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Social influence and viral phenomena
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Voting mobilization: A Facebook study

• Voting mobilization [Bond et al, Nature’2012]

– show a facebook msg. on voting day with faces of friends who voted

– generate 340K additional votes due to this message, among 60M people tested
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Influence Propagation Modeling and 

Influence maximization task

• Studies the stochastic models on how influence propagates in 

social networks

– Its properties, e.g. submodularity

• Influence maximization: given a budget 𝑘, select at most 𝑘 nodes 

in a social network as seeds to maximize the influence spread of 

the seeds

– Applications in viral marketing, diffusion monitoring, rumor control, etc.
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Outline of This Talk

• Basic concepts: influence diffusion models, influence 

maximization task, submodularity, greedy algorithm

• Scalable algorithm based on reverse influence sampling (RIS)

• Influence-based centrality measures

– Shapley centrality

– Single Node Influence (SNI) centrality

• Other models and tasks
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Independent cascade model 

• Directed graph 𝐺 = (𝑉, 𝐸)

• Each edge (𝑢, 𝑣) has a influence 
probability 𝑝(𝑢, 𝑣)

• Initially seed nodes in 𝑆0 are activated

• At each step 𝑡, each  node 𝑢
activated at step 𝑡 − 1 activates its 
neighbor 𝑣 independently with 
probability 𝑝(𝑢, 𝑣)

• Influence spread 𝜎(𝑆): expected 
number of activated nodes

• Correspond to bond percolation
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Linear threshold model

• Each edge (𝑢, 𝑣) has a influence 
weight 𝑤 𝑢, 𝑣 :
– when 𝑢, 𝑣 ∉ 𝐸,𝑤 𝑢, 𝑣 = 0

– σ𝑢𝑤 𝑢, 𝑣 ≤ 1

• Each node 𝑣 selects a threshold 𝜃𝑣 ∈
[0,1] uniformly at random

• Initially seed nodes in 𝑆0 are activated

• At each step, node 𝑣 checks if the 
weighted sum of its active in-
neighbors is greater than or equal to 
its threshold 𝜃𝑣, if so 𝑣 is activated
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Interpretation of IC and LT models

• IC model reflects simple contagion, e.g. information, virus

• LT model reflects complex contagion, e.g. product adoption, 

innovations (activation needs social affirmation from multiple 

sources [Centola and Macy, AJS 2007])

• More general models are studied: triggering model, general 

threshold models, decreasing cascade model, etc.
– Note: not all models correspond to reachability on random graphs, e.g. general 

threshold model corresponds to random hyper-graphs (ongoing research)
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Influence maximization

• Given a social network, a diffusion model with given parameters, 

and a number 𝑘, find a seed set 𝑆 of at most 𝑘 nodes such that 

the influence spread of 𝑆 is maximized. 

• NP-hard

• Based on submodular function maximization

• [Kempe, Kleinberg, and Tardos, KDD’2003]
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Submodular set functions

• Sumodularity of set functions 𝑓: 2V → 𝑅
– for all 𝑆 ⊆ 𝑇 ⊆ 𝑉, all 𝑣 ∈ 𝑉 ∖ 𝑇, 

𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇)

– diminishing marginal return

– an equivalent form: for all 𝑆, 𝑇 ⊆ 𝑉
𝑓 𝑆 ∪ 𝑇 + 𝑓 𝑆 ∩ 𝑇 ≤ 𝑓 𝑆 + 𝑓 𝑇

• Monotonicity of set functions 𝑓: for all 𝑆 ⊆ 𝑇 ⊆
𝑉,

𝑓 𝑆 ≤ 𝑓(𝑇)

