

Information and Influence Propagation in Social Networks: Modeling and Influence Maximization

Wei Chen 陈卫 Microsoft Research Asia

YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019

Social influence and viral phenomena

Voting mobilization: A Facebook study

- Voting mobilization [Bond et al, Nature'2012]
 - show a facebook msg. on voting day with faces of friends who voted
 - generate 340K additional votes due to this message, among 60M people tested

Influence Propagation Modeling and Influence maximization task

- Studies the stochastic models on how influence propagates in social networks
 - Its properties, e.g. submodularity
- Influence maximization: given a budget *k*, select at most *k* nodes in a social network as seeds to maximize the influence spread of the seeds
 - Applications in viral marketing, diffusion monitoring, rumor control, etc.

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
 - Shapley centrality
 - Single Node Influence (SNI) centrality
- Other models and tasks

Independent cascade model

- Directed graph G = (V, E)
- Each edge (u, v) has a influence probability p(u, v)
- Initially seed nodes in S_0 are activated
- At each step t, each node uactivated at step t - 1 activates its neighbor v independently with probability p(u, v)
- Influence spread $\sigma(S)$: expected number of activated nodes
- Correspond to bond percolation

Linear threshold model

- Each edge (u, v) has a influence weight w(u, v):
 - when $(u, v) \notin E, w(u, v) = 0$
 - $-\sum_{u} w(u, v) \leq 1$
- Each node v selects a threshold $\theta_v \in [0,1]$ uniformly at random
- Initially seed nodes in S_0 are activated
- At each step, node v checks if the weighted sum of its active inneighbors is greater than or equal to its threshold θ_v , if so v is activated

Interpretation of IC and LT models

- IC model reflects simple contagion, e.g. information, virus
- LT model reflects complex contagion, e.g. product adoption, innovations (activation needs social affirmation from multiple sources [Centola and Macy, AJS 2007])
- More general models are studied: triggering model, general threshold models, decreasing cascade model, etc.
 - Note: not all models correspond to reachability on random graphs, e.g. general threshold model corresponds to random hyper-graphs (ongoing research)

Influence maximization

- Given a social network, a diffusion model with given parameters, and a number k, find a seed set S of at most k nodes such that the influence spread of S is maximized.
- NP-hard
- Based on *submodular function* maximization
- [Kempe, Kleinberg, and Tardos, KDD'2003]

Submodular set functions

- Sumodularity of set functions $f: 2^V \rightarrow R$
 - for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$,
 - $f(S \cup \{v\}) f(S) \ge f(T \cup \{v\}) f(T)$
 - diminishing marginal return
 - an equivalent form: for all $S, T \subseteq V$ $f(S \cup T) + f(S \cap T) \leq f(S) + f(T)$
- Monotonicity of set functions f: for all $S \subseteq T \subseteq V$,

$$f(S) \le f(T)$$

• Influence spread function $\sigma(S)$ is monotone and submodular in the IC model (and many other models)

Example of a submodular function and its maximization problem

- set coverage
 - each entry u is a subset of some base elements
 - coverage $f(S) = |\bigcup_{u \in S} u|$
 - $-f(S \cup \{v\}) f(S)$: additional coverage of v on top of S
- *k*-max cover problem
 - find k subsets that maximizes their total coverage
 - NP-hard
 - special case of IM problem in IC model

Submodularity of influence diffusion models

• Based on equivalent live-edge graphs

YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019

Random live-edge graph for the IC model and its reachable node set

- Random live-edge graph in the IC model
 - each edge is independently selected as live with its influence probability
- Pink node set is the active node set reachable from the seed set in a random live-edge graph
- Equivalence is straightforward (it is essentially bond percolation)

Random live-edge graph for the LT model and its reachable node set

- Random live-edge graph in the LT model
 - each node select at most one incoming edge, with probability equal to its influence weight
- Pink node set is the active node set reachable from the seed set in a random live-edge graph
- Equivalence is based on uniform threshold selection from [0,1], and linear weight addition
- Not exactly a bond percolation

Submodularity of influence diffusion models (cont'd)

- Submodularity of $|R(\cdot, G_L)|$
 - for any $S \subseteq T \subseteq V$, $v \in V \setminus T$,
 - if u is reachable from v but not from T, then
 - u is reachable from v but not from S
 - Hence, $|R(\cdot, G_L)|$ is submodular
- Therefore, influence spread $\sigma(S)$ is submodular in the IC model

