

Information and Influence Propagation in Social Networks: Modeling and Influence Maximization

Wei Chen 陈卫 Microsoft Research Asia

YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019

Social influence and viral phenomena

Voting mobilization: A Facebook study

- Voting mobilization [Bond et al, Nature'2012]
	- show a facebook msg. on voting day with faces of friends who voted
	- generate 340K additional votes due to this message, among 60M people tested

Influence Propagation Modeling and Influence maximization task

- Studies the stochastic models on how influence propagates in social networks
	- Its properties, e.g. submodularity
- Influence maximization: given a budget k , select at most k nodes in a social network as seeds to maximize the influence spread of the seeds
	- Applications in viral marketing, diffusion monitoring, rumor control, etc.

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
	- Shapley centrality
	- Single Node Influence (SNI) centrality
- Other models and tasks

Independent cascade model

- Directed graph $G = (V, E)$
- \bullet Each edge (u, v) has a *influence* $\textit{probability } p(u, v)$
- Initially seed nodes in S_0 are activated
- At each step t , each node u activated at step $t-1$ activates its neighbor v independently with probability $p(u,v)$
- \cdot Influence spread $\sigma(S)$: expected number of activated nodes
- Correspond to bond percolation

Linear threshold model

- \bullet Each edge (u, v) has a *influence weight* $w(u, v)$:
	- when $(u, v) \notin E$, $w(u, v) = 0$
	- $-\sum_{u} w(u,v) \leq 1$
- Each node v selects a threshold $\theta_v \in$ [0,1] uniformly at random
- Initially seed nodes in S_0 are activated
- At each step, node ν checks if the weighted sum of its active inneighbors is greater than or equal to its threshold θ_{ν} , if so ν is activated

Interpretation of IC and LT models

- IC model reflects simple contagion, e.g. information, virus
- LT model reflects complex contagion, e.g. product adoption, innovations (activation needs social affirmation from multiple sources [Centola and Macy, AJS 2007])
- More general models are studied: triggering model, general threshold models, decreasing cascade model, etc.
	- Note: not all models correspond to reachability on random graphs, e.g. general threshold model corresponds to random hyper-graphs (ongoing research)

Influence maximization

- Given a social network, a diffusion model with given parameters, and a number k , find a seed set S of at most k nodes such that the influence spread of S is maximized.
- NP-hard
- Based on *submodular function* maximization
- [Kempe, Kleinberg, and Tardos, KDD'2003]

Submodular set functions

- Sumodularity of set functions $f: 2^V \rightarrow R$
	- \vdash for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$,
		- $f(S \cup \{v\}) f(S) \ge f(T \cup \{v\}) f(T)$
	- diminishing marginal return
	- an equivalent form: for all $S, T \subseteq V$ $f(S \cup T) + f(S \cap T) \leq f(S) + f(T)$
- Monotonicity of set functions f : for all $S \subseteq T \subseteq$ $V,$

$f(S) \leq f(T)$

• Influence spread function $\sigma(S)$ is monotone and submodular in the IC model (and many other models) - diminishing marginal return

- an equivalent form: for all $S, T \subseteq V$
 $f(S \cup T) + f(S \cap T) \le f(S) + f(T)$

• Monotonicity of set functions f : for all $S \subseteq T \subseteq V$
 V ,
 $f(S) \le f(T)$

• Influence spread function $\sigma(S)$ is monotone

an

Example of a submodular function and its maximization problem

- set coverage
	- each entry u is a subset of some base elements
	- coverage $f(S) = | \bigcup_{u \in S} u |$
	- $-f(S \cup \{v\}) f(S)$: additional coverage of v on top of S
- k -max cover problem
	- $-$ find k subsets that maximizes their total coverage
	- NP-hard
	- special case of IM problem in IC model

elements

sets

 \mathcal{S}_{0}

 $T_{\rm c}$

12

Submodularity of influence diffusion models

• Based on equivalent live-edge graphs

Pr(set A is activated given seed

Pr(set A is reachable from S in random live-ledge graph)

YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019 12

set S)

Random live-edge graph for the IC model and its reachable node set

- Random live-edge graph in the IC model
	- each edge is independently selected as live with its influence probability
- Pink node set is the active node set reachable from the seed set in a random live-edge graph
- Equivalence is straightforward (it is essentially bond percolation)

