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Abstract
Millions of news articles emerge every day. How
to provide personalized news recommendations has
become a critical task for service providers. In the
past few decades, latent factor models has been
widely used for building recommender systems
(RSs). With the remarkable success of deep learn-
ing techniques especially in visual computing and
natural language understanding, more and more re-
searchers have been trying to leverage deep neu-
ral networks to learn latent representations for ad-
vanced RSs. Following mainstream deep learning-
based RSs, we propose a novel deep fusion model
(DFM), which aims to improve the representation
learning abilities in deep RSs and can be used
for both candidate retrieval and item re-ranking.
There are two key components in our DFM ap-
proach, namely an inception module and an atten-
tion mechanism. The inception module improves
the plain multi-layer network via leveraging of
various levels of interaction simultaneously, while
the attention mechanism merges latent representa-
tions learnt from different channels in a customized
fashion. We conduct extensive experiments on a
commercial news reading dataset, and the results
demonstrate that the proposed DFM is superior to
several state-of-the-art models.

1 Introduction
In the Internet age, people prefer to read digital news from
online services (such as news websites and social media plat-
forms) rather than from printed newspapers 1. However, mil-
lions of news items are streaming from various sources ev-
ery day, making it impossible and unnecessary for readers
to go through all available articles. Thus, articles selection
services are indispensable to news content providers, and a
recommender system (RS) is the core component to provide
personalized services.

Collaborative filtering (CF) is a group of technologies that
make automatic recommendations for users by collecting

1http://www.digitalnewsreport.org/survey/2017/overview-key-
findings-2017/

preferences from the community. Some major bottlenecks
for CF methods are the data sparsity problem and the cold-
start problem, which are especially true for news reading sce-
narios. News articles are highly time-sensitive and 90% of
the articles in our own news service are no longer delivered
to users within two days. On the other side, content-based
filtering (CBF) is a complementary technology to CF that re-
duces the cold-start problem. Thus, for news recommenda-
tions, leveraging both CF and CBF in a unified model is a
better choice than using a pure CF model.

With the remarkable success of deep learning technolo-
gies in computer vision, speech recognition, and natural lan-
guage understanding, in the recent years, many researchers
have tried leveraging deep learning techniques on RSs. They
find that neural networks can not only be used as a gen-
eralized matrix factorization framework, but also be used
for representation learning on raw features. For example,
CF is formulated as a neural network in [He et al., 2017;
Sedhain et al., 2015], and [Covington et al., 2016] combine
both CF and CBF in a deep neural network framework, which
can be viewed as a non-linear generalization of factorization
techniques. [Guo et al., 2017; Cheng et al., 2016] propose
to combine deep neural networks with linear models or fac-
torization models to learn diverse levels of feature interac-
tion. In this paper, we take full advantage of some promising
deep learning techniques, and further propose two key com-
ponents, i.e., the inception module and the attentive fusion
mechanism, with the goal of learning better latent represen-
tations from various content features.

Fully connected feed-forward neural networks are used in
[Covington et al., 2016; Cheng et al., 2016] to learn latent
representations and unseen feature combinations. Inspired
by the famous architectures of ResNet [He et al., 2016] and
GoogleNet [Szegedy et al., 2015], we find that the plain fully
connected network can be improved by changing the structure
of the multi-layer architecture. Thus, we propose the incep-
tion module for learning item representation from contents.
Basically, the inception module learns multiple networks with
various depths in parallel, feeding the final activation layer
with different levels of feature combination in terms of dif-
ferent network structures.

For better user profiling, a common practice in commercial
systems is to collect data from multiple channels/services to
enrich user features. We argue that simply treating features



from different channels equally and acquiring user vectors via
the same static neural model for all users is not the optimal
solution. On one side, different users have different engage-
ment distribution over different channels/services. When a
user is more active in the news reading channel, we are more
confident in inferring his news reading interests merely from
the news reading channel, thus we can reduce the weights
of features from other channels; correspondingly, for new-
joint users, we rely more on the data from auxiliary chan-
nels. On the other side, domain discrepancy may exist [Lian
et al., 2017], and we need to select useful signals according
to the feature contents. Thus, we propose learning different
user representations on different channels using the above-
mentioned inception module, and dynamically fuse them via
an attention network. We name the proposed framework with
the deep fusion model (DFM). DFM can be used for item
retrieval from millions of candidates and is also effective in
precise re-ranking when equipped with some modern com-
ponents, such as the deep&wide component [Cheng et al.,
2016]. To summarize, the key contributions of this paper are
as follows:

• We propose a novel deep fusion model (DFM) for
feature-aware representation learning. The method can
be applied to both item retrieval and item re-ranking.

