
Geting More Performance with Polymorphism from
Emerging Memory Technologies

Iyswarya Narayanan
Penn State

Aishwarya Ganesan
UW-Madison

Anirudh Badam
Microsoft

Sriram Govindan
Microsoft

Bikash Sharma
Facebook

Anand Sivasubramaniam
Penn State

ABSTRACT

Storage-intensive systems in data centers rely heavily on

DRAM and SSDs for the performance of reads and persistent

writes, respectively. These applications pose a diverse set of

requirements, and are limited by ixed capacity, ixed access

latency, and ixed function of these resources as either mem-

ory or storage. In contrast, emerging memory technologies

like 3D-Xpoint, battery-backed DRAM, and ASIC-based fast

memory-compression ofer capabilities across several dimen-

sions. However, existing proposals to use such technologies

can only improve either read or write performance but not

both without requiring extensive changes to the application,

and the operating system. We present PolyEMT, a system

that employs an emerging memory technology based cache

to the SSD, and transparently morphs the capabilities of this

cache across several dimensions ś persistence, capacity, la-

tency ś to jointly improve both read and write performance.

We demonstrate the beneits of PolyEMT using several large-

scale storage-intensive workloads from our datacenters.

CCS CONCEPTS

· Information systems→ Storage class memory;Hier-

archical storage management; Data compression; · Com-

puter systems organization→Cloud computing; · Soft-

ware and its engineering→Memory management;

ACM Reference Format:

Iyswarya Narayanan, Aishwarya Ganesan, Anirudh Badam, Sri-

ram Govindan, Bikash Sharma, and Anand Sivasubramaniam. 2019.

Getting More Performance with Polymorphism from Emerging

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for proit or commercial advantage and that

copies bear this notice and the full citation on the irst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speciic

permission and/or a fee. Request permissions from permissions@acm.org.

SYSTOR ’19, June 3ś5, 2019, Haifa, Israel

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00

https://doi.org/10.1145/3319647.3325826

Memory Technologies. In Proceedings of The 12th ACM Interna-

tional Systems and Storage Conference (SYSTOR ’19). ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3319647.3325826

1 INTRODUCTION

Data-intensive applications like key-value stores, cloud stor-

age, back-ends of popular social media services that run on

cloud datacenters are latency critical, and require fast access

to store and retrieve application data. The memory and stor-

age requirements of these data-intensive applications are

fast outpacing the limits of existing hardware. For instance,

growing data volume for these applications pose increasing

pressure on the capacity needs of the memory and storage

subsystems, and adversely impact application latency. This is

further exacerbated in applications with persistent writes to

storage (ile writes/lushes, and msyncs) as even the fastest

storage resource in contemporary servers (SSD) is an order

of magnitude slower than its volatile counterpart (DRAM).

Further, cloud applications are diverse in their resource re-

quirements (e.g. memory and storage working set sizes). In

contrast, existing memory and storage resources are rigid

in their characteristics in terms of persistence capability,

accesses latency, and statically provisioned capacity. There-

fore, datacenter operators are faced with the question of how

to better serve data-intensive cloud applications that pose

diverse resource requirements across multiple dimensions.

Emerging memory technologies ofer better performance

along several dimensions (e.g. higher density compared to

DRAM [63, 64], higher performance than SSDs [4, 5, 9], or

even both). Realizing their potential, prior works [18, 28, 70]

have exploited Non-Volatile Memory (NVM) technologies

to jointly improve both read and write performance1 of an

application by relying on their byte addressability and non-

volatility. NVMs that ofer higher density than DRAM beneit

applications bottle-necked by memory capacity, and improve

their read performance. And, their non-volatility beneits

applications bottle-necked by writes to the persistent stor-

age. While these solutions ofer attractive performance for

both reads and writes, these are insuicient for widespread

adoption in current datacenters for two main reasons.

1We refer to all persistent writes as writes.

https://doi.org/10.1145/3319647.3325826
https://doi.org/10.1145/3319647.3325826

SYSTOR ’19, June 3ś5, 2019, Haifa, Israel I. Narayanan and A. Ganesan et al.

First, many of these proposals consider ile systems that

reside entirely on NVMs[39, 75, 77] to beneit both reads and

writes. Note that the cost per unit capacity of NVMs is still an

order of magnitude higher than SSDs. Therefore, replacing

a large leet of SSDs with NVM will be cost prohibitive for

applications requiringmassive storage capacities. Instead, we

require a design that requires only a limited NVM capacity.

Second, to extract high performance, many of these pro-

posals require extensive code changes to port the appli-

cation [18, 28, 70], operating system [39, 77] or the ile-

system [74ś76] which may not be immediately feasible at

scale. These limit faster and wider on-boarding of these tech-

nologies in current datacenters. Therefore, we require trans-

parent mechanisms and policies that can efectively utilize

limited NVM capacity available within each server.

While there are several proposals that enable transparent

integration of limited capacity NVMs into existing memory

and storage stack [15, 63, 79], they are insuicient in the

context of cloud datacenters. The reason is, they focus on

single aspect whereas cloud applications pose diverse set of

requirements which can be met efectively by tapping into

the potential of these technologies to morph across several

dimensions ś persistence, latency, and capacity.

NVMs with performance similar to that of DRAM and

persistence similar to that of SSDs can morph dynamically

either as persistent block cache to SSDs or as additional

byte-addressable volatile main memory ś we call this func-

tional polymorphism. Existing transparent solutions focus

on one function by employing these devices either as storage

caches for SSDs [15, 16, 50] or as extension of DRAM to aug-

ment main memory capacity[27, 63, 79]. Employing NVM as

storage cache accelerates persistent accesses to the storage

device. But, these incur additional software overheads for

read accesses [17, 36, 73], despite their ability to allow direct

hardware access using byte addressability.

Transparently integrating NVM as byte addressable mem-

ory is beneicial only for volatile memory access, and does

not beneit any persistent writes to the storage medium de-

spite being non-volatile. However, dynamically re-purposing

all or part of NVM asmemory or storage can beneit a diverse

set of applications. Unlike existing such proposals [39, 67],

we target a design that neither requires high NVM provi-

sioning costs to replace entire SSD with NVM as ile system

storage medium nor requires changes to existing ile system.

Therefore, we employ limited NVM capacity as a storage

cache to SSD, where the challenge is to carefully apportion

this resource between competing memory and storage access

streams, whereas in existing proposals it is only determined

by one of those.

There exists other trade-ofs in emerging memory tech-

nologies that ofer fast access times at lower density or slow

access times at higher density depending on data representa-

tion (e.g. Compressed memory [68], SLC vs. MLC [62]). We

refer to this as representational polymorphism. This poses

opportunity to improve tail performance for latency sensi-

tive applications that are limited by ixed latency and ca-

pacity of existing hardware. While this has been studied

previously [23, 49, 62, 68], a holistic solution that exploits

polymorphism across several dimensions is missing.

Given the rigidity of existing hardware and the diversity

of cloud applications, it is essential to fully beneit from the

polymorphic capabilities of these technologies to efectively

serve applications. Towards that, we employ NVM as a cache

to the SSD, and exploit its capability to morph in its function

(as volatile vs. non-volatile cache) and data representation

(high density/slow vs. low density/fast). But, to beneit from

polymorphism, we need to navigate the trade-ofs along

several dimensions to adapt the cache characteristics based

on the needs of individual applications. Moreover, we need

mechanisms to transparently enforce these capabilities with-

out requiring any application, OS or ile system level changes.

Contributions: Towards these goals, we present:

• A detailed characterization of production storage traces to

show that cloud operators can efectively serve heteroge-

neous applications by exploiting polymorphic emerging

memory technology based cache in front of SSD.

• A functional polymorphism solution that allows trans-

parent integration of limited capacity NVM as persistent

block-based write-back cache to SSDs. It dynamically con-

igures available cache capacity in volatile and non-volatile

forms to simultaneously improve performance for reads

and persistent writes.

• A representational polymorphism knob that helps tune

the latency and capacity within each function to further

optimize performance for applications with working set

sizes exceeding the physical capacity of the resources.

• A dynamic system that traverses the design space ofered

by both functional and representational polymorphism,

and apportions resources across persistence, latency, and

capacity dimensions to maximize application performance.

• A systematic way of reaching good conigurations in the

above dynamic system: starting with the full capacity in

one single form that addresses the most signiicant bottle-

neck irst and then gradually morphing into other forms

until the performance increases, enables a way to search

for the ideal coniguration systematically.