• Influence spread function 𝜎(𝑆) is monotone 
and submodular in the IC model (and many 
other models)
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Example of a submodular function and its 

maximization problem

• set coverage

– each entry 𝑢 is a subset of some base elements

– coverage 𝑓 𝑆 = 𝑢∈𝑆ڂ| 𝑢 |

– 𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 : additional coverage of 𝑣 on 

top of 𝑆

• 𝑘-max cover problem

– find 𝑘 subsets that maximizes their total coverage

– NP-hard

– special case of IM problem in IC model
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Submodularity of influence diffusion models

• Based on equivalent live-edge graphs
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Random live-edge graph for the IC model and its 

reachable node set

• Random live-edge graph in the IC 

model

– each edge is independently selected as 

live with its influence probability 

• Pink node set is the active node set 

reachable from the seed set in a 

random live-edge graph

• Equivalence is straightforward (it is 

essentially bond percolation)
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Random live-edge graph for the LT model and its 

reachable node set
• Random live-edge graph in the LT 

model
– each node select at most one 

incoming edge, with probability equal 
to its influence weight 

• Pink node set is the active node set 
reachable from the seed set in a 
random live-edge graph

• Equivalence is based on uniform 
threshold selection from [0,1], and 
linear weight addition

• Not exactly a bond percolation
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Submodularity of influence diffusion models (cont’d)

• Submodularity of 𝑅 ⋅, 𝐺𝐿
• for any 𝑆 ⊆ 𝑇 ⊆ 𝑉, 𝑣 ∈ 𝑉 ∖ 𝑇, 

• if 𝑢 is reachable from 𝑣 but not from 𝑇, 

then

• 𝑢 is reachable from 𝑣 but not from 𝑆

• Hence, 𝑅 ⋅, 𝐺𝐿 is submodular

• Therefore, influence spread 𝜎 𝑆 is 

submodular in the IC model
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Greedy algorithm for submodular function 

maximization

1: initialize 𝑆 = ∅ ;

2: for 𝑖 = 1 to 𝑘 do

3: select 𝑢 = argmax𝑤∈𝑉∖𝑆[𝑓 𝑆 ∪ 𝑤 − 𝑓(𝑆))]

4: 𝑆 = 𝑆 ∪ {𝑢}

5: end for

6: output 𝑆
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Property of the greedy algorithm

• Theorem: If the set function 𝑓 is monotone and submodular with 

𝑓 ∅ = 0, then the greedy algorithm achieves (1 − 1/𝑒)
approximation ratio, that is, the solution 𝑆 found by the greedy 

algorithm satisfies: 

𝑓 𝑆 ≥ 1 −
1

𝑒
max𝑆′⊆𝑉, 𝑆′ =𝑘𝑓(𝑆

′)
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Hardness of Influence Maximization and Influence 

Computation

• In IC and LT models, influence maximization is NP-hard

– IC model: reduction from the set cover problem

• In IC and LT models, computing influence spread 𝜎(𝑆) for any 

given 𝑆 is #P-hard [Chen et al. KDD’2010, ICDM’2010]. 

– IC model: reduction from the s-t connectedness counting problem.

• Implication of #P-hardness of computing 𝜎(𝑆)

– Greedy algorithm needs adaptation --- using Monte Carlo simulations
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MC-Greedy: Estimating influence spread via Monte 

Carlo simulations 

• For any given S

• Simulate the diffusion process from 𝑆 for 𝑅 times (R should be 

large)

• Use the average of the number of active nodes in 𝑅 simulations 

as the estimate of 𝜎(𝑆)

• Can estimate 𝜎(𝑆) to arbitrary accuracy, but require large R

– Theoretical bound can be obtained using Chernoff bound.
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Theorems on MC-Greedy algorithm

• Polynomial time, but could be very slow: 70+ hours on a 15k 

node graph
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Simulation on Real Network NetHEPT
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 NetHEPT: collaboration network on arxiv

