
Efficient Attribute Recommendation with Probabilistic
Guarantee

Chi Wang
Microsoft Research, Redmond WA

wang.chi@microsoft.com

Kaushik Chakrabarti
Microsoft Research, Redmond WA

kaushik@microsoft.com

ABSTRACT
We study how to efficiently solve a primitive data exploration prob-
lem: Given two ad-hoc predicates which define two subsets of a
relational table, find the top-K attributes whose distributions in
the two subsets deviate most from each other. The deviation is
measured by ℓ1 or ℓ2 distance. The exact approach is to query the
full table to calculate the deviation for each attribute and then sort
them. It is too expensive for large tables. Researchers have pro-
posed heuristic sampling solutions to avoid accessing the entire
table for all attributes. However, these solutions have no theoretical
guarantee of correctness and their speedup over the exact approach
is limited. In this paper, we develop an adaptive querying solu-
tion with probabilistic guarantee of correctness and near-optimal
sample complexity. We perform experiments in both synthetic and
real-world datasets. Compared to the exact approach implemented
with a commercial DBMS, previous sampling solutions achieve up
to 2× speedup with erroneous answers. Our solution can produce
25× speedup with near-zero error in the answer.

KEYWORDS
Multi-dimensional data; Exploratory analysis; Sampling
ACM Reference Format:
Chi Wang and Kaushik Chakrabarti. 2018. Efficient Attribute Recommenda-
tion with Probabilistic Guarantee. In Proceedings of ACM SIGKDD Confer-
ence (KDD’18). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3219819.3219984

1. INTRODUCTION
Data analysts and data scientists explore and analyze relational
datasets to answer business questions, spot insights and find pat-
terns. To analyze a dataset with many attributes, one of the most
important initial steps is to identify a few attributes worthy of ex-
ploration. This step requires significant manual effort from a skilled
data scientist [23, 24]. It is of tremendous value to sharply reduce
that effort via automated techniques [3, 13, 14, 20].

In this paper, we study an attribute recommendation problem:
find the top-K attributes ranked by their distribution’s deviation
in two ad-hoc subsets of a relational table. We present an example
scenario hereby.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’18, August 19–23, 2018, London, United Kindom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219984

0
20
40
60
80

100

male female

Fr
ac
tio

n
of

us
er
s(
%)

Gender

frequent
rare

mobile desktop

DeviceType

frequent
rare

Fig. 1. The distribution of Gender and DeviceType among frequent
and rare users of S1 in Example 1

Example 1. (Deviation-based Attribute Recommendation)
Consider a simple database that stores customer information in
a single table with hundreds of columns: (CustomerId, Gender,
AgeGroup, DeviceType, S1MinsUsed, S2StorageUsed. . .) Each row
corresponds to a customer. It stores the customer’s demographic
information (e.g., gender) as well as her product usage behavior
(e.g., S1MinsUsed where S1 is a service/product of the company).

Suppose a marketer wants to conduct a marketing campaign to
drive up the usage of S1. She wants to understand the difference
between the frequent users of S1 (say, ‘S1MinsUsed > 1000’) and
the rare users (’S1MinsUsed < 10’), so that she can target the cam-
paign more specifically. To achieve this, she looks for attributes
of which the distribution among the frequent users deviates from
the distribution among the rare users. For example, Figure 1 shows
the distribution of Gender and DeviceType in the two subsets. The
distributions of Gender across the two subsets deviate less than De-
viceType. Thus the latter is more interesting in this example. Manu-
ally checking each attribute’s distribution and comparing them is a
burden. A system to recommend top-K attributes is helpful for users
to quickly identify a small number of interesting attributes. □

Several deviation-based attribute ranking functions (referred to
as utility functions) have been validated in visual data exploration
systems [10, 19, 22]. One example of such utility function is the
Euclidean distance: Given an attribute A and two subsets defined
by predicate P1 and P2, the Euclidean distance can be computed
from the result of the following two SQL queries:
SELECT A,COUNT(∗) FROM T WHERE P1 GROUP BY A
SELECT A,COUNT(∗) FROM T WHERE P2 GROUP BY A

as ∥p1 − p2∥2, where p1 and p2 are normalized count vectors from
the two group-by queries. Given the utility function, our focus is
to find the top-K attributes efficiently.
Deficiency in the state-of-the-art: A straightforward approach
is to execute the SQL queries for each attribute, and compute and

https://doi.org/10.1145/3219819.3219984
https://doi.org/10.1145/3219819.3219984
https://doi.org/10.1145/3219819.3219984

KDD’18, August 19–23, 2018, London, United Kindom Chi Wang and Kaushik Chakrabarti

sort the utility of them. For large tables with many records, this
approach (which we will refer to as exact approach) has high latency.