• A prototype in real hardware available in today’s datacen-

ters as a transparent memory and storage-management

runtime in C++ for Linux. Our solution does not require

any application, OS, or ile system changes for its usage. Our

Geting More Performance with Polymorphism from EMT SYSTOR ’19, June 3ś5, 2019, Haifa, Israel

0

0.5

1

1.5

0 50 100

n
o

rm
a

li
ze

d
 p

9
5

 l
a

te
n

cy

% polymorphic memory used as storage

(a) TPC-C

0

0.2

0.4

0.6

0.8

1

0 50 100

n
o

rm
a

li
ze

d
 p

9
5

 l
a

te
n

cy

% polymorphic memory used as storage

(b) YCSB-loading phase

Figure 1: Applications beneit from diferent capacities of NVM

in memory and storage. This split is diferent across applications.

experiments with the prototype show signiicant improve-

ments to the tail latencies for representative workloads,

by up to 57% and 70% for reads and writes, respectively.

2 THE NEED TO EXPLOIT
POLYMORPHISM

Our goal is to aid datacenter operators to efectively serve

data-intensive cloud applications using emerging memory

technologies without incurring signiicant capital invest-

ments and intrusive software changes. While there are prior

proposals that meet these constraints, they often extract sub-

optimal performance as they focus on one aspect, whereas

these resources can morph across several dimensions - per-

sistence, capacity and latency. In this work, we consider

battery-backed DRAM (BB-DRAM) [4, 9, 54] and fast mem-

ory compression as the Emerging Memory Technologies

(EMTs), backed up by SSDs [58], as seen in today’s datacen-

ters. It presents us with the following two trade-ofs2.

2.1 Why Functional Polymorphism?
Much like other NVMs, BB-DRAM can function both as

a regular volatile medium and as a specialized non-volatile

medium using an energy storage device (e.g., ultra-capacitor).

The battery capacity is used to lush data from DRAM to

SSDs upon power loss. This can be dynamically conigured

to lush only a portion of (non-volatile) DRAM with the re-

maining used as volatile memory, thereby creating a seamless

transition between these modes. The battery-backed portion

ofers persistence at much faster latency than SSDs.

One can transparently add suchNVM to existing servers as

an extension of main memory or as a block-granular cache to

the SSD. While the former implicitly beneits reads, the latter

is expected to implicitly beneit both reads and persistent-

writes. However, note that all reads to NVMwould then incur

software penalty by having to go through the storage stack,

despite their ability to allow direct CPU-level access for reads.

So, explicitly partitioning it between the volatile memory

and storage tiers would ofer better read performance.

2These trade-ofs exist for other emerging memory technologies as well.

In Fig. 1, we show the beneits of such explicit partitioning

using TPC-C, a ready heavy workload as well as a write-

heavy YCSB workload using a server provisioned with 24

GB volatile DRAM and 24 GB non-volatile BB-DRAM. We

manually varied the non-volatile capacity between an SSD

block cache (managed by dm-cache [69]) and physical mem-

ory (managed by OS). Fig. 1a shows that TPC-C sufers a loss

of 30% in performance when using all of the BB-DRAM as

SSD-cache compared to when using it as main memory. In

contrast, Fig. 1b shows that using BB-DRAM as SSD-cache

is optimal for the write-heavy YCSB workload.

The results demonstrate that diferent "static" splits not

only change the performance of applications diferently, but

also that the best split is diferent across applications. Fur-

thermore, the results also show that the extremes are not

always optimal. For instance, we see that the write-intensive

YCSB-loading phase requires entire BB-DRAM capacity in

the storage tier, whereas read-intensive TPCC requires a split

of 75% and 25% between memory and storage to meet both

read and persistent-write requirements satisfactorily.

This is especially important in cloud datacenters, as we

observe that most real-world applications have a heteroge-

neous mix of reads and writes. We show this by analyzing

the storage access characteristics of four major production

applications from our datacenters: (i) A public cloud storage

(Cloud-Storage); (ii) Amap-reduce framework (Map-Reduce);

(iii) Search data indexing application (Search-Index), and (iv)

Search data serving application (Search-Serve).

We observe that ile system read and write working set

sizes vary across applications. Fig. 2a shows that the total

number of unique pages required to serve 90th , 95th , and

99th percentile of access for reads and writes respectively,

normalized to total unique pages accessed for a duration of

30 minutes. As we can see, the working set sizes vary across

applications. Similarly, Fig. 2b captures the diference in the

access intensities of total read and write volumes per day;

the read and write volumes varies between 0.18 TB to 6 TB

and 0.45 TB to 4 TB, respectively. Moreover, these access

intensities vary over time; Fig. 3 shows this in Search-Serve

for a 12 hour period as an example. Together, these moti-

vate the need to exploit the ability of these technologies to

morph dynamically between storage and memory functions

to efectively serve diverse set of applications.

2.2 Why Representational Polymorphism?

In addition to the above trade-of, there exist trade-of be-

tween data representation and access latency in emerging

technologies. For example, fast memory compression (using

ASICs [2]) enable larger capacity using compressed high-

density data representation. However, it incurs longer la-

tency to work with the compressed representation. Thus, the

SYSTOR ’19, June 3ś5, 2019, Haifa, Israel I. Narayanan and A. Ganesan et al.

0

0.2

0.4

0.6

0.8

1

90th 95th 99th

U
n

iq
u

e
 p

a
g

e
s

a
cc

e
ss

e
d

Percentile of accesses

Reads Writes Both

0

0.2

0.4

0.6

0.8

1

90th 95th 99th
U

n
iq

u
e

 p
a

g
e

s
a

cc
e

ss
e

d

Percentile of accesses

Reads Writes Both

0

0.2

0.4

0.6

0.8

1

90th 95th 99th

U
n

iq
u

e
 p

a
g

e
s

a
cc

e
ss

e
d

Percentile of accesses

Reads Writes Both

0

0.2

0.4

0.6

0.8

1

90th 95th 99th

U
n

iq
u

e
 p

a
g

e
s

a
cc

e
ss

e
d

Percentile of accesses

Reads Writes Both

(i) Cloud Storage (ii) Map Reduce (iii) Search-Index (iv) Search-Serve

(a) Heterogeneity in read vs persistent-write capacity requirements to serve 90th , 95th and 99th per-

centile of read, persistent-write and total accesses over a 30 minutes window.

Cloud-

Storage

Map-

Reduce

Search-

Index

Search

-Serve
0.1

1

10

0.1 1 10

Read Volume (TB/day)

W
ri

te
 V

o
lu

m
e

(T

B
/d

a
y

)

(b) Heterogeneity in the volume of

read and persistent-write accesses.

Figure 2: Need for application aware memory and storage resource provisioning.

0

50

100

0 100 200 300 400 500 600 700

Time (minutes)

Writes Reads

A
cc

e
ss

 V
o

lu
m

e
 (

G
B

)

Figure 3: Temporal variations in read and persistent-write access

intensities in Search-Serve.

same memory can provide either the higher capacity (with

compression) or, the faster access (without compression).

This is especially important in the context of tail sensitive

applications constrained by static capacities and latencies

of today’s hardware. For instance, existing servers have lim-

ited capacities of DRAM (in the order of 10s of GBs) and are

backed up using SSDs (in the order of 100s of GBs) or over

the network which are 500× slower. The static capacities

of DRAM, non-volatile EMT, and SSDs form strict latency

tiers. Consequently, the tail latency of data-intensive appli-

cations with working sets that do not it in the DRAM is

now determined by the slower tier. We illustrate this us-

ing Fig. 4a. It plots latency vs probability of pages accessed

at this latency when the working set of an application is

spread between two latency tiers. Here, the tail latency of

the application is determined by the SSDs which are order

of magnitudes slower than DRAM. One way to optimize the

tail performance in such systems is to increase the efective

capacity of the faster tier using high density data representa-

tion (e.g. compression) while maintaining latency well below

that of the slowest tier using fast compression techniques as

illustrated in Fig. 4a.

We observe that real-world applications in our datacenter

can increase their efective capacity by 2ś7× (see Fig. 4b) us-

ing compression while incurring signiicantly lower latency

compared to accessing the slowest tier. Fig. 4c shows that in

contrast to SSDs which incur more than 80µs and 100µs for

reads and writes, compressed DRAM based memory incurs

4µs for reads (decompression), and 11µs for writes (compres-

sion). This can be further tuned based on the application

needs by exploiting parallelism.

While existing works have studied such latency vs. ca-

pacity trade-of only in isolation, the additional challenge

for us here is to identify which functional layer can beneit

from exploiting representational polymorphism. Towards

that, we explore a holistic approach for lexible memory and

storage provisioning within a server to exploit both kinds of

polymorphism, not only for static application conigurations

but also for dynamic variations in application behavior.