Random live-edge graph for the LT model and its reachable node set

- Random live-edge graph in the LT model
	- each node select at most one incoming edge, with probability equal to its influence weight
- Pink node set is the active node set reachable from the seed set in a random live-edge graph
- Equivalence is based on uniform threshold selection from [0,1], and linear weight addition
- Not exactly a bond percolation

Submodularity of influence diffusion models (cont'd)

- Submodularity of $|R(\cdot,G_L)|$
	- for any $S \subseteq T \subseteq V$, $v \in V \setminus T$,
	- if u is reachable from v but not from T , then
	- u is reachable from v but not from S
	- Hence, $|R(\cdot, G_L)|$ is submodular
- Therefore, influence spread $\sigma(S)$ is submodular in the IC model

Greedy algorithm for submodular function maximization

- 1: initialize $S = \emptyset$;
- 2: for $i = 1$ to k do
- 3: select $u = \text{argmax}_{w \in V \setminus S} [f(S \cup \{w\}) f(S))]$
- 4: $S = S \cup \{u\}$
- 5: end for
- $6:$ output S

Property of the greedy algorithm

• Theorem: If the set function f is monotone and submodular with $f(\emptyset) = 0$, then the greedy algorithm achieves $(1 - 1/e)$ approximation ratio, that is, the solution S found by the greedy algorithm satisfies:

$$
f(S) \ge \left(1 - \frac{1}{e}\right) \max_{S' \subseteq V, |S'| = k} f(S')
$$

Hardness of Influence Maximization and Influence Computation

- In IC and LT models, influence maximization is NP-hard – IC model: reduction from the set cover problem
- In IC and LT models, computing influence spread $\sigma(S)$ for any given S is #P-hard [Chen et al. KDD'2010, ICDM'2010].
	- IC model: reduction from the s-t connectedness counting problem.
- Implication of #P-hardness of computing $\sigma(S)$
	- Greedy algorithm needs adaptation --- using Monte Carlo simulations

MC-Greedy: Estimating influence spread via Monte Carlo simulations

- For any given S
- Simulate the diffusion process from S for R times (R should be large)
- Use the average of the number of active nodes in R simulations as the estimate of $\sigma(S)$
- Can estimate $\sigma(S)$ to arbitrary accuracy, but require large R – Theoretical bound can be obtained using Chernoff bound.

Theorems on MC-Greedy algorithm

Let $S^* = \operatorname{argmax}_{|S| \leq k} f(S)$ be the set maximizing $f(S)$ among all sets with size at Theorem 3.6 most k, where f is monotone and submodular, and $f(\emptyset) = 0$. For any $\varepsilon > 0$, for any γ with $0 < \gamma \leq 1$ $\frac{\varepsilon/k}{2+\varepsilon/k}$, for any set function estimate \hat{f} that is a multiplicative γ -error estimate of set function f, the output S^g of Greedy(k, f) guarantees

$$
f(S^g) \ge \left(1 - \frac{1}{e} - \varepsilon\right) f(S^*).
$$

With probability $1 - 1/n$, algorithm MC-Greedy(G, k) achieves $(1 - 1/e - \varepsilon)$ ap-Theorem 3.7 proximation ratio in time $O(\varepsilon^{-2}k^3n^2m\log n)$, for both IC and LT models.

• Polynomial time, but could be very slow: 70+ hours on a 15k node graph

Simulation on Real Network NetHEPT

- NetHEPT: collaboration network on arxiv
- MC-Greedy[20000] is the best
- MC-Greedy[200] is worse than Degree
- Random is the worst

Probabilists' View vs. Computer Scientists' View on Diffusion

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
	- Shapley centrality
	- Single Node Influence (SNI) centrality
- Other models and tasks

Ways to improve scalability

- Fast deterministic heuristics
	- Utilize model characteristic
	- MIA/IRIE heuristic for IC model [Chen et al. KDD'10, Jung et al. ICDM'12]
	- LDAG/SimPath heuristics for LT model [Chen et al. ICDM'10, Goyal et al. ICDM'11]
- Monte Carlo simulation based
	- Lazy evaluation [Leskovec et al. KDD'2007], Reduce the number of influence spread evaluations
- New approach based on Reverse Influence Sampling (RIS)
	- First proposed by Borgs et al. SODA'2014
	- Improved by Tang et al. SIGMOD'14, 15 (TIM/TIM+, IMM), Nguyen et al. SIGMOD'16 (SSA/D-SSA), Nguyen et al. ICDM'17 (SKIS), Tang et al. SIGMOD'18 (OPIM)