SeeDB [22] explores the idea of reducing data access by sam-
pling. It leverages the Successive-Accept-Reject (SAR) algorithm
designed for the best arm identification from a multi-armed bandit
(MAB) [5]. In a MAB, an arm is defined to be a sampler from an
unknown distribution over real values. One can ‘pull an arm’, i.e.,
acquire a sample, for unlimited times. The samples are called ob-
served rewards, and the distribution is called reward distribution.
Given multiple arms with unknown reward distributions, SAR can
iteratively pull the arms to sample rewards, and eventually return
top-K arms ranked by the expectation of reward distribution, with
high probability. The attribute recommendation problem cannot be
exactly reduced to a MAB problem, but SeeDB executes the SAR
algorithm in the following heuristic way. It creates an arm for each
attribute, and partitions the rows of a table randomly into a few
equal sized parts. Whenever the SAR algorithm pulls an arm, it
calculates the utility of the corresponding attribute in one unused
partition as an ‘observed reward’ of the arm.When all partitions are
used, it terminates the algorithm and returns the top-K attributes
ranked by the mean of ‘observed rewards.’ This heuristic MAB
modeling suffers two issues.
• No guarantee of the correctness, even probabilistically. The expec-
tation of the utilities calculated from each partition is not equal to
the utility calculated from the entire table. Therefore, the returned
K attributes can deviate significantly from the actual top-K with
unbounded chance, which makes the results untrustworthy.
• High sampling rate. The number of data partitions has to be small
in order to limit the overhead of querying partitions. Applying
SAR in this situation does not reduce the amount of data access
significantly from the exact approach.

An alternative solution in [22] is to prune the arms using con-
fidence intervals based on the same MAB modeling. It suffers the
same issues. The high sampling rate issue is because the number of
‘observed rewards’ is too small to yield useful confidence interval.
These deficiencies suggest that a deeper exploration of the sampling
idea is required than the heuristic MAB modeling.
Our solution: We develop a rigorous and efficient adaptive query-
ing solution. First, we propose a more accurate approach to estimate
the utility. As opposed to averaging the utility calculated from each
partition, we first aggregate the SQL query results from each par-
tition, and then calculate the utility from the aggregated result. It
is ensured that when all partitions are used for an attribute, the
utility estimator is unbiased. The new estimator also allows new
modeling of the sampling process, so that each row can be mod-
eled as a sample unit rather than each partition. Based on that, we
invent new analytic techniques for calculating confidence intervals.
Our derived interval is 3-4 orders of magnitude shorter than the
previous result when a partition has 106 to 108 rows. That makes
the confidence intervals informative during the adaptive query-
ing. From the confidence intervals, we can identify ‘competing
attributes’ (some but not all of them are plausible top-K). We adap-
tively choose the most uncertain attribute among them to query
until there is no competing attribute. Our algorithm is simple to
implement but difficult to analyze. We prove both correctness and
sample complexity of our algorithm with probabilistic guarantee.
Furthermore, we prove the sample complexity is near optimal.

Example 2. (Illustration of Adaptive Querying)
Suppose the table in Example 1 has 100 attributes and 100M rows.
The goal is to find top-5 attributes with largest Euclidean distance
utility. Suppose the table is randomly partitioned into 10 equal sized
parts, each containing 10M random rows. When two ad-hoc predi-
cates are given as input, we first execute the 200 group-by queries
(corresponding to 100 attributes) on partition 1. We compute the
utility’s confidence interval for attributes A1 − A100, as depicted
in the left plot of Figure 3 (A6 − A100 have similar confidence in-
tervals). Next, instead of querying all attributes on partition 2, our
adaptive querying algorithm will iteratively select one attribute to
query. In this particular case, A5 and A6 are competing attributes
(the exact definition is in Section 3.1) and A5 has longer confidence
interval. So it selects A5 as the first attribute to query using par-
tition 2. The group-by results from partition 1 and 2 for A5 are
summed up group-wise, and the estimation of its utility is updated.
If it finds no overlap between the confidence intervals of A1 −A5
and A6 − A100, it stops querying more attributes. That saves 99%
queries to partition 2. Note that the result of the query is unknown
when the attribute is selected, and the above situation happens only
probabilistically. So the analysis of the algorithm is difficult. □