3 POLYMORPHIC EMT DESIGN

Our goal is to identify the optimal coniguration of a limited-

capacity EMT across its various polymorphic forms, both

spatially and temporally, to extract maximum application

performance. The challenge here is to navigate a huge search

space as jointly determined by the polymorphism knobs. We

use the following insight to decouple the search space: start

with the full capacity in one single form that addresses the

most signiicant bottleneck in the system. Then gradually

morph into other forms to further improve efectiveness.

3.1 Using Functional Polymorphism

In today’s servers (Fig. 5(a)), all persistent writes (msyncs)

must hit the SSD synchronously, while reads have some

respite since only those that miss DRAM bufer cache hit

the SSD. Also, SSDs by nature have higher tail latencies for

writes compared to reads. Fig. 6 shows that reads to be 2×

faster than the writes even in their average latencies, and up

to 8× faster at the 95th percentile for the io benchmark [14].

This can be alleviated by using BB-DRAM as a persistent

cache, to avoid accessing the SSD in the critical path.

However, in a persistent storage cache (Fig. 5(b)), both

reads (those that miss in the DRAM bufer cache) and writes

to the SSD will be cached. But, caching SSD reads in this

storage layer is sub-optimal, as going through software adds

signiicant latency penalty [17, 36, 73]. Ideally, such reads

should be served directly via CPU load/store by bypassing

the software stack. Fig. 5(c) shows such a system, where the

BB-DRAM based write cache is just large enough to absorb

bursts of applicationwrites, bufer them, andwrite data to the

Geting More Performance with Polymorphism from EMT SYSTOR ’19, June 3ś5, 2019, Haifa, Israel

Access Latency

P
ro

b
a

b
il

it
y

3. Tail latency reduces

1. AppliĐation’s working set split ďetween two
fixed latency tiers

2. Faster tier morphs

to hold more working set
95th percentile

DRAM

SSD

95th percentile

(a) Representational polymorphism.

0

2

4

6

8

a b c a b c d

Map Reduce SearchE
ff

e
ct

iv
e

 i
n

cr
e

a
se

 i
n

 c
a

p
a

ci
ty

w
rt

u
n

co
m

p
re

ss
e

d
 c

a
p

a
ci

ty

(b) Compressibility of application contents

0

0.1

0.2

0.3

0.4

0

2

4

6

8

10

12

4096 2048 1024 512

C
o

m
p

re
ss

io
n

 R
a

ti
o

A
cc

e
ss

 L
a

te
n

cy
 (

u
s)

Compressed Access Granularity (bytes)

Write Access Read Access CompressionRatio

(c) Performance characteristics.

Figure 4: Representational polymorphism (compression) to increase working set in the fast tier. Latencies measured on 2.2 GHz Azure VM.

Block FS

DRAM

read
misses msyncs

disk
writes

EMT (BB-DRAM)

disk
reads

Block FS

DRAM

read
misses msyncs

disk
writes

EMT (BB-DRAM)

disk
reads

EMT

SSD SSD

Block FS

DRAM

read
misses msyncs

disk
writes

disk
reads

SSD

(a) Existing Servers (b) EMT Write Cache (c) Dynamic Write Cache

Block FS

DRAM

read
misses msyncs

disk
writes

EMT (BB-DRAM)

disk
reads

EMT

SSD

Compressed EMT

Compressed EMT

(d) Virtual Expansion

Figure 5: PolyEMT design: (a) Today’s servers have a high read and write traic to SSD in the

critical path. (b) We begin with EMT as Write-Cache to reduce persistent writes to SSD. (c) We

then re-purpose underutilized Write-Cache blocks to extend DRAM capacity reducing DRAM

read misses. (d) We then employ EMT compression to further reduce SSD traic.

0

1

2

3

4

5

6

7

8

Reads Writes

La
te

n
cy

 (
m

s)

Avg. 95 99

Figure 6: Read/Write asymmetry: 4K

reads incur an average of 400µs with 95th

percentile at 500µs , whereas average 4K

writes incur as high as 850µs with 95th per-

centile at 4200µs at high load.

SSD in the background such that the applications do not have

to experience the high write-tails of SSDs in the critical path.

Its remaining capacity can be morphed to extend volatile

main memory to accelerate reads.While the system shown in

Figure 5(c) conceptually exploits functional polymorphism,

its beneits depends on the ability to match the volatile and

non-volatile cache sizes to application needs as discussed in

Section 2.1 (see Fig. 2). Further, as applications themselves

evolve temporally (see Fig. 3), these capacities need to be

adapted to continuously meet changing application needs.

Therefore, our solution (PolyEMT) starts with the entire

emerging memory capacity as write-cache, while gradually

re-purposing some of its capacity to function as volatile (even

though physically non-volatile) main memory. To minimize

performance consequences of such a dynamic reduction in

the write-cache capacity, we need to efectively utilize avail-

able write-cache capacity. Towards that, PolyEMT uses a

perfect LRU policy to identify blocks for revocation. It peri-

odically writes them back to the SSD in the background to

make those blocks free and adds them to the free list.

Simultaneously, the re-purposed EMT pages (moved out

of the free list of the storage cache) serve as DRAM exten-

sion managed by the OS. The virtual memory management

component of the OS is well-equipped to efectively man-

age the available main memory capacity, and even handle

heterogeneous latency tiers [40, 71]. Such bufer manage-

ment policies maintain only the most recently accessed pages

(volatile accesses) in memory, to improve access latency.

Hence, the sweet spot for partitioning the EMT is identi-

ied by incrementally revoking least recently written write-

cache pages and re-purposing them as volatile main mem-

ory by probing application-level request latencies. PolyEMT

stops the re-purposing when the performance of the ap-

plication stops increasing; this is the point where the read

bottleneck is mitigated and persistent writes re-start to im-

pact the application’s performance, as shown in Fig. 7. We

observe a convex behavior, as in Fig. 11, for a wide range of

applications. This is because LRU is a stack algorithm which

does not sufer from Belady’s anomaly, i.e., the capacity vs.

hit rate has a monotonic relationship for both memory capac-

ity and write cache capacity under steady access conditions.

Therefore, a linear (incremental) search is suices to identify

the sweet spot between volatile and non-volatile capacities.

3.2 Using Representational Polymorphism

PolyEMT leverages representational polymorphism to vir-

tually expand capacities when the read and write working

set sizes of application exceed available physical memory

and write-cache capacities. The compressed data represen-

tation reduces the capacity footprint of data (refer Fig. 4);

thus more data can be held in EMT instead of being paged

SYSTOR ’19, June 3ś5, 2019, Haifa, Israel I. Narayanan and A. Ganesan et al.

% EMT in Storage
0 100

1

P
e

rs
is

te
n

t
W

ri
te

P
e

rf
o

rm
a

n
ce

R
e

a
d

 P
e

rfo
rm

a
n

ce

% EMT in Memory

0100

A
p

p
li

ca
ti

o
n

P
e

rf
o

rm
a

n
ce

% EMT in Storage
0 100

% EMT in Memory

50

50

50

75 25

25 75

0100 5075 25

25 75

0

1

0

1

0

1

0

Figure 7: To partition EMT between memory and storage, incre-

mentally re-purpose write-cache pages as volatile memory until

performance start to decrease. This point balances the impact of

persistent writes and volatile reads on application performance.

to the slowest tier (i.e., SSD). Towards that, PolyEMT uses a

caching hierarchy as shown in Fig. 5(d) where 3 latency tiers

ś EMT, Compressed EMT and SSD ś exist in both volatile and

non-volatile forms. Here, a capacity bottleneck at the fast tier

will move least-recently-used pages to the slower represen-

tation to make room for hot pages. And, a hit access at the

slow tier will result in its conversion to fast representation.

Unlike existing compressed memory systems [12, 60, 68]

and tiered storage systems [42, 59], we face the additional

challenge of deciding where to spend the limited compute cy-

cles available for compression/decompression - in the write

cache or in the volatile memory? Exploiting representational

polymorphism in either modes is viable when the beneits

of holding more data using slower representation are higher

than the beneits of holding fewer data using a faster repre-

sentation. This is conceptually similar to the capacity parti-

tion problem of the functional polymorphism.

However, unlike functional polymorphism, asymmetry in

read and write accesses are not important. This is because,

the penalty of a cache miss is the same in both functions (the

read or thewrite cache), which is primarily determined by the

software latency to go and fetch the page/block to the faster

tier. PolyEMT uses this key insight when determining the

capacities of each tier in representational polymorphism ś by

using a combined faster/slower representation of both read

and write caches rather than exploiting them independently

(as in functional polymorphism). This has the natural side

efect of using the minimum compute resources and EMT

capacity to meet a target tail latency and throughput.