Greedy algorithm for submodular function maximization

- 1: initialize $S = \emptyset$;
- 2: for i = 1 to k do
- 3: select $u = \operatorname{argmax}_{w \in V \setminus S}[f(S \cup \{w\}) f(S))]$
- 4: $S = S \cup \{u\}$
- 5: end for
- 6: output *S*

Property of the greedy algorithm

• Theorem: If the set function f is monotone and submodular with $f(\phi) = 0$, then the greedy algorithm achieves (1 - 1/e) approximation ratio, that is, the solution S found by the greedy algorithm satisfies:

$$f(S) \ge \left(1 - \frac{1}{e}\right) \max_{S' \subseteq V, |S'| = k} f(S')$$

Hardness of Influence Maximization and Influence Computation

- In IC and LT models, influence maximization is NP-hard
 IC model: reduction from the set cover problem
- In IC and LT models, computing influence spread $\sigma(S)$ for any given S is #P-hard [Chen et al. KDD'2010, ICDM'2010].
 - IC model: reduction from the s-t connectedness counting problem.
- Implication of #P-hardness of computing $\sigma(S)$
 - Greedy algorithm needs adaptation --- using Monte Carlo simulations

MC-Greedy: Estimating influence spread via Monte Carlo simulations

- For any given S
- Simulate the diffusion process from *S* for *R* times (R should be large)
- Use the average of the number of active nodes in R simulations as the estimate of $\sigma(S)$
- Can estimate $\sigma(S)$ to arbitrary accuracy, but require large R - Theoretical bound can be obtained using Chernoff bound.

Theorems on MC-Greedy algorithm

Theorem 3.6 Let $S^* = \operatorname{argmax}_{|S| \le k} f(S)$ be the set maximizing f(S) among all sets with size at most k, where f is monotone and submodular, and $f(\emptyset) = 0$. For any $\varepsilon > 0$, for any γ with $0 < \gamma \le \frac{\varepsilon/k}{2+\varepsilon/k}$, for any set function estimate \hat{f} that is a multiplicative γ -error estimate of set function f, the output S^g of Greedy (k, \hat{f}) guarantees

$$f(S^g) \ge \left(1 - \frac{1}{e} - \varepsilon\right) f(S^*).$$

Theorem 3.7 With probability 1 - 1/n, algorithm MC-Greedy(G, k) achieves $(1 - 1/e - \varepsilon)$ approximation ratio in time $O(\varepsilon^{-2}k^3n^2m\log n)$, for both IC and LT models.

 Polynomial time, but could be very slow: 70+ hours on a 15k node graph

Simulation on Real Network NetHEPT

- NetHEPT: collaboration network on arxiv
- MC-Greedy[20000] is the best
- MC-Greedy[200] is worse than Degree
- Random is the worst

YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019

Number of nodes	15233
Number of edges with duplicated edges	58891
Number of edges	31398
Average degree	4.12
Maximal degree	64
number of connected components	1781
Largest component size	6794
Average component size	8.55

Probabilists' View vs. Computer Scientists' View on Diffusion

	Probabilists' view	Computer scientists' view
subject	(stochastic) diffusion on random networks	(stochastic) diffusion on fixed networks (often equivalent to deterministic diffusion on random sub-networks of the fixed network)
network	family of random networks ($n \rightarrow \infty$, e.g. configuration model), infinite lattice, etc.	fixed network with arbitrary topology
diffusion models	percolation, SIR, SIS, etc.	independent cascade (equivalent to bond percolation), linear threshold, triggering, general threshold, etc.
goal	reveal properties of the diffusion, e.g. condition of the phase transition	optimization, e.g. influence maximization
method and tools	probabilistic analysis, Markov process, branching process,	submodularity analysis, submodular maximization, concentration inequalities
focus	probabilistic analysis, phase transition condition, size distribution, etc.	algorithm design, efficiency, approximation ratio

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
 - Shapley centrality
 - Single Node Influence (SNI) centrality
- Other models and tasks