Our contributions can be summarized as follows:
• We present the first adaptive querying algorithm that is guaran-
teed to return correct top-K attributes with high probability. Its
sample complexity is near optimal. (Section 3)
• We present novel analytic techniques to derive confidence interval
for two common deviation-based utility functions. The results are
the first of its kind. (Section 4)
• We conduct an extensive empirical study on real-life and synthetic
datasets. Our approach demonstrates 25× speedup with almost no
error. We also provide ablation study to prove that both the new
adaptive querying algorithm and the new confidence interval cal-
culation are critical for the superior performance. (Section 5)

2. PROBLEM STATEMENT
We first define the attribute recommendation problem (Section 2.1).
We then describe the adaptive-querying system architecture and
isolate the technical problem we solve in this paper (Section 2.2).

2.1. Attribute Recommendation
Explorationmodel. As is standard in OLAP and in visual analytic
tools, we consider databases with a snowflake schema. The user
conducts data exploration over either a single table or the result of
join of tables involved in the schema. For simplicity, we explain our
techniques in the context of a single table T . The user can invoke
the recommendation functionality for two ad-hoc subsets of the
rows in T . The subsets are defined by predicates containing any
expression except nested queries. So the two subsets can overlap,
and one of them can be the full table (with empty predicate). The
recommendation system returns a small number of attributes, and
users study one individual attribute at a time. These assumptions
are similar to previous work and suffice for many data exploration
tasks [22, 24]. Furthermore, the user can also apply transformation
to attributes (e.g., binning for numeric attributes), and choose a
subset of C attributes for consideration. We refer to the set as
candidate attributes and denote as A = {A1, . . . ,AC }.

Efficient Attribute Recommendation with Probabilistic Guarantee KDD’18, August 19–23, 2018, London, United Kindom

Data Source User Application

Attribute
Recom-

mendation
Middle-
ware

DBMS with
Partitioned

Data
T0, . . . ,TS

one-time preprocess

predicates

T U , P1, P2, Ktop-K attributes

result Qi,a (Txa−1)

P1, P2, Aa, xa

x times

Fig. 2. Attribute recommendation based on querying randomly
partitioned data. The partition is done offline

Utility function for attribute ranking. Given two predicates P1
and P2, the goal is to find attributes whose distribution in the two
subsets filtered by P1 and P2 have largest deviation. Normalized
ℓ1 (a.k.a. total variation or earth mover distance) and ℓ2 (a.k.a.
Euclidean distance) are two effective metrics of deviation [22]:

ℓ1 = 1
2 ∥p1 − p2∥1, ℓ2 =

1
√

2
∥p1 − p2∥2 ∈ [0, 1] (1)

where pi ≜
(
mi j
mi

)ca
j=1

,mi j denotes the number of tuples with j-th

value in attributeAa satisfying Pi ,mi =
∑c1
j=1mi j the total number

of tuples satisfying Pi , and ca the number of distinct values in Aa
(or the number of bins if Aa is a binned numeric attribute).

The main cost of computing the utility for an attribute is in
collecting its distribution under the two predicates, which can be
done in two group-by queries. To unify both utility functions in
the same form, we can define the utility of attribute Aa as Ua =
U (Q1,a (T),Q2,a (T)), where:
• Qi,a (T), i = 1, 2 is the result table from the query
SELECT Aa,COUNT(∗) FROM T WHERE Pi GROUP BY Aa

•U is ℓ1 or ℓ2 as defined in Eq. (1).
Definition 1. (Attribute Recommendation)
Given the utility functionU , P1, P2 and a positive integer K, return
I ⊂ [C] s.t. |I | = K and ∀a ∈ I,b ∈ [C] \ I,Ua ≥ Ub . □

2.2. System Architecture
The exact approach executes the queriesQi,a onT for each attribute
and then ranks them byU . The major cost is spent in executing the
group-by queries on the data of size Ω(CN), where N is the total
number of rows in T and C the number of candidate attributes. We
propose an adaptive querying solution to reduce the data access
but return correct answers with high probability.