PolyEMT uses LRU based ranking of accesses across all the

non-compressed pages in both volatile memory and write-

back cache to decide data movement between the faster and

slower tiers. Note that when using representational poly-

morphism in volatile main memory, PolyEMT does not have

complete information on the data accessed in the fast tier -

hardware loads and stores bypasses software stack to track

exact LRU. Instead, PolyEMT uses page reference informa-

tion in the page table and uses an approximate LRU algo-

rithm in the fast tier (i.e., Clock [21, 37]). This information

is used to not only identify EMT pages to move from mem-

ory to storage, but also to identify DRAM pages in volatile

memory that can beneit from compression. The best split

occurs when there is suicient fast tier capacity to serve hot

data accesses while optimizing the tail performance with the

capacity reclaimed from using compressed representation.

To summarize PolyEMT design, the irst three optimiza-

tion steps - write-back cache, functional and representation

polymorphisms are applied one after another sequentially,

and the LRU-based capacity management is used in all com-

ponents to cope with limited capacity and latency hetero-

geneities of the underlying resources. PolyEMT irst exploits

functional polymorphism and then within each of the func-

tions it exploits representational polymorphism. The sys-

tem re-conigures the memory and storage characteristics

to dynamic changes within an application. Once the change

is detected, the PolyEMT runtime begins with the EMT as

write-cache and inely tunes the capacities and latencies of

memory and storage resources based on the current needs.

4 PROTOTYPING POLYEMT
We next describe the key aspects of PolyEMT prototype.

PolyEMT API: One of our goals is to retain application

read/write API semantics to aid in faster and seamless on-

boarding of EMTs. Our prototype modiies the behavior of

the traditional mmap and msyncAPIs commonly used in many

cloud storage applications [1, 6ś8]:

• mmap(filename) maps a ile in persistent storage (SSD)

into the application’s virtual memory. This allows directly

access to the mapped region using loads/stores, avoiding

software overheads of read/write system calls.

• msync(address, length) invocation guarantees persis-

tence of writes to the application’s virtual memory. Modi-

ied memory pages in the application’s mapped address

space within the given length ofset is persisted immedi-

ately as part of this API call. Typically, such msync oper-

ations are often bottlenecked by the writes to SSD. EMT

used as a transparent persistent block cache below the ile

system layer can help improve msync performance.

PolyEMT Runtime: We implement PolyEMT logic as an

application-level runtime without requiring any changes

to application, ile system, and OS. The initial allocation of

DRAM, EMT/BB-DRAM, and SSD for an application is spec-

iied via a global coniguration. The runtime tunes these

allocations based on the instantaneous needs of the applica-

tion, using the following modules for resource management.

Physical resource managers: To manage physical capacity,

PolyEMT uses a DRAM manager and a BB-DRAM manager

which maintains the list of free pages in DRAM and BB-

DRAM, respectively. The DRAM and BB-DRAM memory

regions allocated to PolyEMT are pinned to physical frames.

Geting More Performance with Polymorphism from EMT SYSTOR ’19, June 3ś5, 2019, Haifa, Israel

mmap(file_name)

mmap_address

Protect pages

mmaped

address

regionAccess address

Trap

1 2

3

4

5 Get Free Page

D R A M

6

8 Unprotect page

Free list empty?

Evict page

E M T

List of free volatile pages

Write-Cache

SSDPage fault

handler

7 Populate data

Application

Compression-

Store

Figure 8: PolyEMT operation for volatile accesses

SSD

mmaped

address

region

msync

(addr, len)

Write

page

1

2

Write-Cache

Hit?

Update
3

E M T

Miss?

Get free page
4

Empty?

Evict

5

Compression

-Store

Invalidate6

Application

Figure 9: PolyEMT operation for persistent accesses

Bufer-Cache: This cache serves as the set of DRAM and

BB-DRAM pages used as volatile memory by the application,

accessible by the CPU directly via loads/stores.

Write-Back Cache: This cache is a block storage device

which caches persistent writes to SSD (write-back). The ap-

plication msyncs() calls are served using this Write-Cache.

Compression-Store: This resides in BB-DRAM so it can

serve as a slow (but higher capacity) tier for both volatile

bufer cache and persistent write-back cache. It employs

dictionary-based Lempel-Ziv compression [81] at 4KB gran-

ularity as it provides higher efective capacity (compared to

pattern-based ones [12, 60]). To handle the resulting variable-

sized compressed pages which increase fragmentation, we

compress 4K pages down only to multiples of a ixed sector

size by appending zeros when needed. We determine the

best sector size to be 0.5 KB based on the distribution of

compression beneits for applications analyzed in Sec. 2.2.

Enabling fast access to volatilememory. PolyEMTplaces

the most frequently read pages from the SSD in DRAM and

the EMT/BB-DRAM extension of volatile memory. The fol-

lowing process shown in Fig. 8 explains how this works: An

application initially maps a ile from the persistent storage

(SSD) into main memory 1 using mmap. PolyEMT creates

an anonymous region in virtual memory without allocating

physical memory resources, set its page protection bits 2 ,

and returns a virtual address. When the application irst ac-

cesses any page in this virtual address region 3 , it incurs a

page fault 4 , which is handled by a user-level fault handler

(using sigaction system call).

The page fault handler obtains a free volatile page from the

physical memory manager 5 and maps its physical address

to the faulting virtual address referenced by the application

using a kernel driver for managing application page table

in software [34, 41]. In case the free list is empty, PolyEMT

evicts a page 6 . Next, to populate the contents of the page, it

brings in the data to the relevant physical page by searching

from slower tiers in the order of Write-Cache, Compression-

Store (if used) and SSD 7 . It then unsets the protection bits

in page table and returns the control to the application 8 .

Pages are evicted from the bufer-cache as follows. A least

recently used page is chosen for eviction based on an LRU-

like Clock [21, 37] policy implemented using the referenced

bit in the page table which is reset periodically. Eviction

maintains the look-up order of Write-Cache, Compression-

Store, and SSD during page faults. Towards that, dirty pages

that are already present in write-cache (from a previous

msync call to the page) are updated in place. Otherwise, they

are directly evicted to the SSD. The process is similar when

using compression. But, even clean pages are evicted to the

compression store.

Handling persistentwrites. To persist a page, applications

call msync() with a virtual address and length, as shown in

Fig. 9 1 . PolyEMT handles this call by writing 2 the pages in

this region from Bufer-Cache to Write-Cache 3 . For write

misses at the write cache, it allocates a new page from the

free list of non-volatile pages 4 ; in rare cases when there

are no free pages 5 it evicts a least-recently-used page to

the slower tier 6 (either Compression-Store or SSD).

The candidate for eviction is chosen based on LRU for

persistent writes in the Write-Cache. Note that, much like

traditional msync, PolyEMT does not remove the synced

pages from the Bufer-Cache unless they were retired implic-

itly by the higher tier. However, for correctness, the virtual

addresses involved are write-protected irst, written to the

Write-Cache, marked as clean, and then unprotected again.

Pages lushed from compressed volatile memory to Write-

Cache are maintained in a compressed state until further

read operations to save resources.

Handling dynamic capacity variations: PolyEMTdynam-

ically manages the capacity of Bufer-Cache, Write-Cache,

and Compression-Store by pursuing two knobs at runtime

ś the knob that splits BB-DRAM between volatile and non-

volatile layers and the knob that controls how much BB-

DRAM is compressed across both volatile and non-volatile

layers. The runtime described in the previous section sweeps

through diferent values of these two knobs and moves the

system to higher-performance conigurations ś detected

transparently by monitoring latencies of SSD operations.

It maintains the conigurations until such latencies change

signiicantly (a conigurable threshold).

5 EVALUATION

We run all experiments using Azure VMs running Linux

4.11 on E8-4s_v3 instances (4 CPU cores, 64GB memory and

128GB SSD at 16000 IOPS). We emulate a part of DRAM as

BB-DRAM using Linux persistent memory emulation [3]. In

addition to using the workloads presented in Sec. 2, we use

SYSTOR ’19, June 3ś5, 2019, Haifa, Israel I. Narayanan and A. Ganesan et al.

Bench Properties
mark

A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads,

50% read-modify-writes

Table 1: YCSB benchmark

characteristics.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Write-Cache Functional Functional+Representational

0

2

4

6

8

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

w
rt

D
R

A
M

-E
x

t

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

w
rt

D
R

A
M

-E
x

t

N
o

rm
a

li
ze

d
 W

ri
te

 L
a

te
n

cy

w
rt

D
R

A
M

-E
x

t

(a) Throughput (b) 90th Percentile Read Latency (c) 90th Percentile Write Latency

Figure 10: Performance of diferent transparent EMT integration designs normalized to DRAM-Ext.

the YCSB [20] cloud storage benchmark (see Table 1) on Re-

dis [10] populated with 1 million 1KB records, and we report

the performance for 1 million operations. We use a persistent

version of Redis built using the ile mmap interface that we

transparently hijack to invoke PolyEMT’s mmap()/msync()

APIs. We evaluate the performance of PolyEMT on the met-

rics of application throughput, read and write tail latencies.