Ways to improve scalability

- Fast deterministic heuristics
 - Utilize model characteristic
 - MIA/IRIE heuristic for IC model [Chen et al. KDD'10, Jung et al. ICDM'12]
 - LDAG/SimPath heuristics for LT model [Chen et al. ICDM'10, Goyal et al. ICDM'11]
- Monte Carlo simulation based
 - Lazy evaluation [Leskovec et al. KDD'2007], Reduce the number of influence spread evaluations
- New approach based on Reverse Influence Sampling (RIS)
 - First proposed by Borgs et al. SODA'2014
 - Improved by Tang et al. SIGMOD'14, 15 (TIM/TIM+, IMM), Nguyen et al. SIGMOD'16 (SSA/D-SSA), Nguyen et al. ICDM'17 (SKIS), Tang et al. SIGMOD'18 (OPIM)

Key Idea: Reverse Influence Sampling

- Reverse Reachable sets: (use IC model as an example)
 - Select a node v uniformly at random, call it a root
 - From v, simulate diffusion, but in reverse order --- every edge direction is reversed, with same probability
 - The set of all nodes reached (including v) is the reverse reachable set R (rooted at v).
- Intuition:
 - If a node u often appears in RR sets, it means that if using u as the seed, its influence is large --- efficiently collect evidence of influencers
- Technical guarantee: For any seed set S,

 $\sigma(S) = n \cdot Pr\{S \cap R\}$

• [Borgs et al. SODA'2014]

RIS Illustration

- Collect all RR sets
- Greedily find top k nodes cover most number of RR sets

How to Decide the Number of RR Sets: IMM: Influence Maximization via Martingales

- Estimate a lower bound on the optimal influence spread
 - Repeated halving the estimate, double the RR sets
 - Use greedy on RR sets to get a lower bound solution
 - Verify if it is close to the estimate
 - Generate final number of RR sets
- Use greedy on the RR sets to find *k* nodes that cover the most number of RR sets

IMM Theoretical Result

- Thoerem: For any $\varepsilon > 0$ and $\ell > 0$, IMM achieves $1 \frac{1}{e} \varepsilon$ approximation of influence maximization with at least probability $1 - \frac{1}{n^{\ell}}$. The expected running time of IMM is $O\left(\frac{(k+\ell)(m+n)\log n}{\varepsilon^2}\right)$.
- Martingale based probabilistic analysis
 - RR sets are not independent --- early RR sets determine whether later RR sets are generated --- form a Martingale

Near linear time to graph size

IMM Empirical Result

- LiveJournal: blog network
 - -n = 4.8M
 - -m = 69.0M
- Orkut: social network
 - -n = 3.1M
 - -m = 117.2M
- $\varepsilon = 0.5, \ell = 1$
- IC model, $p(u, v) = 1/d_v^{in}$ - d_v^{in} : indegree of v

RIS Summary

- Advantages
 - Theoretical guarantee
 - RIS approach can be applied to many other situations
 - Easily tuned between theoretical guarantee and practical efficiency (by tuning ϵ)
- Issues
 - Memory bottleneck (need to store all RR sets)
- Different RIS-based algorithm improve on different ways of estimating the number of RR sets needed

Scalable Influence Maximization Trilemma

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
 - Shapley centrality
 - Single Node Influence (SNI) centrality
- Other models and tasks

Influence-based Centrality Measures

- Network centrality is a key concept in network science
- Most existing network centrality is structure-based: degree centrality, closeness centrality, betweenness centrality, etc.
- When we care about influence propagation in the network, we should look into influence-based centrality
 - [Chen and Teng, WWW'2017]
 - Define two influence-based centrality: Shapley centrality and Single-Node-Influence centrality
 - Provide an axiomatic study on the two centrality measures
 - Provide a scalable algorithmic framework for computing the two centralities

Cooperative Game Theory and Shapley Value

- Measure individual power in group settings
- Cooperative game over V = [n], with characteristic function $\tau: 2^V \to \mathbb{R}$
 - $\tau(S)$: cooperative utility of set S
- Shapley value $\phi: \{\tau\} \to \mathbb{R}^n$:

$$\phi_{\nu}(\tau) = \mathbb{E}_{\pi} \Big[\tau \big(S_{\pi,\nu} \cup \{\nu\} \big) - \tau \big(S_{\pi,\nu} \big) \Big] = \frac{1}{n!} \sum_{\pi \in \Pi} (\tau (S_{\pi,\nu} \cup \{\nu\}) - \tau (S_{\pi,\nu}))$$