Figure 2 depicts the system architecture. The system is imple-
mented as a middleware to run on top of any relational DBMS. The
system has two components, preprocessing and online recommen-
dation.
Preprocessing: At preprocessing time, the user points to the table
T on which she wants to conduct data exploration. The table can
reside in any platform (e.g., data warehouse, Hadoop). The system
reads the rows inT and randomly partitions them into S+1 horizon-
tal fragments T0,T1, . . . ,TS . The first fragment is small (e.g., 1%) in

1 2 3 4 5 6

0.4

0.6

0.8

1

Attribute

Es
tim

at
ed

ut
ili
ty

1 2 3 4 5 6

0.4

0.6

0.8

1

Attribute

Re
vi
se
d
ut
ili
ty

Fig. 3. Illustration of competing attributes. Red dots represent es-
timated top-K and alternative top-K in the two plots. Dots corre-
sponding to competing attributes (A5 and A6) change color

order for making a quick initial utility estimate of all attributes. The
remaining S fragments have equal expected size. We create a table
in the DBMS for each fragment (for joins on snowflake schema,
only the fact table needs to be materialized). More partitions imply
more flexibility to prune attributes early, but incur more roundtrip
overhead. To prevent performance regression in the worst case (i.e.,
all partitions need to be queried), S should be small enough (empir-
ically, around 10) to keep the total overhead ignorable compared
with querying the full table.
Online recommendation: The user specifies the predicates via a
data analytic application’s front end, like Tableau1 or Power BI4.
The application invokes the attribute recommendation algorithm
with a utility function U , predicates P1, P2 and a positive integer
K. The attribute recommendation algorithm iteratively executes
queries until it finds the top-K attributes with high probability. The
application can then present the results to the user. For example, a
visualization tool might present a chart for each returned attribute
explaining why that attribute is ranked high, like the bar chart
shown in Figure 1.
Technical problem: Let x denote the number of requests sent to
the DBMS by the attribute recommendation algorithm. Our goal is
to return true top-K attributes with probability at least 1 − δ (δ is a
positive constant between 0 and 1), while minimizing x .

3. ALGORITHM AND ANALYSIS
Our solution consists of an adaptive querying algorithm and a
technique for calculating confidence intervals. This section focuses
on the adaptive querying algorithm, named TopKAttr. Section 3.1
presents the algorithm, and Section 3.2 provides formal guarantee
of the algorithm’s correctness and sample complexity.

3.1. Algorithm
We introduce several definitions for the algorithm.
• Utility estimator. We define the utility estimator Ûa (xa) for at-
tribute Aa after the first xa partitions are queried for Aa as:

Ûa (xa) = U

(xa−1∑
i=0

Q1,a (Ti),
xa−1∑
i=0

Q2,a (Ti)

)
(2)

1http://www.tableau.com
4https://powerbi.microsoft.com

http://www.tableau.com
https://powerbi.microsoft.com

KDD’18, August 19–23, 2018, London, United Kindom Chi Wang and Kaushik Chakrabarti

After x DB requests x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8
A1’s estimation Û1 ± r1 0.50 ± 0.2 0.50 ± 0.2 0.50 ± 0.2 0.46 ± 0.12 0.46 ± 0.12 0.40 ± 0.08 0.40 ± 0.08 0.37 ± 0.05
A2’s estimation Û2 ± r2 - 0.45 ± 0.2 0.45 ± 0.2 0.45 ± 0.20 0.49 ± 0.12 0.49 ± 0.12 0.51 ± 0.08 0.51 ± 0.08
A3’s estimation Û3 ± r3 - - 0.70 ± 0.2 0.70 ± 0.20 0.70 ± 0.20 0.70 ± 0.20 0.70 ± 0.20 0.70 ± 0.20

Top-K set I - - {1,3} {1,3} {2,3} {2,3} {2,3} {2,3}
Alternative top-K set I ′ - - {2,3} {2,3} {1,3} {1,3} {1,3} {2,3}