5.1 PolyEMT convergence time

We irst study the optimal allocations of the EMT between

Storage Time

Trace (min.)

Cloud-Storage 4

Map-Reduce 7.5

Search-Index 6

Search-Serve 8
Table 2: Convergence

time.

memory and storage cache

under an oline search and

PolyEMT for the storage traces

analyzed in Sec.- 2. The on-

line run time of PolyEMT con-

verges to the same allocation

of BB-DRAM between mem-

ory and storage functions com-

pared to the optimal partitions identiied oline. Table 2

shows that it takes 4 to 8 minutes to identify the partition

sizes, with read-intensive applications requiring longer time

as more of the write-cache is re-purposed as memory.

5.2 Performance beneits of polymorphism

We study the performance beneits of polymorphism using

YCSB benchmark. We use a server provisioned with capac-

ities of DRAM (26 GB) and BB-DRAM (6 GB) for a total of

32GB. The application’s dataset size (≈ 38 GB) exceeds the

capacity of these memories. We study the following designs

to transparently utilize limited EMT available in the server3:

1. DRAM-Ext: EMT serves as main memory extension.

2. Write-Cache: EMT serves as persistent write-back cache.

3. Functional-only ś performs a linear search to partition

EMT between memory and storage cache functions.

4. Functional+Representational ś partitions EMT between

memory and storage functions and also identiies the fast

and slow tier capacities within each function.

Impact on application performance: We irst study the

impact of these designs on application throughput for YCSB

3As the data set size exceeds BB-DRAM capacity, transparent NVM based

ile system solutions are infeasible.

benchmarks in Fig. 10(a). The x-axis shows the benchmark,

and the y-axis shows its throughput normalized with respect

to the DRAM-Ext policy. We ind that using the non-volatile

BB-DRAM as Write-Cache provides an average speed-up

of around 2.5× over using it as a memory extension. This

implies that even when using this resource readily without

any software modiications, adding it to the most bottle-

necked function (i.e. persistent msyncs) delivers better per-

formance. Further partitioning it between memory and stor-

age by exploiting functional polymorphism improves it by

up to 70%. Adding representational polymorphism improves

performance by 90% compared to Write-Cache policy. This

indicates the importance of exploiting polymorphic proper-

ties of EMTs to derive higher performance from hardware

infrastructure by adapting their characteristics at runtime.

We next present the impact on the tail performance of

these benchmarks in Figures 10(b) and 10(c). The x-axis

presents the YCSB benchmark and the y-axis presents 90th

percentile tail latency for writes and reads, respectively, nor-

malized to that of DRAM-Ext. As can be seen, the tail latency

for reads and writes when usingWrite-Cache reduces by 40%

and 36%, respectively, when compared to EMT as DRAM-Ext.

In contrast, employing functional polymorphism reduces

read tail latency by an average of 80%. This reduction is

signiicant across all benchmarks as more of their working

size its in memory and access to EMT memory extension is

done via load/stores without any kernel/storage stack over-

head. Compared to read performance, the reduction in write

latency at tail is only modest, as the write misses at the write-

cache still has to go to the slowest tier (i.e. SSD). However, by

incorporating both functional and representational polymor-

phism write performance at tail improves signiicantly, with

an average latency drop of 85%. Workload C, being read-only

is not included for the write latency results in Fig. 10(c).

Resultingmemory and storage conigurations:Wenext

study the resulting coniguration of memory/storage re-

sources for individual applications. Fig. 11 shows the applica-

tion performance when exploiting functional polymorphism.

The x-axis shows the % of EMT morphed as memory and

the y-axis shows the average application performance. We

see that performance initially increases as more EMT is con-

verted to memory, and beyond which it starts to decrease. As

Geting More Performance with Polymorphism from EMT SYSTOR ’19, June 3ś5, 2019, Haifa, Israel

0

2

4

6

0 20 40 60 80 100

(a) YCSB-A

N
o

rm
.

T
h

ro
u

g
h

p
u

t

0
2
4
6
8

0 20 40 60 80 100

(b) YCSB-B
N

o
rm

.
T

h
ro

u
g

h
p

u
t

0
2
4
6
8

0 20 40 60 80 100

(c) YCSB-C

N
o

rm
.

T
h

ro
u

g
h

p
u

t

0

2

4

6

0 20 40 60 80 100

N
o

rm
.

T
h

ro
u

g
h

p
u

t

(d) YCSB-D

0

2

4

6

0 20 40 60 80 100

N
o

rm
.

T
h

ro
u

g
h

p
u

t

(e) YCSB-E

0

2

4

0 20 40 60 80 100

N
o

rm
.

T
h

ro
u

g
h

p
u

t

(f) YCSB-F

% EMT as DRAM-Ext

% EMT as DRAM-Ext

% EMT as DRAM-Ext

% EMT as DRAM-Ext

% EMT as DRAM-Ext

% EMT as DRAM-Ext

Figure 11: Exploiting functional polymorphism only. PolyEMT search space when traversing

diferent EMT capacity splits between memory and storage.

0

20

40

60

80

100

F
-o

n
ly

F
+

R

F
-o

n
ly

F
+

R

F
-o

n
ly

F
+

R

F
-o

n
ly

F
+

R

F
-o

n
ly

F
+

R

F
-o

n
ly

F
+

R

A B C D E F

E
M

T
 a

ll
o

ca
ti

o
n

 i
n

 %

Write-Cache Compression-Store Buffer-Cache

Figure 12: Comparison of ideal EMT

split across Bufer-Cache, Write-Cache

and Compression-Store between func-

tional polymorphism only (F-only) and

functional+Representational polymor-

phism (F+R).

YCSB-C YCSB-A
0
2
4
6
8

10
12
14

0 15 30 45T
h

ro
u

g
h

p
u

t
(x

 1
0

0
0

)

Time (minutes)

F-only

F-only

F+R

(a) Average performance

0
0.2
0.4
0.6
0.8

1
1.2

0 15 30 45

La
te

n
cy

 (
m

s)

Time (minutes)

YCSB-A-Reads YCSB-A Updates

YCSB-C Reads

YCSB-C YCSB-A

(b) Performance at tail

YCSB-C YCSB-A

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13E
M

T
 a

ll
o

ca
ti

o
n

 %

Runtime Adaptation Steps

Write-Cache Compression-Store Buffer-Cache

(c) Resulting split
Figure 13: Adapting to dynamic changes as YCSB transitions from read-only YCSB-C workload to a read-write YCSB-A workload. PolyEMT

identiies YCSB-C beneits from direct access to volatile EMT pages via load/store, where-as YCSB-A beneits from 80% of EMT asWrite-Cache

and 20% as Compression-Store within twenty minutes. F-only: Functional-only; F+R: Functional+Representational.

expected, the best split (indicated with up-arrow) is diferent

across these applications as expected. However, as the search

space is convex with a single maximal point, linear search

inds the ideal split with regard to overall throughput.

Fig. 12 presents the partitions identiied across Write-

Cache, Compression-Store, and Bufer-Cache. Exploiting

functional polymorphism alone suices for read intensive

YCSB-C and YCSB-E; this is because the re-purposed ca-

pacity its the entire working size in DRAM. In contrast,

benchmarks with write operations employ representational

polymorphism as their combined working set for reads and

writes exceed the total physical capacity. e.g., YCSB-A and

YCSB-F use representational polymorphismwith 20% of EMT

in compressed form and the rest as write-cache. This shows

the ability of the PolyEMT to tune memory and storage re-

source characteristics based on the application needs.

5.3 Adapting to dynamic phase changes

We next illustrate run time re-coniguration using PolyEMT

in Fig. 13 for a server running YCSB-C. PolyEMT runtime

begins with a full Write-Cache, and subsequently exploits

functional polymorphism. As YCSB-C is read-only, direct

access to volatile BB-DRAM pages via hardware increases its

throughput from 4K operations per second to 11.5K opera-

tions per second (F-only for YCSB-C in Fig. 13a) resulting in

80% of BB-DRAM as volatile memory extension and 20% in

Write-Cache (refer to runtime adaptation step-5 in Fig. 13c).