• We design two key components in the DFM. The in-
ception module boosts representation learning ability by
combining various network structures, while the atten-
tion mechanism is designed to solve the data diversity
problem.

• We evaluate the proposed model comprehensively on a
commercial news reading dataset, and experimental re-
sults demonstrate that our model outperforms state-of-
the-art methods.

2 Our Proposed Model
A typical architecture for commercial recommendation sys-
tems contains a candidate retrieval layer and an item re-
ranking layer [Covington et al., 2016; Okura et al., 2017].
In this section, we will introduce our Deep Fusion Model
(DFM) and its applications in both candidate generation and
item ranking. Let U and V denote the set of users and news,
respectively. The training set is {(ui, vi), yi}ni=1, where the
pairs (ui, vi) are user-news dyads, and yi are binary labels
indicating whether user ui has read news vi. The goal is to
predict the label of unobserved dyads (uk, vk). Both ui and
vi are associated with sparse feature vectors, xu and zv .

2.1 Key Components for Representation Learning
A simple but effective latent factor model for collaborative
filtering is SVD [Koren et al., 2009]. It associates each user
u and item v with a latent factor vector pu, qv ∈ RD. Predic-
tion is given by:

ŷuv = buv + pT
u qv (1)

where buv denotes the bias scalars. [Chen et al., 2012] pro-
poses a unified framework called SVDFeature to summarize

various feature-based matrix factorization models into a sin-
gle model. Prediction is given by:

ŷuv = wT
s s(u, v) + (

|Xu|∑
j=1

Xujpj)
T (

|Zv|∑
j=1

Zvjqj) (2)

where s(u,v) denotes the union set of user features, item fea-
tures and context features. ws denotes the linear weights.
By omitting the non-dot product part from Eq.(2), the rep-
resentation for users and items from the SVDFeature model
is p̃u =

∑|Xu|
j=1 Xujpj and q̃v =

∑|Zv|
j=1 Zvjqj .

Inception Module
Recently, researchers have used neural networks to learn ad-
vanced representation to replace p̃u and q̃v . Following main-
stream methods in deep neural RSs, we adopt the field-wise
format to store the users’ and items’ raw features. Let m de-
note the number of feature fields. We have the input feature
:

xu = [xfd0 , xfd1 , ..., xfdj , ..., xfdm−1 ]

Where a feature field xfdj can be continuous or categorical.
Categorical features can be further split into two types: uni-
valent feature (such as user ID, or bin index of a continuous
feature), and multivalent feature (such as the set of topics the
user has tracked). Each field is mapped to a D dimension
vector which we call field embedding. For the continuous
field, the embedding is acquired via a fully connected layer;
for the univalent field, the embedding is acquired via a dictio-
nary look-up operation; and for the multivalent field, we use
an average pooling after looking up each individual variable’s
embedding so that the length of field embedding is fixed. The
field embedding process is illustrated in Figure 1.

0.5 10 0... 0.5 0...0.5

Continuous field Univalent field Multivalent field

Embedding
 dictionary

Figure 1: The field embedding layer. For univalent and multivalent
fields, network weights (edges) are the feature embedding dictio-
nary E, and highlighted edges are corresponding latent vectors from
dictionary look-up operations.

Let l0 denote the output of the embedding layer. l0 is a
concatenated wide vector in length of m×D:

l0 = [lfd0 , lfd1 , ..., lfdj , ..., lfdm−1 ]

Where lfdj ∈ RD denotes one field embedding. In [Coving-
ton et al., 2016], l0 is fed to several layers of fully connected
Rectified Linear Units (ReLU):

lh+1 = σ(Whlh + bh) (3)

Where h ∈ [0, H] denotes the hidden layer index, and σ
is ReLU. This type of multi-layer fully connected network
is commonly used in recent studies [Covington et al., 2016;
Zhang et al., 2016; Guo et al., 2017]. Here we argue that it
can be improved by more advanced structures. [Szegedy et
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Figure 2: The proposed inception module.