 MC-Greedy[20000] is the best

 MC-Greedy[200] is worse than Degree

 Random is the worst

uniform IC: p=0.01 weighted IC: 𝑝 𝑢, 𝑣 = 1/𝑑𝑣
in



Probabilists’ View vs. Computer Scientists’ View on 

Diffusion
Probabilists’ view Computer scientists’ view

subject (stochastic) diffusion on random networks (stochastic) diffusion on fixed networks (often 
equivalent to deterministic diffusion on random 
sub-networks of the fixed network)

network family of random networks (𝑛 → ∞, e.g. 
configuration model), infinite lattice, etc.

fixed network with arbitrary topology

diffusion models percolation, SIR, SIS, etc. independent cascade (equivalent to bond 
percolation), linear threshold, triggering, general 
threshold, etc.

goal reveal properties of the diffusion, e.g. 
condition of the phase transition

optimization, e.g. influence maximization

method and tools probabilistic analysis, Markov process, 
branching process, 

submodularity analysis, submodular 
maximization, concentration inequalities

focus probabilistic analysis, phase transition 
condition, size distribution, etc.

algorithm design, efficiency, approximation ratio
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Outline of This Talk

• Basic concepts: influence diffusion models, influence 

maximization task, submodularity, greedy algorithm

• Scalable algorithm based on reverse influence sampling (RIS)

• Influence-based centrality measures

– Shapley centrality

– Single Node Influence (SNI) centrality

• Other models and tasks
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Ways to improve scalability

• Fast deterministic heuristics 

– Utilize model characteristic

– MIA/IRIE heuristic for IC model [Chen et al. KDD’10, Jung et al. ICDM’12]

– LDAG/SimPath heuristics for LT model [Chen et al. ICDM’10, Goyal et al. 
ICDM’11]

• Monte Carlo simulation based

– Lazy evaluation [Leskovec et al. KDD’2007], Reduce the number of influence 
spread evaluations

• New approach based on Reverse Influence Sampling (RIS)
• First proposed by Borgs et al. SODA’2014

• Improved by Tang et al. SIGMOD’14, 15 (TIM/TIM+, IMM), Nguyen et al. SIGMOD’16 
(SSA/D-SSA), Nguyen et al. ICDM’17 (SKIS), Tang et al. SIGMOD’18 (OPIM)
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Key Idea: Reverse Influence Sampling

• Reverse Reachable sets: (use IC model as an example)
– Select a node 𝑣 uniformly at random, call it a root

– From 𝑣, simulate diffusion, but in reverse order --- every edge direction is 
reversed, with same probability

– The set of all nodes reached (including 𝑣) is the reverse reachable set 𝑅
(rooted at 𝑣).

• Intuition: 
– If a node 𝑢 often appears in RR sets, it means that if using 𝑢 as the seed, its 

influence is large --- efficiently collect evidence of influencers

• Technical guarantee: For any seed set 𝑆, 

𝜎 𝑆 = 𝑛 ⋅ 𝑃𝑟{𝑆 ∩ 𝑅}
• [Borgs et al. SODA’2014]

25YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019



RIS Illustration

26

• Collect all RR sets

• Greedily find top 𝑘
nodes cover most 
number of RR sets

0.3

0.1
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How to Decide the Number of RR Sets:

IMM: Influence Maximization via Martingales

• Estimate a lower bound on the optimal influence spread

– Repeated halving the estimate, double the RR sets

– Use greedy on RR sets to get a lower bound solution

– Verify if it is close to the estimate

– Generate final number of RR sets

• Use greedy on the RR sets to find 𝑘 nodes that cover the most 

number of RR sets
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IMM Theoretical Result

• Thoerem: For any 𝜀 > 0 and ℓ > 0, IMM achieves 1 −
1

𝑒
− 𝜀

approximation of influence maximization with at least probability 

1 −
1

𝑛ℓ
. The expected running time of IMM is 𝑂

𝑘+ℓ 𝑚+𝑛 log 𝑛

𝜀2
.