At this point, the server gets a burst of writes as its phase

changes to 50% reads and 50% updates (YCSB-A). So, PolyEMT

starts with a full Write-Cache and exploits functional poly-

morphism, until it reaches a split of 40% EMT in storage and

60% in memory. This partition balances the relative impact

of the reads and writes and achieves highest throughput (F-

only for YCSB-A in Fig. 13a). However, PolyEMT observes

that the tail latency of update requests are much higher than

volatile reads as shown in Fig. 13b at around 30 minutes

time in x-axis. At this point, PolyEMT exploits representa-

tional polymorphism within the storage cache to alleviate

the high update latency. It identiies 20% of total EMT pages

in compressed form to have better tail performance with-

out impacting the average performance. PolyEMT further

re-apportions EMT between non-volatile region (80%) and

the shared compressed region (20%) to bring down the tail

latency of both reads and writes within 180µs. This demon-

strates the ability of PolyEMT to adapt to dynamic changes.

SYSTOR ’19, June 3ś5, 2019, Haifa, Israel I. Narayanan and A. Ganesan et al.

5.4 Cost beneits of polymorphism
We next study the cost beneits of PolyEMT by comparing

the following provisioning strategies:

(i) Application-speciic static provision: Each applica-

tion runs on a dedicated server with the DRAM, BB-DRAM

and SSD capacity right-sized to meet the the application

needs. This hardware right-sizing is primarily suited for ap-

plications that run on private datacenters to reduce costs.

But, it is impractical at scale. Hence, we consider two other

strategies that provision uniform set of physical servers for

all applications.

(ii) Application-oblivious static provision: This employs

an identical set of servers tomeet the needs of all applications.

Here, both DRAM and BB-DRAM capacities are sized based

on the maximum capacity needs across all applications.

(iii) Application-oblivious dynamic provision:Here, the

servers are provisioned with BB-DRAM based on the peak

Write-Cache needs of the applications. However, the servers

are under-provisioned in their DRAM capacity as BB-DRAM

can also function as DRAM using PolyEMT. This strategy

can serve diverse applications using a uniform leet as in the

second design, but with reduced upfront capital costs.

We consider SSD to cost 25 cents per GB [65], DRAM to

cost $10 per GB [32], and BB-DRAM to cost 1.2× to 2× com-

pared to DRAM [25, 55]. Table 3 presents the datacenter level

total cost of ownership (TCO) [31] when hosting the work-

loads under each of these designs. As expected, right sizing

the server for each application results in the lowest TCO

ś which increases by 1.19% even if the cost of BB-DRAM

increases from 1.2× to 2× as DRAM. Although attractive

from cost perspective, this strategy is diicult in practice

due to diversity applications. Among the practical alterna-

tives, App-Oblivious-Dynamic translates to 1.97% reduction

in datacenter TCO compared to App-Oblivious-Static.

Cost-ratio (BB-DRAM/DRAM)

Provisioning Strategy 1.2× 1.5× 2×

App-Speciic-Static 0 0.435% 1.19%

App-Oblivious-Static 2.18% 2.925% 4.15%

App-Oblivious-Dynamic 0.205% 0.947% 2.18%

Table 3: Datacenter TCO under various provisioning strategies

and cost ratios. Baseline: App-Speciic-Static with cost-ratio of 1.2×.

6 RELATED WORK
Datacenter resource provisioning: To overcome the chal-

lenges in scaling the physical capacity of datacenters [66, 72],

prior eforts optimized the static provisioned capacity [29,

56, 57], enable dynamic sharing of capacity using novel tech-

niques such as re-purposing remote memory [52], memory

disaggregation [47, 48], compute reconiguration [38, 80],

etc. We complement these works by exploring a knob for dy-

namic provisioning of memory and storage resources within

a server using polymorphic emerging memory technologies.

Employing Emerging Memory Technologies: There is

a rich body of work on readily exploiting emerging memory

technologies [4, 5, 9, 11, 12, 24, 30, 41, 45, 51, 60, 61, 68] as

DRAM replacement [22, 43, 45] or extension [22, 53], stor-

age caches [16, 50] and lash/storage replacement [39]. This

includes systems and mechanisms to exploit heterogeneous

latency when employing these technologies as DRAM ex-

tension [27, 40] or storage caches [42, 59]. Further, there is a

large body of research on using byte-addressable persistent

programming techniques at the ile system [19, 26, 33, 44, 46,

75, 76] and application levels [13, 18, 25, 28, 35, 70, 74, 78]

to achieve performance close to that of the raw hardware.

Complementary to such works, we exploit the polymorphic

nature of these technologies at system software level without

changes to ile systems or applications to get closer to raw

hardware performance than existing transparent approaches.

Exploiting Polymorphism: Prior works [39, 49, 62, 67]

have studied EMT polymorphism. Morphable memory [62]

proposes new hardware to trade capacity for latency in PCM,

by exploiting single level (SLC) and multi level (MLC) repre-

sentations. Memorage [39] and SAY-Go [67] propose mem-

ory and ile system changes to increase the efective volatile

memory capacity by using the free space from an NVM based

ile system volume. In these approaches, the capacity of NVM

available for volatile memory decreases over time as the ile

system is used, and is also determined only by memory pres-

sure in a two-tier architecture. In PolyEMT, we focus on a

three-tier architecture where NVM is used as a cache to SSDs

running on unmodiied ile systems and hardware.

7 CONCLUSION
Low tail latency of reads and writes is critical for the pre-

dictability of storage-intensive applications. The performance

and capacity gaps between DRAM and SSDs unfortunately

lead to high tail latency for such applications. Emerging

memory technologies can help bridge these gaps transpar-

ently. However, existing proposals have targeted solutions

that either beneit read or write performance but not both

since they exploit only one of the many capabilities of such

technologies. PolyEMT on the other hand exploits several

polymorphic capabilities of EMTs to alleviate both read and

write bottlenecks. It dynamically adjusts the capacity of EMT

within each capability layer to tailor to application needs for

maximal performance. Our evaluation with a popular stor-

age benchmark shows that PolyEMT can provide substantial

improvements in throughput and tail latencies of both read

and write operations. In the future, we want to include more

forms of polymorphism like latency vs. retention.

8 ACKNOWLEDGMENTS

This work has been supported in part by NSF grants 1439021,

1526750 1763681, 1629129, 1629915, and 1714389.

Geting More Performance with Polymorphism from EMT SYSTOR ’19, June 3ś5, 2019, Haifa, Israel

REFERENCES
[1] [n. d.]. ArangoDB. https://www.arangodb.com/.

[2] [n. d.]. Helion LZRW Compression cores. https://www.heliontech.

com/comp_lzrw.htm.

[3] [n. d.]. How to emulate Persistent Memory. https://pmem.io/2016/02/

22/pm-emulation.html/.

[4] [n. d.]. HPE Persistent Memory. https://www.hpe.com/us/en/servers/

persistent-memory.html.

[5] [n. d.]. Intel Optane/Micron 3d-XPoint Memory. http://www.intel.

com/content/www/us/en/architecture-and-technology/non-volatile-

memory.html..

[6] [n. d.]. Lightning Memory-Mapped Database Manager (LMDB). http:

//www.lmdb.tech/doc/.

[7] [n. d.]. MapDB. http://www.mapdb.org/.

[8] [n. d.]. MonetDB. https://www.monetdb.org/Home.

[9] [n. d.]. Netlist Expressvault PCIe (EV3) PCI Express (PCIe) Cache Data

Protection. http://www.netlist.com/products/vault-memory-storage/

expressvault-pcIe-ev3/default.aspx.

[10] [n. d.]. Redis. https://redis.io/.

[11] Bulent Abali, Hubertus Franke, Xiaowei Shen, Dan E Pof, and T Basil

Smith. 2001. Performance of hardware compressed main memory.

In High-Performance Computer Architecture, 2001. HPCA. The Seventh

International Symposium on. IEEE, 73ś81.

[12] Alaa R Alameldeen and David A Wood. 2004. Frequent pattern com-

pression: A signiicance-based compression scheme for L2 caches.

(2004).

[13] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s

talk about storage & recovery methods for non-volatile memory data-

base systems. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data. ACM, 707ś722.

[14] Jens Axboe. 2014. Fio-lexible IO tester. URLhttp://freecode.com/

projects/io.

[15] Mary Baker, Satoshi Asami, Etienne Deprit, John Ouseterhout, and

Margo Seltzer. 1992. Non-volatile memory for fast, reliable ile systems.

In ACM SIGPLAN Notices. ACM, 10ś22.

[16] Meenakshi Sundaram Bhaskaran, Jian Xu, and Steven Swanson. 2013.

