen et al. KDD'2010, ICDM'2010].
 - Implication of #P-hardness of computing $\sigma(S)$
 - Greedy algorithm needs adaptation --- using Monte Carlo simulations
 - But MC-Greedy is very slow: 70+ hours on a 15k node graph to find 50 seeds
- Learning challenge:
 - How to learn the diffusion model?
 - How to use online feedback for optimization --- online influence maximization
- Complex model challenge:
 - Other variants of influence diffusion models, may not be submodular

Scalable Algorithms: Integrating Graph Algorithms

Ways to improve scalability

- Fast deterministic heuristics
 - Utilize model characteristic
 - MIA/IRIE heuristic for IC model [Chen et al. KDD'10, Jung et al. ICDM'12]
 - LDAG/SimPath heuristics for LT model [Chen et al. ICDM'10, Goyal et al. ICDM'11]
 - based on classical graph algorithms, e.g. Dijkstra shortest path algorithm
- Monte Carlo simulation based
 - Lazy evaluation [Leskovec et al. KDD'2007], Reduce the number of influence spread evaluations
- New approach based on Reverse Influence Sampling (RIS)
 - First proposed by Borgs et al. SODA'2014
 - Improved by Tang et al. SIGMOD'2014, 2015 (TIM/TIM+, IMM)

Reverse Influence Sampling (an Illustration)

- Generate RR sets
 BFS
- Greedily find top k nodes covering most number of RR sets

Reverse Influence Sampling

- Reverse Reachable sets: (use IC model as an example)
 - Select a node $oldsymbol{v}$ uniformly at random, call it a root
 - From $oldsymbol{v}$, simulate diffusion, but in reverse order --- every edge direction is reversed, with same probability
 - The set of all nodes reached is the reverse reachable set R (rooted at v).
 - [Borgs, Brautbar, Chayes, Lucier'2014]
- Intuition:
 - If a node u often appears in RR sets, it means that if using u as the seed, its influence is large
- Technical guarantee: For any seed set *S*,

 $\sigma(S) = n \cdot \Pr\{S \cap \mathbf{R}\}$

Borgs C, Brautbar M, Chayes J, and Lucier B. Maximizing social influence in nearly optimal time. SODA'2014

IMM: Influence Maximization via Martingales ---Theoretical Result

- Thoerem: For any $\varepsilon > 0$ and $\ell > 0$, IMM achieves $1 \frac{1}{e} \varepsilon$ approximation of influence maximization with at least probability $1 - \frac{1}{n^{\ell}}$. The expected running time of IMM is $O\left(\frac{(k+\ell)(m+n)\log n}{\varepsilon^2}\right)$.
- Martingale based probabilistic analysis
 - RR sets are not independent --- early RR sets determine whether later RR sets are generated --- form a martingale

Tang Y, Shi Y, and Xiao X. Influence maximization in near-linear time: A martingale approach. SIGMOD'2015

Extension to Spontaneous Adoption

- Node may not be activated by propagation from seeds
 may be self-activated (e.g. exposure to mass-media marketing)
- We want to identify a set of nodes that can activate most number of nodes before other self-activated reach them
 - preemptive influence maximization [Sun et al. WSDM'2020]
- Expand the model:
 - node has self-activation probabilities, and self-activation delay distribution
 - edge propagation has a delay distribution

Sun L, Chen A, Yu P S, and Chen W. Influence maximization with spontaneous user adoption. WSDM'2020

Extending Reserve Sampling

- When reverse sampling from a node v
 - need to sample edge delays to $\boldsymbol{\nu}$ and self-activation delay of $\boldsymbol{\nu}$
- Need to guarantee that only sample nodes u whose delay to v is less than or equal to the minimum delay of any selfactivated node to v
 - How? --- Always do reserve sampling from a node u with minimum delay to v
 - Sound familiar? --- It is just like the Dijkstra shortest path algorithm!

Online Influence Maximization: Expanding Classical Online Learning Algorithms

Online Influence Maximization

- Edge influence probabilities are unknown, need to be learned
- Multiple rounds of online influence maximization. In each round,
 - select k seeds to influence the network
 - observe the diffusion paths and results
 - collect the reward --- the number of nodes activated
 - use the observed feedback to update learning statistics, which is used for seed selection in later rounds
- Falls into the online learning (multi-armed bandit) framework

Multi-armed bandit problem

- There are *m* arms (machines)
- Arm i has an unknown reward distribution on [0,1] with unknown mean μ_i
 - best arm $\mu^* = \max \mu_i$
- In each round, the player selects one arm to play and observes the reward
- Performance metric: Regret:
 - Regret after playing T rounds = $T\mu^* \mathbb{E}[\sum_{t=1}^T R_t(i_t^A)]$
- Objective: minimize regret in T rounds
- Balancing exploration-exploitation tradeoff
 - exploration (探索): try new arms
 - exploitation (守成): keep playing the best arm so far
- Wide applications: Any scenario requiring selecting best choice from online feedback
 - online recommendations, advertising, wireless channel selection, social networks, A/B testing