Next attribute a∗ - - 1 2 1 2 1 Terminate

Table 1. Running TopKAttribute for Example 3

whereQi,a (T1)+Qi,a (T2) is defined to be group-wise summation of
counts for corresponding query results. For example, if Q1,a (T1) =
{(д1 : 2,д2 : 3)},Q1,a (T2) = {(д1 : 4,д3 : 1)}, then Q1,a (T1) +
Q1,a (T2) = {(д1 : 6,д2 : 3,д3 : 1)}. It is easy to see that Qi,a (T1) +
Qi,a (T2) = Qi,a (T1 ∪T2), and Ûa (S + 1) = Ua . Note that we do not
calculate the utility from each partition and then average them,
because in general,Ua ,

∑S
i=0 U (Q1,a (Ti),Q2,a (Ti))

S+1 .
• Confidence interval. To bound the estimation error, we define
ra (xa) as the confidence radius of utilityUa such that

Pr
[
|Ua − Ûa (xa)|≥ra (xa)

]
≤ δ̃ ≜

δ

C(S + 1) (3)

i.e., with confidence probability at least 1 − δ̃ , the true utility Ua
falls into the confidence interval [Ûa (xa)−ra (xa), Ûa (xa)+ra (xa)].
Our calculation technique of confidence interval is presented in
Section 4.
• Competing attributes. Consider a “bad luck” case for utility esti-
mation: We have overestimated all the current top-K utilities and
underestimated the others. We define revised utility under that bad
luck case as:

Ũa ≜

{
Ûa (xa) − ra (xa) a ∈ I

Ûa (xa) + ra (xa) a < I
(4)

i.e., we revise the current top-K utilities to be their lower confidence
bound, and others upper confidence bound. Then we define alter-
native top-K set I ′ as the set of top-K attributes ordered by revised
utility (tie is broken by preferring smaller index). We further define
I ⊕ I ′ ≜ (I \ I ′) ∪ (I ′ \ I) as the set of competing attributes.
Competing attributes are among top-K either under the current
estimation, or in the “bad luck” case, but not both. For example, in
Figure 3, I ′ = {A1,A2,A3,A4,A6}. The attributes in I \ I ′ (A5)
and I ′ \ I (A6) are competing. Intuitively, shrinking the longest
confidence interval among them (A5 in this example) has good
chance to reduce the competition. Section 3.2 will reveal that this
simple intuition leads to surprisingly good sampling efficiency.
In Algorithm 1, lines 1-5 query each attribute once using the first
partition. QueryDB(P1, P2,Aa ,xa) queries Txa−1 for attribute Aa .
The result for attributeAa is stored (line 3) and used to estimate the
utility (line 4). Line 5 calculates the confidence radius ra (xa). Lines
6-14 iteratively query the database until there is no competing
attribute. In each iteration, it first selects the attribute with the
longest confidence interval among competing attributes (lines 7-9),
and then updates its utility estimation (lines 10-13). In lines 7 and
8, tie is broken by preferring smaller index. In line 9, tie is broken

Algorithm 1: TopKAttr
Input:U , P1, P2, K
Output: Top-K attribute indices I

1 for a ∈ [C] do
2 xa ← 1;
3 (Q1,a ,Q2,a) ←QueryDB(P1, P2,Aa ,xa);
4 Estimate Ûa ← U (Q1,a ,Q2,a);
5 Calculate ra (xa);
6 repeat
7 I ← top-K attribute indices for {Ûa };
8 I ′ ← alternative top-K indices for {Ũa };
9 a∗ ← arg maxa∈I⊕I′ ra (xa);

10 xa∗ ← xa∗ + 1;
11 (Q1,a∗ ,Q2,a∗)+ =QueryDB(P1, P2,Aa∗ ,xa∗);
12 Update Ûa∗ ← U (Q1,a∗ ,Q2,a∗);
13 Update ra∗ (xa∗);
14 until I = I ′;

arbitrarily. The algorithm aggregates the query results (line 11)
before it updates the estimator (line 12). The specific formula in
lines 5 and 13 is presented in Section 4 (ref. Eq. (11)).
Example 3. (Running of TopKAttr in a toy example)
For illustration we use a simplified example of finding top-2 at-
tributes out of 3, i.e., C is 3 and K is 2. The true utility for A1 to A3
are 0.35, 0.5 and 0.8, and I∗ = {2, 3}. The number of equal-sized
partitions S = 10. The utility estimator, radius and other variables
during the algorithm are illustrated in Table 1. The first 3 DB re-
quests are for initialization. We see that the initial estimate toU1
and U2 are in the wrong order, but their confidence intervals over-
lap. Attribute A3 is among both current top-2 and alternative top-2,
so only A1 and A2 are competing. After the next DB request, A1’s
utility estimation is refined, yet A1 and A2 are still competing. A1
andA2 are selected to query in turn until their confidence intervals
are separate after the 8th DB request. The algorithm returns the
correct top-2 attributes. The sampling rate is roughly 5/30=17%. □
Via this toy example, we can see how the algorithm prioritizes
competing attributes and saves unnecessary query cost for non-
competing attributes (A3 is queried only once). In real applications,
the number of attributes will be much larger and the benefit will be
amplified. Also note that the set of competing attributes generally
varies as the adaptive querying goes on, though in this particular
example it remains the same.