• Martingale based probabilistic analysis

– RR sets are not independent --- early RR sets determine whether later 

RR sets are generated --- form a Martingale

28

Near linear time to graph size 
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IMM Empirical Result

• LiveJournal: blog network

– 𝑛 = 4.8𝑀

–𝑚 = 69.0𝑀

• Orkut: social network

– 𝑛 = 3.1𝑀

–𝑚 = 117.2𝑀

• 𝜀 = 0.5, ℓ = 1

• IC model, 𝑝 𝑢, 𝑣 = 1/𝑑𝑣
in

– 𝑑𝑣
in: indegree of 𝑣
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RIS Summary

• Advantages

– Theoretical guarantee

– RIS approach can be applied to many other situations

– Easily tuned between theoretical guarantee and practical efficiency (by 

tuning 𝜀)

• Issues

– Memory bottleneck (need to store all RR sets)

• Different RIS-based algorithm improve on different ways of 

estimating the number of RR sets needed
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Influence 
Maximization 
on Social
Graphs: A 
Survey.

Scalable Influence Maximization Trilemma
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Outline of This Talk

• Basic concepts: influence diffusion models, influence 

maximization task, submodularity, greedy algorithm

• Scalable algorithm based on reverse influence sampling (RIS)

• Influence-based centrality measures

– Shapley centrality

– Single Node Influence (SNI) centrality

• Other models and tasks
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Influence-based Centrality Measures

• Network centrality is a key concept in network science

• Most existing network centrality is structure-based: degree centrality, 

closeness centrality, betweenness centrality, etc.

• When we care about influence propagation in the network, we should 

look into influence-based centrality

– [Chen and Teng, WWW’2017]

– Define two influence-based centrality: Shapley centrality and Single-Node-

Influence centrality

– Provide an axiomatic study on the two centrality measures

– Provide a scalable algorithmic framework for computing the two centralities
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Cooperative Game Theory and 

Shapley Value

• Measure individual power in group settings

• Cooperative game over 𝑉 = [𝑛], with characteristic 
function 𝜏: 2𝑉 → ℝ
– 𝜏(𝑆): cooperative utility of set 𝑆

• Shapley value 𝜙: {𝜏} → ℝ𝑛 : 

𝜙𝑣 𝜏 = 𝔼𝜋 𝜏 𝑆𝜋,𝑣 ∪ 𝑣 − 𝜏 𝑆𝜋,𝑣 =
1

𝑛!


𝜋∈Π

(𝜏(𝑆𝜋,𝑣 ∪ {𝑣}) − 𝜏(𝑆𝜋,𝑣))

– Π: set of permutations of 𝑉

– 𝑆𝜋,𝑣: subset of 𝑉 ordered before 𝑣 in permutation 𝜋

– Average marginal utility on a random order

• Enjoy a unique axiomatic characterization
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Shapley Centrality

• Node 𝑣’s Shapley Centrality is the Shapley value of the influence 
spread function

𝜓𝑣
𝑆ℎ𝑎𝑝𝑙𝑒𝑦

I = 𝜙𝑣(𝜎I)

– Treat influence spread function as a cooperative utility function

• Measure node’s irreplaceable power in groups

• More precisely, node’s marginal influence in a random order

• Shapley centrality can be uniquely characterized by five axioms 
(omitted)

• Scalable algorithm for Shapley centrality computation exists, based on 
RIS approach
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Key Observation Linking RR Sets with Shapley Value

• Let 𝑅 be a random RR set

𝜓𝑢
𝑆ℎ𝑎𝑝𝑙𝑒𝑦

= 𝑛 ⋅ 𝔼𝑅[𝕀{𝑢 ∈ 𝑅}/|𝑅|]

• If 𝑢 is not in 𝑅 rooted at 𝑣, 𝑢 has no marginal influence

• If 𝑢 is in 𝑅 root at 𝑣, 

– If 𝑢 is ordered after any other node in 𝑅 in a random permutation, 𝑢
has no marginal influence to 𝑣