al., 2015] introduces the inception module in which a variety
of convolutions are used in parallel and then the resulting fea-
ture maps are concatenated before going to the next layer. By
doing so, the model can pick the best convolution size auto-
matically and recover both local features with smaller convo-
lutions and high abstracted features with larger convolutions.
Besides convolution size, network depth is also of crucial im-
portance for learning latent features. However, stacking more
layers may result in an accuracy degradation problem, which
is caused by the difficulty of network optimization rather than
overfitting. Thus ResNet [He et al., 2016] is proposed to
let some layers fit a residual mapping instead of fitting a de-
sired mapping directly. Inspired by the inception and ResNet
framework, we propose our inception module for learning la-
tent representations, with the structures depicted in Figure 2.

Different from visual computing, our input features are
usually sparse and have no spatial proximity relationship,
thus convolution filter is not feasible. The previous field em-
bedding process can to some extent be regarded as the con-
volution operation which maps all features within the same
field into one space. Here we exploit the network-in-network
spirit [Lin et al., 2013] via combining subnetworks at vari-
ous depths. The element-wise addition block adds the field
embedding vectors element-wisely and return a vector with
the same length equal to the field embedding dimension. It
serves as the SVDFeature component p̃u =

∑|Xu|
j=1 Xujpj ,

and makes the other subnetworks fit a residual mapping. The
depth of none-empty subnetworks can be arbitrary, for illus-
tration we use two networks with 3 hidden layers and 1 hid-
den layer in Figure 2. Outputs from subnetworks are first
concatenated horizontally, denoted as lc, and followed by a
linear projection process:

po = Wolc (4)

where po denotes the output of our inception module. Note
that the benefits of using the inception module are two-fold:
first, we allow the model to recover latent features from both
shallower and deeper interactions of raw features; second, we
endow the model with the ability of picking the most suitable
depth of network automatically.

Attentive Fusion Layer
As mentioned in Section 1, for better user modeling we lever-
age several domains’ data to enrich the raw feature. A com-
mon approach is that we treat all features from different do-
mains equally and feed them directly to the model to learn
a final user embedding. We argue that it lacks flexibility in
representation learning. Activity distribution among domains
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Figure 3: Attention mechanism for multi-channel fusion.

differs from user to user. For cold-start users in the news do-
main, it is of great significance to borrow knowledge from
other domains; however, for heavy users, we already accu-
mulate a certain amount of data from the news domain, thus
it is not necessary to rely on other domains’ data too much.
In addition, content deviation should be taken into consider-
ation. Incorporating domain-dependent knowledge may gen-
erate noise for the target domain [Lian et al., 2017]. We lever-
age an attention mechanism to alleviate the above-mentioned
factors and let the model dynamically combine knowledge
from different domains. The structure is depicted in Figure 3.
We distinguish latent features from different channels2 with

superscript like (t). For instance, p(t)
o denotes the output vec-

tor of the inception module of channel t. We use a two-layer
neural network to compute the attentive score α, as:

a(i) = W2
i σ(

t∑
j=1

W1
jp

(j)
o + W1

auxxaux + b1) + b2
i (5)

where the superscript indicates the layer index, and xaux are
auxiliary features including users’ activity distribution among
different domains. More auxiliary features such as context in-
formation will be introduced in the next section. The attention
scores are obtained by softmax normalization:

α(i) =
exp(τa(i))∑t
j=1 exp(τa(j))

(6)

where τ is a smoothing factor which is set empirically ac-
cording to the validation set. The final representation for the
user is calculated by p̂ =

∑t
i=1 α(i)p

(t)
o . A small trick is that

we merge data from all channels together and name this fake
channel as the merged channel. Different from user model-
ing, for items we do not have multiple domain’s data. This
means there is no attentive fusion process for items, and we
use the output vector of the inception module directly.

2.2 Deep Fusion Model for Item Retrieval
The entire corpus of fresh news is exceptionally large (mil-
lions), which makes it infeasible to rank all items for each
user on the fly. The candidate retrieval layer aims to narrow
down the relevant news to a small subset (hundreds). There
are several ways to retrieve relevant news, such as generating
by story freshness, customized topics selected by the user,
co-visited stories [Das et al., 2007], and latent factor models

2In this paper, “domain” and “channel” are used interchangeably.
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Figure 4: Deep fusion model for ranking.