Classical MAB Algorithm: UCB1

1: for each arm *i*: $\hat{\mu}_i = 1$ (empirical mean), $T_i = 0$ (number of observation) 2: for t = 1, 2, 3, ... do For exploration for each arm *i*: $\rho_i = \sqrt{\frac{3 \ln t}{2T_i}}$ (confidence radius) 3: for each arm *i*: $\bar{\mu}_i = \min\{\hat{\mu}_i + \rho_i\}$ (upper confidence bound, UCB) 4: 5: $j = \operatorname{argmax}_i \overline{\mu}_i$ For exploitation play arm j, observe its reward $X_{j,t}$ 6: update $\hat{\mu}_{i} = (\hat{\mu}_{i} \cdot T_{i} + X_{i,t})/(T_{i} + 1)$; $T_{i} = T_{i} + 1$ 7: 6: end-for

Guarantee of the UCB1 Algorithm

- Finite-horizon regret:
 - distribution dependent: $O\left(\sum_{\Delta_i > 0} \frac{1}{\Delta_i} \ln T\right), \Delta_i = \mu^* \mu_i$
 - distribution independent: $O(\sqrt{mT \ln T})$
- [Auer, Cesa-Bianchi, and Fischer, 2002]

Auer P, Cesa-Bianchi N, and Fischer P. Finite-time analysis of the multiarmed bandit problem. Machine Learning Journal, 2002(47.2-3):235~256

Challenges applying UCB1 to Online IM

- exponential number of seed sets
 - cannot treat each seed set as an arm
- non-linear reward functions
- offline problem is already NP-hard
- probabilistically triggering new arms in a play

Extending the MAB Framework

- Extend MAB to combinatorial MAB framework with probabilistically triggered arms (CMAB-T)
 - Model: In each round one action/super-arm is played, which triggers a set of base arms (triggering may be probabilistic)
 - precisely characterize the bounded smoothness condition required to solve CMAB-T
 - propose the CUCB algorithm based on an offline approximation oracle
 - distribution-dependent and distribution-independent regret analysis
 applicable to a large class of combinatorial online learning problems
- [Chen et al JMLR'2016, Wang and Chen, NIPS'2017]

Chen W, Wang Y, Yuan Y, and Wang Q. Combinatorial multi-armed bandit and its extension to probabilistically triggered arms. Journal of Machine Learning Research, 2016(17.50):1~33.

Wang Q and Chen W. Improving regret bounds for combinatorial semi-bandits with probabilistically triggered arms and its applications. NIPS'2017

CUCB Algorithm

1: for each arm *i*: $\hat{\mu}_i = 1$ (empirical mean), $T_i = 0$ (number of observation) 2: for t = 1, 2, 3, ... do

3: for each arm *i*:
$$\rho_i = \sqrt{\frac{3 \ln t}{2T_i}}$$
 (confidence radius)

4: for each arm $i: \bar{\mu}_i = \min\{\hat{\mu}_i + \rho_i, 1\}$ (upper confidence bound, UCB)

- 5: $S = \text{OfflineOracle}(\bar{\mu}_1, \dots, \bar{\mu}_m)$
- 6: play action/super-arm S, observe triggered arm outcomes $\{X_{i,t}\}$
- 7: for each observed *j*: update $\hat{\mu}_j = (\hat{\mu}_j \cdot T_j + X_{j,t})/(T_j + 1)$; $T_j = T_j + 1$ 6: end-for

Regret Bounds

- $O\left(\sum_{i} \frac{1}{\Delta_{\min}^{i}} B_{1}^{2} K \ln T\right)$ distribution-dependent regret
 - i: base arm index
 - $-B_1$: one-norm bounded-smoothness constant
 - K: maximum number of arms any action can trigger
 - -T: time horizon, total number of rounds
 - Δ_{\min}^{i} : minimum gap between α fraction of the optimal reward and the reward of any action that could trigger arm i (α is the offline approximation ratio)
- $O(B_1\sqrt{mKT\ln T})$ distribution-independent regret
- For influence maximization, B_1 is the largest number of nodes any node can reach

Conclusion and Future Work

- Influence maximization is a rich application context to study
 - connect with many classical algorithms
 - require new extensions and adaptations
 - many optimization, learning and game theoretic studies can be instantiated on the influence maximization task
- Many possible new directions, may require new algorithms and techniques
 - Non-submodular influence maximization
 - Influence maximization in dynamic networks

Reference Resources

- Search "Wei Chen Microsoft"
 - Monograph: "Information and Influence Propagation in Social Networks", Morgan & Claypool, 2013
 - 社交网络影响力传播研究,大数据期刊,2015
 - my papers and talk slides
 - My upcoming book: 大数据网络传播模型和算法

Thanks!

CNCC'2019, Classical Algorithms Forum, Oct. 18, 2019