Key Idea: Reverse Influence Sampling

- Reverse Reachable sets: (use IC model as an example)
	- $-$ Select a node ν uniformly at random, call it a root
	- From v , simulate diffusion, but in reverse order --- every edge direction is reversed, with same probability
	- The set of all nodes reached (including v) is the reverse reachable set R (rooted at v).
- Intuition:
	- If a node u often appears in RR sets, it means that if using u as the seed, its influence is large --- efficiently collect evidence of influencers
- Technical quarantee: For any seed set S ,

 $\sigma(S) = n \cdot Pr\{S \cap R\}$

• [Borgs et al. SODA'2014]

RIS Illustration

- Collect all RR sets
- Greedily find top k nodes cover most number of RR sets

How to Decide the Number of RR Sets: IMM: Influence Maximization via Martingales

- Estimate a lower bound on the optimal influence spread
	- Repeated halving the estimate, double the RR sets
	- Use greedy on RR sets to get a lower bound solution
	- Verify if it is close to the estimate
	- Generate final number of RR sets
- Use greedy on the RR sets to find k nodes that cover the most number of RR sets

IMM Theoretical Result

- Thoerem: For any $\varepsilon > 0$ and $\ell > 0$, IMM achieves $1 -$ 1 \boldsymbol{e} $-\varepsilon$ approximation of influence maximization with at least probability $1 -$ 1 n^{ℓ} . The expected running time of IMM is O $(k+\ell)(m+n)\log n$ ε^2 .
- Martingale based probabilistic analysis
	- RR sets are not independent --- early RR sets determine whether later RR sets are generated --- form a Martingale

Near linear time to graph size

IMM Empirical Result

- LiveJournal: blog network
	- $n = 4.8M$
	- $m = 69.0 M$
- Orkut: social network
	- $n = 3.1 M$
	- $m = 117.2M$
- $\varepsilon = 0.5, \ell = 1$
- IC model, $p(u, v) = 1/d_v^{\text{in}}$ — $d_{\mathit{v}}^{\mathrm{in}}$: indegree of v

RIS Summary

- Advantages
	- Theoretical guarantee
	- RIS approach can be applied to many other situations
	- Easily tuned between theoretical guarantee and practical efficiency (by tuning ε)
- Issues
	- Memory bottleneck (need to store all RR sets)
- Different RIS-based algorithm improve on different ways of estimating the number of RR sets needed

Scalable Influence Maximization Trilemma

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
	- Shapley centrality
	- Single Node Influence (SNI) centrality
- Other models and tasks

Influence-based Centrality Measures

- Network centrality is a key concept in network science
- Most existing network centrality is structure-based: degree centrality, closeness centrality, betweenness centrality, etc.
- When we care about influence propagation in the network, we should look into influence-based centrality
	- [Chen and Teng, WWW'2017]
	- Define two influence-based centrality: Shapley centrality and Single-Node-Influence centrality
	- Provide an axiomatic study on the two centrality measures
	- Provide a scalable algorithmic framework for computing the two centralities

Cooperative Game Theory and Shapley Value

- Measure individual power in group settings
- Cooperative game over $V = [n]$, with characteristic function $\tau\colon 2^{\overline{V}}\to\mathbb{R}$
	- $-\tau(S)$: cooperative utility of set S
- Shapley value $\phi \colon {\{\tau\}} \to \mathbb{R}^n$:

$$
\phi_{\nu}(\tau) = \mathbb{E}_{\pi} \big[\tau \big(S_{\pi,\nu} \cup \{ \nu \} \big) - \tau \big(S_{\pi,\nu} \big) \big] = \frac{1}{n!} \sum_{\pi \in \Pi} \left(\tau \big(S_{\pi,\nu} \cup \{ \nu \} \big) - \tau \big(S_{\pi,\nu} \big) \right)
$$

- $-$ Π: set of permutations of V
- $-S_{\pi,\nu}$: subset of V ordered before ν in permutation π
- Average marginal utility on a random order
- Enjoy a unique axiomatic characterization

marginal utility

Shapley Centrality

• Node v 's Shapley Centrality is the Shapley value of the influence spread function

$$
\psi_v^{Shapley}(I) = \phi_v(\sigma_I)
$$

– Treat influence spread function as a cooperative utility function

- Measure node's irreplaceable power in groups
- More precisely, node's marginal influence in a random order
- Shapley centrality can be uniquely characterized by five axioms (omitted)
- Scalable algorithm for Shapley centrality computation exists, based on RIS approach