- Π : set of permutations of V
- $-S_{\pi,\nu}$: subset of V ordered before v in permutation π
- Average marginal utility on a random order
- Enjoy a unique axiomatic characterization

marginal utility

Shapley Centrality

- Node v's Shapley Centrality is the Shapley value of the influence spread function

$$\psi_{v}^{Shapley}(I) = \phi_{v}(\sigma_{I})$$

- Treat influence spread function as a cooperative utility function

- Measure node's irreplaceable power in groups
- More precisely, node's marginal influence in a random order
- Shapley centrality can be uniquely characterized by five axioms (omitted)
- Scalable algorithm for Shapley centrality computation exists, based on RIS approach

Key Observation Linking RR Sets with Shapley Value

- Let R be a random RR set $\psi_u^{Shapley} = n \cdot \mathbb{E}_R[\mathbb{I}\{u \in R\}/|R|]$
- If u is not in R rooted at v, u has no marginal influence
- If u is in R root at v,
 - If u is ordered after any other node in R in a random permutation, u has no marginal influence to v
 - If u is ordered before all other nodes in R in a random permutation, u has marginal influence of 1 to v; this happens with probability 1/|R|
 - -v is uniformly chosen, so total marginal influence multiplied by n

Scalable Algorithm for Shapley Centrality

- Use a similar algorithmic structure as IMM
- Same algorithmic structure can be used to compute other influence-based centralities, such as Single-Node-Influence centrality, propagation-distance based centrality [Chen, Teng and Zhang , 2018], etc.
- A big advantage over RIS-based influence maximization algorithms:
 - No memory overhead --- no need to store RR sets:
 - Generate one RR set R, for each node $u \in R$, cumulate its score with 1/|R|

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
 - Shapley centrality
 - Single Node Influence (SNI) centrality
- Other models and tasks

Example 1: Influence Propagation with Negative Opinions

- Quality factor q
 - If a node is positively influence, with probability q it turns positive and probability 1 q it turns negative
 - Both positive and negative influence propagates as in the IC model
 - Negative influence only activates nodes in the negative state
- Model negative opinion due to quality defect
 - Model negativity bias: people are more likely to believe negative opinions than positive opinions
- Satisfy submodularity, could be made scalable
- [Chen et al. SDM'2011]

Example 2: Influence Blocking Maximization

- Two competitive items A and B
 - A wants to block the propagation of B as much as possible
 - Application: rumor control
- Competitive diffusion model
 - Competitive IC model: may not be submodular
 - Competitive LT model: submodular
- [Budak et al. WWW'2011, He et al. SDM'2012]

ST	₩Р
RUM	IORS

Example 3: Complementary Diffusion Model

- Two items A and B, with global adoption parameters (GAP)
 - $q_{A|\phi}$: probability of adopting A when not adopted anything yet
 - $q_{B|\emptyset}$: probability of adopting B when not adopted anything yet
 - $-q_{A|B}$: probability of adopting A when B is already adopted
 - $q_{B|A}$: probability of adopting B when A is already adopted
 - $-q_{A|\emptyset} \ge q_{A|B}, q_{B|\emptyset} \ge q_{B|\emptyset}$: mutually competitive
 - $-q_{A|\emptyset} \leq q_{A|B}, q_{B|\emptyset} \leq q_{B|\emptyset}$: mutually complementary
- Diffusion follows the IC model
- Self-maximization and complementary-maximization
- Boundary cases are submodular, other cases are not submodular
 Apply sandwich optimization for non-submodular cases
- [Lu et al. SIGMOD'2016, Zhang and Chen, TCS'2018]

Conclusion and Future Work

- Influence maximization has rich internal problems and external connections to study
 - many optimization, learning and game theoretic studies can be instantiated on the influence maximization task
- Many possible new directions, beyond summarized already
 - Non-submodular influence maximization (e.g. [Zhang et al. KDD'14, Chen et al. EC'15, Lu et al. SIGMOD'16, Lin et al. ICDE'17, Li et al. NIPS'18])
 - Influence maximization in dynamic networks
- Influence maximization with phase transition / percolation?
- Need validations on large-scale real social networks

Reference Resources

- Search "Wei Chen Microsoft"
 - Monograph: "Information and Influence Propagation in Social Networks", Morgan & Claypool, 2013
 - KDD'12 tutorial on influence spread in social networks
 - my papers and talk slides
- A recent survey on influence maximization [Li et al. TKDE'2018]

Thanks!

YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019