[Covington et al., 2016]. In this paper we use the latent fac-
tor method, which retrieves relevant news via collaborative
filtering. The user-item relevance score is calculated by

s(u, v) = p̂u · q̂v (7)

Which is exactly the dot product of two representation vec-
tors. Thus item retrieval can be done through the approximate
nearest neighbor searching (ANN) [Liu et al., 2005].

2.3 Deep Fusion Model for Ranking
After the candidate generation process, items relevant to the
target user are shrunk to a small set. The purpose of the rank-
ing component is to provide elaborate personalization with
more sophisticated models as well as more features, such as
context-aware features. Some promising deep models such
as Deep&Wide [Cheng et al., 2016] reveal that combining
memorization and generalization significantly improves rec-
ommendation systems. In the item retrieval section, we make
recommendation only via the user-item interaction model. A
straightforward way to improve it is to add heterogeneous
components such as a linear model and a deep neural model.
The new structure is illustrated in Figure 4. The linear model
has the form ylinear = wT

lis + b, and the deep neural model
is a fully-connected neural network with each hidden layer in
the form of al+1 = f(Wlal + bl). Our model then makes
prediction through:

ŷ = σ(wT
lis + wT

deepa
l+1 + w0(p̂u · q̂v) + b) (8)

where σ(·) is the sigmoid function, wdeep is the weights vec-
tor applied to the final hidden layer al+1, and b is the bias
term. The learning process aims to minimize the following
objective function:

n∑
i=1

floss(yi, ŷi) + λ?||Θ|| (9)

where floss denotes the loss function. We take recommenda-
tion as a binary classification problem, so we use the logloss
function in our experiments. We leave the extension for pair-
wise ranking framework as a future work. λ? represents reg-
ularization constants.

3 Experiments
We aim to improve the recommendation system for Bing
News, which is part of Microsoft’s Bing search engine. We

collect impression logs from the news reading domain over
four consecutive days, and randomly sample about 35,000
users who have at least one click behavior for experiments.
This subset consists of 84560 news articles and 1394085 im-
pressions. To enrich the user features, we collect users’ be-
havior over the last 90 days on three different channels, in-
cluding news reading, general web browsing, and web search-
ing. For item features we use the url (item ID), domain of the
url, title length, news categories, and some other fields ex-
tracted from the title, such as topics and entities. For user fea-
tures, we use the user ID, gender, age, locations, and the cor-
responding collection of item features from his/her reading
histories. In item ranking experiments, additional context-
aware features are used, including positions, temporal mes-
sages, and location information.
Parameter Settings. We implement our model based on Ten-
sorFlow. Parameters are optimized with mini-batch Adam.
The hyper-parameters are tuned with grid-search on a hold-
out validation set, with the best settings as follows: λ=0.001
for neural network parameters and λ=0.002 for parameters in
embedding dictionary; τ=2.0; learning rate=0.001; activa-
tions=tanh ; depths for inception module=[3,1,0]; dimension
of embedding and hidden layers=32.

3.1 Experiments on Candidate Retrieval
We adopt the leave-one-out evaluation method to evaluate
candidate generation models. We use the impressions in the
first 3 days for training and validation, while on the fourth
day, for each user we keep only the first clicked news as a
positive instance. Negative instances in training set are dy-
namically sampling according to item popularity. For eval-
uation, since it is too time-consuming to rank all items, for
each user we sample 100 items according to item popularity
which are not interacted by the user, and rank the test item
among the 100 items. This strategy is commonly used in pre-
vious studies such as [He et al., 2017; Elkahky et al., 2015;
Koren, 2008]. The performance is judged by two popular
metrics, i.e., HR (hit ratio) and MAP (mean average preci-
sion). HR measures whether the positive item is present on
the top-K list, while MAP accounts for the position of the hit.

We report results of three models which can demonstrate
the effectiveness of the attention mechanism and the incep-
tion module. We omit some baselines, such as random selec-
tion and recommending by item popularity, due to that they
are weak and irrelevant to our focus.
YoutubeNet. The model introduced in [Covington et al.,
2016] for candidate generation. YoutubeNet treats features
from all channels equally and leverages a deep neural net-
work for learning representations.
AFM. Our proposed model without the inception module,
which we refer to as the attentive fusion model (AFM). Be-
sides treating multiple domains’ feature equally, we also learn
a separate user embedding for each domain, and the final user
embedding is combined by an attention network.
DFM3 (Deep Fusion Model). Based on AFM, we exploit the
inception module to learn the latent representation.