– If 𝑢 is ordered before all other nodes in 𝑅 in a random permutation, 𝑢
has marginal influence of 1 to 𝑣; this happens with probability 1/|𝑅|

– 𝑣 is uniformly chosen, so total marginal influence multiplied by 𝑛
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Scalable Algorithm for Shapley Centrality

• Use a similar algorithmic structure as IMM

• Same algorithmic structure can be used to compute other 

influence-based centralities, such as Single-Node-Influence 

centrality, propagation-distance based centrality [Chen, Teng and 

Zhang , 2018], etc.

• A big advantage over RIS-based influence maximization 

algorithms:

– No memory overhead --- no need to store RR sets: 

• Generate one RR set 𝑅, for each node 𝑢 ∈ 𝑅, cumulate its score with 1/|𝑅|
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Outline of This Talk

• Basic concepts: influence diffusion models, influence 

maximization task, submodularity, greedy algorithm

• Scalable algorithm based on reverse influence sampling (RIS)

• Influence-based centrality measures

– Shapley centrality

– Single Node Influence (SNI) centrality

• Other models and tasks
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Example 1: Influence Propagation with Negative 

Opinions
• Quality factor 𝑞

– If a node is positively influence, with probability 𝑞 it turns 
positive and probability 1 − 𝑞 it turns negative

– Both positive and negative influence propagates as in the IC 
model

– Negative influence only activates nodes in the negative state

• Model negative opinion due to quality defect

– Model negativity bias: people are more likely to believe 
negative opinions than positive opinions

• Satisfy submodularity, could be made scalable

• [Chen et al. SDM’2011]
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Example 2: Influence Blocking Maximization

• Two competitive items A and B

– A wants to block the propagation of B as much as 

possible

– Application: rumor control

• Competitive diffusion model

– Competitive IC model: may not be submodular

– Competitive LT model: submodular

• [Budak et al. WWW’2011, He et al. SDM’2012]
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Example 3: Complementary Diffusion Model

• Two items A and B, with global adoption parameters (GAP)
– 𝑞𝐴|∅: probability of adopting A when not adopted anything yet

– 𝑞𝐵|∅: probability of adopting B when not adopted anything yet

– 𝑞𝐴|𝐵: probability of adopting A when B is already adopted

– 𝑞𝐵|𝐴: probability of adopting B when A is already adopted

– 𝑞𝐴|∅ ≥ 𝑞𝐴|𝐵, 𝑞𝐵|∅ ≥ 𝑞𝐵|∅: mutually competitive

– 𝑞𝐴|∅ ≤ 𝑞𝐴|𝐵, 𝑞𝐵|∅ ≤ 𝑞𝐵|∅: mutually complementary

• Diffusion follows the IC model

• Self-maximization and complementary-maximization

• Boundary cases are submodular, other cases are not submodular
– Apply sandwich optimization for non-submodular cases

• [Lu et al. SIGMOD’2016, Zhang and Chen, TCS’2018]
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Conclusion and Future Work

• Influence maximization has rich internal problems and external 

connections to study

– many optimization, learning and game theoretic studies can be instantiated 

on the influence maximization task

• Many possible new directions, beyond summarized already

– Non-submodular influence maximization (e.g. [Zhang et al. KDD’14, Chen et 

al. EC’15, Lu et al. SIGMOD’16, Lin et al. ICDE’17, Li et al. NIPS’18])

– Influence maximization in dynamic networks

• Influence maximization with phase transition / percolation?

• Need validations on large-scale real social networks
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Reference Resources

• Search “Wei Chen Microsoft”

• Monograph: “Information and Influence 

Propagation in Social Networks”, Morgan & 

Claypool, 2013

• KDD’12 tutorial on influence spread in social 

networks

• my papers and talk slides

• A recent survey on influence maximization 

[Li et al. TKDE’2018]
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Thanks!
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