Bankshot: Caching slow storage in fast non-volatile memory. In Pro-

ceedings of the 1st Workshop on Interactions of NVM/FLASH with Oper-

ating Systems and Workloads. ACM, 1.

[17] Adrian M Caulield, Arup De, Joel Coburn, Todor I Mollow, Rajesh K

Gupta, and Steven Swanson. 2010. Moneta: A high-performance stor-

age array architecture for next-generation, non-volatile memories. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium

on Microarchitecture. IEEE Computer Society, 385ś395.

[18] Joel Coburn, Adrian M Caulield, Ameen Akel, Laura M Grupp, Ra-

jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:

making persistent objects fast and safe with next-generation, non-

volatile memories. ACM Sigplan Notices 46, 3 (2011), 105ś118.

[19] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,

Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O

through byte-addressable, persistent memory. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles. ACM,

133ś146.

[20] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.

ACM, 143ś154.

[21] Fernando J Corbato. 1968. A paging experiment with the multics system.

Technical Report. Massachusetts Institute of Technology.

[22] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. 2009. PDRAM: A

hybrid PRAM and DRAM main memory system. In Proceedings of the

46th Annual Design Automation Conference. ACM, 664ś469.

[23] Xiangyu Dong and Yuan Xie. 2011. AdaMS: Adaptive MLC/SLC phase-

change memory design for ile storage. In Proceedings of the 16th Asia

and South Paciic Design Automation Conference. IEEE Press, 31ś36.

[24] Fred Douglis. 1993. The Compression Cache: Using On-line Compres-

sion to Extend Physical Memory. Usenix Winter.

[25] Aleksandar Dragojević, Dushyanth Narayanan, Edmund BNightingale,

Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Cas-

tro. 2015. No compromises: distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th Symposium on

Operating Systems Principles. ACM, 54ś70.

[26] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jef Jackson. 2014. System

software for persistent memory. In Proceedings of the Ninth European

Conference on Computer Systems. ACM, 15.

[27] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan

Sundaram, Nadathur Satish, Rajesh Sankaran, Jef Jackson, and Karsten

Schwan. 2016. Data tiering in heterogeneous memory systems. In

Proceedings of the Eleventh European Conference on Computer Systems.

ACM, 15.

[28] Ru Fang, Hui-I Hsiao, Bin He, C Mohan, and Yun Wang. 2011. High

performance database logging using storage class memory. In Proceed-

ings of the 2011 IEEE 27th International Conference on Data Engineering.

IEEE Computer Society, 1221ś1231.

[29] Inigo Goiri, Kien Le, Jordi Guitart, Jordi Torres, and Ricardo Bianchini.

2011. Intelligent placement of datacenters for internet services. In 2011

31st International Conference on Distributed Computing Systems. IEEE,

131ś142.

[30] Erik G Hallnor and Steven K Reinhardt. 2005. A uniied compressed

memory hierarchy. In High-Performance Computer Architecture, 2005.

HPCA-11. 11th International Symposium on. IEEE, 201ś212.

[31] James Hamilton. [n. d.]. Overall data center costs. https://perspectives.

mvdirona.com/2010/09/overall-data-center-costs/.

[32] Sarah Harris and David Harris. 2015. Digital design and computer

architecture: arm edition. Morgan Kaufmann.

[33] Y Hu, Z Zhu, I Neal, Y Kwon, T Cheng, V Chidambaram, and EWitchel.

2018. TxFS: Leveraging File-System Crash Consistency to Provide

ACID Transactions. In USENIX Annual Technical Conference (ATC) .

[34] Jian Huang, Anirudh Badam, Moinuddin K Qureshi, and Karsten

Schwan. 2015. Uniied address translation for memory-mapped SSDs

with FlashMap. In ACM SIGARCH Computer Architecture News. ACM,

580ś591.

[35] JianHuang, Karsten Schwan, andMoinuddin KQureshi. 2014. NVRAM-

aware logging in transaction systems. Proceedings of the VLDB Endow-

ment 8, 4 (2014), 389ś400.

[36] Intel. 2017. Application latency comparison, Introduc-

tion to Programming with Persistent Memory from In-

tel. https://software.intel.com/en-us/articles/introduction-to-

programming-with-persistent-memory-from-intel.

[37] Theodore Johnson and Dennis Shasha. 1994. 2Q: a low overhead high

performance bu er management replacement algorithm. In Proceedings

of the 20th International Conference on Very Large Data Bases. 439ś450.

[38] Norman P Jouppi, Clif Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al

Borchers, et al. 2017. In-datacenter performance analysis of a tensor

processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th

Annual International Symposium on. IEEE, 1ś12.

[39] Ju-Young Jung and Sangyeun Cho. 2013. Memorage: Emerging persis-

tent ram based malleable main memory and storage architecture. In

Proceedings of the 27th international ACM conference on International

conference on supercomputing. ACM, 115ś126.

https://www.arangodb.com/
https://www.heliontech.com/comp_lzrw.htm
https://www.heliontech.com/comp_lzrw.htm
https://pmem.io/2016/02/22/pm-emulation.html/
https://pmem.io/2016/02/22/pm-emulation.html/
https://www.hpe.com/us/en/servers/persistent-memory.html
https://www.hpe.com/us/en/servers/persistent-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html.
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html.
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html.
http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
http://www.mapdb.org/
https://www.monetdb.org/Home
http://www.netlist.com/products/vault-memory-storage/expressvault-pcIe-ev3/default.aspx
http://www.netlist.com/products/vault-memory-storage/expressvault-pcIe-ev3/default.aspx
https://redis.io/
URL http://freecode. com/projects/fio
URL http://freecode. com/projects/fio
https://perspectives.mvdirona.com/2010/09/overall-data-center-costs/
https://perspectives.mvdirona.com/2010/09/overall-data-center-costs/
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel

SYSTOR ’19, June 3ś5, 2019, Haifa, Israel I. Narayanan and A. Ganesan et al.

[40] Sudarsun Kannan, AdaGavrilovska, Vishal Gupta, and Karsten Schwan.

2017. Heteroos: Os design for heterogeneous memory management

in datacenter. In ACM SIGARCH Computer Architecture News. ACM,

521ś534.

[41] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and

Greg Ganger. 2017. Viyojit: Decoupling battery and DRAM capacities

for battery-backed DRAM. In ACM SIGARCH Computer Architecture

News. ACM, 613ś626.

[42] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and

Anand Sivasubramaniam. 2011. HybridStore: A cost-eicient, high-

performance storage system combining SSDs and HDDs. In Modeling,

Analysis & Simulation of Computer and Telecommunication Systems

(MASCOTS), 2011 IEEE 19th International Symposium on. IEEE, 227ś

236.

[43] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and

Onur Mutlu. 2013. Evaluating STT-RAM as an energy-eicient main

memory alternative. In Performance Analysis of Systems and Software

(ISPASS), 2013 IEEE International Symposium on. IEEE, 256ś267.

[44] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett

Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File

System. In Proceedings of the 26th Symposium on Operating Systems

Principles. ACM, 460ś477.

[45] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009.

Architecting phase change memory as a scalable dram alternative. In

ACM SIGARCH Computer Architecture News. ACM, 2ś13.

[46] Eunji Lee, Hyokyung Bahn, and Sam H Noh. 2013. Unioning of the

bufer cache and journaling layers with non-volatile memory.. In FAST,

Vol. 13.

[47] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,

Steven K Reinhardt, and Thomas F Wenisch. 2009. Disaggregated

memory for expansion and sharing in blade servers. In ACM SIGARCH

Computer Architecture News. ACM, 267ś278.

[48] K Lim, P Ranganathan, J Chang, C Patel, T Mudge, and S Reinhardt.

2008. Understanding and Designing New Server Architectures for

Emerging Warehouse-Computing Environments. In International Sym-

posium on Computer Architecture.

[49] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-

Yuan Michael Wang. 2014. NVM Duet: Uniied working memory

and persistent store architecture. In n Proceedings of the International

Conference on Architectural Support for Programming Languages and

Operating Systems.

[50] Zhuo Liu, Bin Wang, Patrick Carpenter, Dong Li, Jefrey S Vetter, and

Weikuan Yu. 2012. PCM-based durable write cache for fast disk I/O. In

Modeling, Analysis & Simulation of Computer and Telecommunication

Systems (MASCOTS), 2012 IEEE 20th International Symposium on. IEEE,

451ś458.

[51] Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D

Flouris, and Angelos Bilas. 2010. Using transparent compression to

improve SSD-based I/O caches. In Proceedings of the 5th European

conference on Computer systems. ACM, 1ś14.

[52] EP MARKATOS. 1996. Implementation of a Reliable Remote Memory

Pager. In USENIX 1996 Annual Technical Conference.