3The source code is available at https://github.com/
Leavingseason/dfm
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Figure 5: Performance in terms of HR (left) and MAP (right).

The performance comparison is shown in Figure 5. We
observe that AFM consistently outperforms YoutubeNet with
various settings of k, which demonstrates that domain behav-
ior patterns vary among users and our attention mechanism
can capture diversity effectively. In addition, DFM further
improves AFM, which shows that learning neural networks
with various depths simultaneously is superior to learning via
the plain deep neural network. When k = 10, our DFM out-
performs YoutubeNet by 7.4% in terms of HR and 4.7% in
terms of MAP.

0.0 0.2 0.4 0.6 0.8 1.0
attention value

0

500

1000

1500

2000

2500

fr
e
q
u
e
n
cy

news
browsing
queries
profile

(a) Distributions of attention
weights for different channels.

1 2 3 4 5
group index

0.0

0.2

0.4

0.6

0.8

a
tt

e
n
ti
o
n
 v

a
lu

e

(b) Attention weights of the news
channel among different groups.

Figure 6: An exploration of attentive weights.

To study how the attention weights vary with different
channels, we disable the merged channel and regard users’
demographic information as a separated channel named pro-
file. Figure 6a depicts the distribution of attentive weights
for different channels, from which we can observe the chan-
nel importance to some extent. Behavior data from the news
channel itself is weighted the heaviest, which accords with
intuition. Queries (search behavior) relatively gain the least
weights, which may due to that search behaviors are often
triggered by some instant demands, and they contain more
irrelevant messages for news recommendation. We are also
interested in how attentive weights for one certain channel
change among different users. As the easiest case, we study
the relation between the news channel’s attentive weights and
users’ engagement for the news channel. User’s engagement
for the news channel is defined as the relative ratio of behavior
data for the news channel versus other channels. For instance,
if a user is more active in the news channel and less active
in other channels, his/her engagement for the news channel
is high. We split the user into five groups according to the
news channel engagement value, and the engagement values
increase from group 1 to group 5. Figure 6b demonstrates
that attentive weights are positively correlative with the en-
gagement value.

comments method AUC LogLoss

linear LR(-) 0.7604 0.4673
LR 0.8005 0.4422

non-parametric GBDT(-) 0.8015 0.4417
GBDT 0.8306 0.3825

factorization FM 0.8228 0.4220
SVDFeature 0.8271 0.4081

deep
factorization

DeepFM 0.8283 0.3879
Deep&Wide 0.8331 0.3620
YoutubeRank 0.8242 0.3677

our approaches AFM 0.8342 0.3593
DFM 0.8386∗ 0.3553∗

Table 1: Performance comparison among different models.

3.2 Experiments on Ranking
Next, we investigate the item re-ranking case. Again, we use
the first 3 days of the impression log for training and vali-
dation, and leave the fourth day’s impression log as the test
set. None-clicked impressions are used as negative instances.
Since we take the ranking as a binary classification problem,
we use AUC (area under the ROC curve) and LogLoss (the
negative log likelihood) as the evaluation metrics.

Effectiveness Comparison
We compare a variety of models in our experiments, in-
cluding LR (logistic regression), GBDT (gradient boosting
decision trees), FM (factorization machine), SVDFeature
[Chen et al., 2012], DeepFM [Guo et al., 2017], YoutubeR-
ank (the deep ranking network in [Covington et al., 2016]),
Deep&Wide [Cheng et al., 2016], and our DFM as well as its
variant AFM. Let LR(-) denote the LR model trained on data
with the news reading channel only and the same goes for
GBDT. For the other models we use all channels’ data. The
performance comparison is shown in Table ??, from which
we can observe that:

• GBDT and LR is significantly better than GBDT(-) and
LR(-) respectively, which means that including more
channels’ data for user modeling is quite beneficial to
user modeling.

• All factorization models greatly outperform the LR
model; meanwhile, deep factorization models (those
leverage neural networks) are superior to traditional fac-
torization models (FM and SVDFeature). This observa-
tion demonstrates that advanced representation learning
is of immense importance for sparse data.