Key Observation Linking RR Sets with Shapley Value

- Let R be a random RR set $\psi_u^{Shapley} = n \cdot \mathbb{E}_R[\mathbb{I}\{u \in R\}/|R|]$
- If u is not in R rooted at v , u has no marginal influence
- If u is in R root at v ,
	- $-$ If u is ordered after any other node in R in a random permutation, u has no marginal influence to ν
	- If u is ordered before all other nodes in R in a random permutation, u has marginal influence of 1 to v ; this happens with probability $1/|R|$
	- $-v$ is uniformly chosen, so total marginal influence multiplied by n

Scalable Algorithm for Shapley Centrality

- Use a similar algorithmic structure as IMM
- Same algorithmic structure can be used to compute other influence-based centralities, such as Single-Node-Influence centrality, propagation-distance based centrality [Chen, Teng and Zhang , 2018], etc.
- A big advantage over RIS-based influence maximization algorithms:
	- No memory overhead --- no need to store RR sets:
		- Generate one RR set R, for each node $u \in R$, cumulate its score with $1/|R|$

Outline of This Talk

- Basic concepts: influence diffusion models, influence maximization task, submodularity, greedy algorithm
- Scalable algorithm based on reverse influence sampling (RIS)
- Influence-based centrality measures
	- Shapley centrality
	- Single Node Influence (SNI) centrality
- Other models and tasks

Example 1: Influence Propagation with Negative *Dinions*

- Quality factor q
	- If a node is positively influence, with probability q it turns positive and probability $1 - q$ it turns negative
	- Both positive and negative influence propagates as in the IC model
	- Negative influence only activates nodes in the negative state
- Model negative opinion due to quality defect
	- Model negativity bias: people are more likely to believe negative opinions than positive opinions
- Satisfy submodularity, could be made scalable
- [Chen et al. SDM'2011]

Example 2: Influence Blocking Maximization

- Two competitive items A and B
	- A wants to block the propagation of B as much as possible
	- Application: rumor control
- Competitive diffusion model
	- Competitive IC model: may not be submodular
	- Competitive LT model: submodular
- [Budak et al. WWW'2011, He et al. SDM'2012]

Example 3: Complementary Diffusion Model

- Two items A and B, with global adoption parameters (GAP)
	- $q_{A|0}$: probability of adopting A when not adopted anything yet
	- $-q_{B|\phi}$: probability of adopting B when not adopted anything yet
	- $-q_{A|B}$: probability of adopting A when B is already adopted
	- $-q_{B|A}$: probability of adopting B when A is already adopted
	- $-q_{A|\emptyset} \ge q_{A|B}, q_{B|\emptyset} \ge q_{B|\emptyset}$: mutually competitive
	- $-q_{A|\emptyset} \leq q_{A|B}, q_{B|\emptyset} \leq q_{B|\emptyset}$: mutually complementary
- Diffusion follows the IC model
- Self-maximization and complementary-maximization
- Boundary cases are submodular, other cases are not submodular – Apply sandwich optimization for non-submodular cases
- [Lu et al. SIGMOD'2016, Zhang and Chen, TCS'2018]

Conclusion and Future Work

- Influence maximization has rich internal problems and external connections to study
	- many optimization, learning and game theoretic studies can be instantiated on the influence maximization task
- Many possible new directions, beyond summarized already
	- Non-submodular influence maximization (e.g. [Zhang et al. KDD'14, Chen et al. EC'15, Lu et al. SIGMOD'16, Lin et al. ICDE'17, Li et al. NIPS'18])
	- Influence maximization in dynamic networks
- Influence maximization with phase transition / percolation?
- Need validations on large-scale real social networks

Reference Resources

- Search "Wei Chen Microsoft"
	- Monograph: "Information and Influence Propagation in Social Networks", Morgan & Claypool, 2013
	- KDD'12 tutorial on influence spread in social networks
	- my papers and talk slides
- A recent survey on influence maximization [Li et al. TKDE'2018]

Thanks!

YEP Workshop on Information Diffusion on Random Graphs, March 27, 2019 44