[53] Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and

Parthasarathy Ranganathan. 2012. Enabling eicient and scalable

hybrid memories using ine-granularity DRAM cache management.

IEEE Computer Architecture Letters 11, 2 (2012), 61ś64.

[54] Microsoft Server and Cloud Platform Team . 2015. Microsoft

Reinvents Datacenter Power Backup with New Open Compute Project

Speciication. https://blogs.technet.microsoft.com/hybridcloud/2015/

03/10/microsoft-reinvents-datacenter-power-backup-with-new-

open-compute-project-speciication/.

[55] Timothy Prickett Morgan. 2015. NVDIMM price. https:

//www.nextplatform.com/2015/12/07/nvdimm-cant-wait-for-

3d-xpoint-cant-rely-on-dram-alone/.

[56] Iyswarya Narayanan, Aman Kansal, and Anand Sivasubramaniam.

2017. Right-Sizing Geo-distributed Data Centers for Availability and

Latency. In 2017 IEEE 37th International Conference on Distributed Com-

puting Systems (ICDCS). IEEE, 230ś240.

[57] Iyswarya Narayanan, Aman Kansal, Anand Sivasubramaniam, Bhu-

van Urgaonkar, and Sriram Govindan. 2014. Towards a leaner geo-

distributed cloud infrastructure. In 6th {USENIX} Workshop on Hot

Topics in Cloud Computing (HotCloud 14).

[58] Iyswarya Narayanan, DiWang, Myeongjae Jeon, Bikash Sharma, Laura

Caulield, Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine

Khessib, and Kushagra Vaid. 2016. SSD failures in datacenters: What?

when? andwhy?. In Proceedings of the 9th ACM International on Systems

and Storage Conference. ACM, 7.

[59] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H Noh. 2012.

Caching less for better performance: balancing cache size and update

cost of lashmemory cache in hybrid storage systems.. In FAST, Vol. 12.

[60] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons,

Michael A Kozuch, and Todd C Mowry. 2012. Base-delta-immediate

compression: practical data compression for on-chip caches. In Pro-

ceedings of the 21st international conference on Parallel architectures

and compilation techniques. ACM, 377ś388.

[61] Gennady Pekhimnko, Vivek Seshadri, Yoonqu Kim, Hongyi Xin, Onur

Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry.

2013. Linearly compressed pages: a low-complexity, low-latency main

memory compression framework. In Microarchitecture (MICRO), 2013

46th Annual IEEE/ACM International Symposium on. IEEE, 172ś184.

[62] Moinuddin K Qureshi, Michele M Franceschini, Luis A Lastras-

Montaño, and John P Karidis. 2010. Morphable memory system: A

robust architecture for exploiting multi-level phase change memories.

In ACM SIGARCH Computer Architecture News. ACM, 153ś162.

[63] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers.

2009. Scalable high performance main memory system using phase-

change memory technology. In Proceedings of the International Sympo-

sium on Computer Architecture (ISCA).

[64] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page

placement in hybrid memory systems. In Proceedings of the interna-

tional conference on Supercomputing. ACM, 85ś95.

[65] Drew Robb. 2018. SSD and Flash in Enterprise Storage Environ-

ments. http://www.enterprisestorageforum.com/storage-technology/

ssd-in-enterprise-storage-environments.html.

[66] Kevin Simon. 2018. Project Natick: Microsoft’s Self-suicient Under-

water Datacenters. IndraStra Global 4, 6 (2018), 4.

[67] Hyeonho Song and Sam H. Noh. 2018. Towards Transparent and

Seamless Storage-As-You-Go with Persistent Memory. In 10th USENIX

Workshop on Hot Topics in Storage and File Systems (HotStorage

18). USENIX Association, Boston, MA. https://www.usenix.org/

conference/hotstorage18/presentation/song

[68] Irina Chihaia Tuduce and Thomas Gross. 2005. Adaptive main memory

compression. In Proceedings of the annual conference on USENIX Annual

Technical Conference. USENIX Association, 29ś29.

[69] Eric Van Hensbergen and Ming Zhao. 2006. Dynamic policy disk

caching for storage networking. (2006).

[70] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and

Roy H Campbell. 2011. Consistent and durable data structures for non-

volatile byte-addressable memory. In Proceedings of the 9th USENIX

conference on File and stroage technologies. USENIX Association, 5ś5.

[71] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum.

1996. Operating system support for improving data locality on CC-

NUMA compute servers. In ACM Sigplan Notices. ACM, 279ś289.

https://blogs.technet.microsoft.com/hybridcloud/2015/03/10/microsoft-reinvents-datacenter-power-backup-with-new-open-compute-project-specification/
https://blogs.technet.microsoft.com/hybridcloud/2015/03/10/microsoft-reinvents-datacenter-power-backup-with-new-open-compute-project-specification/
https://blogs.technet.microsoft.com/hybridcloud/2015/03/10/microsoft-reinvents-datacenter-power-backup-with-new-open-compute-project-specification/
https://www.nextplatform.com/2015/12/07/nvdimm-cant-wait-for-3d-xpoint-cant-rely-on-dram-alone/
https://www.nextplatform.com/2015/12/07/nvdimm-cant-wait-for-3d-xpoint-cant-rely-on-dram-alone/
https://www.nextplatform.com/2015/12/07/nvdimm-cant-wait-for-3d-xpoint-cant-rely-on-dram-alone/
http://www.enterprisestorageforum.com/storage-technology/ssd-in-enterprise-storage-environments.html
http://www.enterprisestorageforum.com/storage-technology/ssd-in-enterprise-storage-environments.html
https://www.usenix.org/conference/hotstorage18/presentation/song
https://www.usenix.org/conference/hotstorage18/presentation/song

Geting More Performance with Polymorphism from EMT SYSTOR ’19, June 3ś5, 2019, Haifa, Israel

[72] Kashi Venkatesh Vishwanath, Albert Greenberg, and Daniel A Reed.

2009. Modular data centers: how to design them?. In Proceedings of the

1st ACM workshop on Large-Scale system and application performance.

ACM, 3ś10.

[73] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,

Venkatanathan Varadarajan, Prashant Saxena, and Michael M

Swift. 2014. Aerie: Flexible ile-system interfaces to storage-class

memory. In Proceedings of the Ninth European Conference on Computer

Systems. ACM, 14.

[74] Haris Volos, Andres Jaan Tack, andMichael M Swift. 2011. Mnemosyne:

Lightweight persistent memory. In ACM SIGARCH Computer Architec-

ture News. ACM, 91ś104.

[75] Jian Xu and Steven Swanson. 2016. NOVA: a log-structured ile sys-

tem for hybrid volatile/non-volatile main memories. In Proceedings of

the 14th Usenix Conference on File and Storage Technologies. USENIX

Association, 323ś338.

[76] Jian Xu, Lu Zhang, AmirsamanMemaripour, Akshatha Gangadharaiah,

Amit Borase, Tamires Brito Da Silva, Steven Swanson, andAndy Rudof.

2017. NOVA-Fortis: A fault-tolerant non-volatile main memory ile

system. In Proceedings of the 26th Symposium on Operating Systems

Principles. ACM, 478ś496.

[77] Dongliang Xue, Chao Li, Linpeng Huang, Chentao Wu, and Tianyou

Li. 2018. Adaptive Memory Fusion: Towards Transparent, Agile Inte-

gration of Persistent Memory. In 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA). IEEE, 324ś335.

[78] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-

son. 2015. Mojim: A reliable and highly-available non-volatile memory

system. In ACM SIGARCH Computer Architecture News. ACM, 3ś18.

[79] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and

energy eicient mainmemory using phase changememory technology.

In Proceedings of the International Symposium on Computer Architecture

(ISCA).

[80] Yanqi Zhou, Henry Hofmann, and David Wentzlaf. 2016. CASH:

Supporting IaaS customers with a sub-core conigurable architecture.

In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual Interna-

tional Symposium on. IEEE, 682ś694.

[81] Jacob Ziv and Abraham Lempel. 1978. Compression of individual

sequences via variable-rate coding. IEEE transactions on Information

Theory 24, 5 (1978), 530ś536.

	Abstract
	1 Introduction
	2 The Need To Exploit Polymorphism
	2.1 Why Functional Polymorphism?
	2.2 Why Representational Polymorphism?

	3 Polymorphic EMT Design
	3.1 Using Functional Polymorphism
	3.2 Using Representational Polymorphism

	4 Prototyping PolyEMT
	5 Evaluation
	5.1 PolyEMT convergence time
	5.2 Performance benefits of polymorphism
	5.3 Adapting to dynamic phase changes
	5.4 Cost benefits of polymorphism

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