• Our proposed deep fusion model (DFM) perform best
among the baselines, and the relative improvement over
the best baseline is 0.66% and 1.8% in terms of AUC
and LogLoss, respectively. Specifically, AFM improves
the Deep&Wide model with only a small gain, which
may due to the fact that for the ranking task, we have al-
ready included a linear and deep component, which can
learn the domain behavior diversity to some degree, so
that our attention mechanism will not further benefit too



much. However, DFM further improves AFM signifi-
cantly, which demonstrates the power of representation
learning from the inception module.

Regularization Study
λ controls the strength of L2 regularization in our DFM to
prevent overfitting. Figure 7 depicts the trends of perfor-
mance evolution with different settings of λ. We can see that
DFM evidently overfits on the training set when λ is set too
small (1e-4), while underfits the data with large λ (1e-2) .
1e-3 turns out to be a proper magnitude of value for λ.
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Figure 7: Training and test performance of DFM w.r.t. the number of
iterations (mini-batch) in terms of AUC (left) and LogLoss (right).

Activation Functions
Next, we investigate the influence of the activation function
on neural models. Figure 8 show the results. We observe that
on our dataset, tanh is more suitable while sigmoid performs
the worst.
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Figure 8: AUC (left) and LogLoss (right) with activation functions.

Number of Hidden Layers
Figure 9 depicts the influence of network depths on AUC and
logloss. We find two interesting observations: (1) for all three
models, adding a first hidden layer achieves a big improve-
ment on both AUC and logloss metrics, and subsequent im-
provements brought by adding more hidden layers are rela-
tively small; (2) the optimal network structure for DFM (3
layers) is of one layer deeper than that of DeepWide and
DeepFM (2 layers), which demonstrates that the inception
module can make the deep model easier to optimize.

4 Related Work
There is a vast amount of research in recommender systems,
ranging from content-based filtering methods [Lops et al.,
2011] to collaborative filtering methods, from explicit feed-
back [Koren, 2008] to implicit feedback [Hu et al., 2008].
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Figure 9: AUC and LogLoss with number of hidden layers.

The proposed model in this paper is based on deep learn-
ing techniques, thus in this section we mainly discuss related
works in deep-learning based RSs.

Feature learning is the most straightforward application
of deep learning in RSs. [Van den Oord et al., 2013] use
deep neural networks to learn factors from music audio,
[Elkahky et al., 2015] use deep neural networks for content-
based recommendation, and [He and McAuley, 2016] use
pre-trained deep networks to extract visual features for per-
sonalized ranking. Besides content learning, researchers are
also interested in connecting collaborative filtering with deep
learning. Collaborative filtering is formulated as autoen-
coders in [Sedhain et al., 2015], and is further formulated
as a generalized matrix factorization in [He et al., 2017;
Covington et al., 2016]. [Wang et al., 2015] utilize autoen-
coders to jointly perform deep representation learning for
content information and the ratings matrix. Recently, the at-
tention network has been used to improve the tradition model,
such as [Chen et al., 2017] for improving SVD++ and [He and
Chua, 2017] for improving FM. Inspired by those works, we
leverage the attention mechanism to tackle the data diversity
challenge. To learn better latent representations, we further
propose the inception module.

Autoencoders are widely used when the side informa-
tion is given in terms of articles or images. However, in
web data mining, input features are usually the multi-field
type and are mostly categorical. In this thread, deep neu-
ral works are used not only for representation learning, but
also for exploring feature interactions [Zhang et al., 2016;
Qu et al., 2016]. [Cheng et al., 2016] suggest combin-
ing combine memorization and generalization in one recom-
mender engine. To do so, they incorporate a linear regression
component and a deep neural network component in their fi-
nal model. Similarly, [Guo et al., 2017] incorporate a deep
neural network component to extend the factorization ma-
chine. Inspired by them, we further incorporate our deep fu-
sion component with the wide and deep part, and the resulting
model perform best among existing models.

5 Conclusions
In this paper, we propose the deep fusion model for person-
alized news recommendations. There are two key compo-
nents in our proposed model, i.e. the inception module which
aims to learn better latent representations via leveraging var-
ious subnetworks in parallel, and the attention mechanism
which contextually fuses diverse data across multiple chan-
nels. Through comprehensive experiments we have demon-



strated that, on one hand, DFM learns good representations
for users/items which are effective for candidate retrieval; on
the other hand, when incorporated with a wide and deep part,
the new model can provide state-of-the-art performance for
item ranking.
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