Efficient Attribute Recommendation with Probabilistic Guarantee KDD’18, August 19–23, 2018, London, United Kindom

Symbol Meaning
Ts the (s + 1)-th random partition of table T
N number of rows in table T
C number of candidate attributes
a attribute index ranging from 1 to C
ca # distinct values or bins in Aa
Ua utility of attribute Aa
xa number of partitions queried for Aa
ra confidence radius ofUa
Ûa estimated utility for Aa
Ũa revised utility for Aa under a ‘bad luck’ case
β selectivity of the more selective predicate of P1 and P2
mi # rows selected by Pi in queried partitions
ni # rows selected by Pi in T

Table 2. Notations

3.2. Theoretical Guarantee
Themain theoretical results can be summarized as: (i) our algorithm
is proved to return correct top-K attributes with high probability,
and (ii) the sampling rate of our algorithm is near optimal.

3.2.1. Correctness. Let I∗ be the set of true top-K attributes’
indices, where the tie is broken by preferring smaller indicies.
Theorem 1. (Probabilistic Guarantee of Correctness)
With probability at least 1 − δ , the top-K attributes returned by
TopKAttr I = I∗.

Proof. We denote the event |Ua −Ûa (s)|≤ra (s) as oa,s . From Eq. (3),
we have Pr [¬oa,s]≤δ̃ .We useO to denote the event∩a∈[C],s ∈[S]oa,s .
According to the union bound,

Pr [O] = Pr
[
∩a∈[C],s ∈[S]oa,s

]
= 1 − Pr

[
∪a∈[C],s ∈[S]¬oa,s

]
≥1 −

∑
a∈[C],s ∈[S]

Pr [¬oa,s]≥1 −
∑

a∈[C],s ∈[S]

δ̃≥1 − δ

Now, assume O happens and Algorithm 1 returns with some I =
I ′. We prove I = I∗. To simplify notations, We omit (xa) when
referring to ra (xa).

From I = I ′, we know that mina∈I Ũa≥maxb<I Ũb . Thus,
∀a ∈ I,b < I, we have Ûa (xa) − ra≥Ûb (xb)+ rb . SinceO happens,
we also have Ûa (xa)−Ua≤ra ,Ub −Ûb (xb)≤rb . They together imply
Ua≥Ub . Due to the consistent tie breaker in I and I∗, I = I∗. □
A weaker quality measure than correctness is accuracy, which can
be defined as the fraction of true top-K attributes among the re-
turned top-K attributes, i.e. |I∩I

∗ |
K . Theorem 1 is also a strong

result for accuracy. It guarantees that with high probability, the al-
gorithm returns 100% accurate top-K attributes. TopKAttr is the first
randomized algorithm with provable guarantee for top-K attribute
recommendation.

3.2.2. Efficiency. The efficiency of the algorithm is mainly de-
termined by the sampling rate, as query processing is the main
cost. The analysis of efficiency is difficult due to the randomized
partition. There always exists some adversarial case in which the
sampling rate is 1. However, we prove probabilistic guarantee of
the sampling rate due to the following property:

Definition 2. (Square Root Convergence Rate)
A utility function has a square root convergence rate if its confi-
dence radius satisfies: ra (s) = O(m(s)−1/2 log 1

δ̃
), where m(s) de-

notes the number of rows in the first s partitions that satisfy the
more selective predicate of P1 and P2. We use β to denote the selec-
tivity of such predicate. □

Both ℓ1 and ℓ2 have this property, which is shown in Section 4.
Upper bound of sampling rate for our algorithm. Our upper
bound depends on the utility distribution of all attributes. LetU[i]
be the i-th largest utility among the C attributes. Intuitively, the
closer the utility of an attribute is to the boundary of top-K (U[K]
andU[K+1]), the harder it is to decide whether it is in I∗. We define
the utility gap of attribute Aa as:

∆a ≜

{
Ua −U[K+1] a ∈ I∗

U[K] −Ua a < I∗
(5)

To characterize the overall difficulty of detecting top-K, we define
j-th order density of a utility distribution as: ρ j ≜

∑C
a=1

1
∆ja

. The
higher the density is, the more “dense” the utilities are distributed
near the boundary of top-K, and the more difficult it is to find top-K.
Lemma 1. (Upper Bound of #Iterations Per Attribute)
With probability at least 1−δ , ∀a ∈ [C], the number of iterations xa
for attribute Aa to be selected for querying in Algorithm 1 satisfies:

xa ≤

⌈
S

(
C1

∆2
aβN

+
C2

∆aβ
√
βN
+

log(1/δ̃)
β2N

)⌉
(6)

where C1, C2 are small logarithmic factors O(log2 δ̃).

Proof. First, we prove by contradiction that when the event O (as
defined in the previous proof) happens, ra∗≥ ∆a∗

4 in every iteration.
Assume ra∗ < ∆a∗

4 . It is not hard to prove ra∗ > 0. So 0 < ra∗ <
∆a∗

4 .
We discuss the following 4 cases.
(i) a∗ ∈ I∗,a∗ ∈ I \ I ′. ∆a = Ua −U[K+1]. Since I ′ , I∗, there
exists a ∈ I ′ \ I∗. If a ∈ I, Ua≥Ûa − ra≥Ûa∗ − ra∗≥Ua∗ − 2ra∗ >
U[K+1]. If a < I,

Ua≥Ûa − ra≥Ûa + ra − 2ra
≥Ûa∗ − ra∗ − 2ra∗≥Ua∗ − 4ra∗ > U[K+1]

Both imply a ∈ I∗ as a contradiction.
(ii) a∗ ∈ I∗,a∗ ∈ I ′ \ I. ∆a = Ua −U[K+1]. Since I , I∗, there
exists a ∈ I \ I∗. If a < I ′, Ua≥Ûa − ra≥Ûa∗ − ra∗≥Ua∗ − 2ra∗ >
U[K+1] which is a contradiction. Ifa ∈ I ′, we know thatI ′ , I∗, so
there exists b ∈ I∗ \I ′. If b ∈ I,Ua≥Ûa −ra≥Ûb −rb≥Ûa∗ −ra∗ >
U[K+1] which is a contradiction. If b < I,Ua≥Ûa − ra≥Ûb + rb≥Ub .
The equality holds only if Ua = Ub and Ũa = Ũb . Since a ∈ I ′
and b < I ′, we have a < b. Then it implies a ∈ I∗, which is a
contradiction.
(iii) a∗ < I∗,a∗ ∈ I\I ′. ∆a = U[K]−Ua . Since I∗ , I, there exists
a ∈ I∗ \ I. If a ∈ I ′, Ua≤Ûa + ra≤Ûa∗ + ra∗≤Ua∗ + 2ra∗ < U[K]
which is a contradiction. If a < I ′, since I ′ , I∗, there exists
b ∈ I ′ \I∗. If b < I,Ua≤Ûa +ra≤Ûb +rb≤Ûa∗ +ra∗ < U[K] which
is a contradiction. If b ∈ I,Ua≤Ûa + ra≤Ûb − rb≤Ub . The equality
holds only if Ua = Ub and Ũa = Ũb . Since a < I ′ and b ∈ I ′, we

KDD’18, August 19–23, 2018, London, United Kindom Chi Wang and Kaushik Chakrabarti

have a > b. Then it implies a < I∗, which is a contradiction.
(iv) a∗ < I∗,a∗ ∈ I ′ \ I. ∆a = U[K] − Ua . Since I∗ , I ′, there
exists a ∈ I∗ \ I ′. If a ∈ I,

Ua≤Ûa + ra = Ûa − ra + 2ra
≤Ûa∗ + ra∗ + 2ra∗≤Ua∗ + 4ra∗ < U[K]

If a < I, Ua≤Ûa + ra = Ûa∗ + ra∗≤Ua∗ + 2ra∗ < U[K]. Both imply
a < I∗, which is a contradiction.

All the 4 cases lead to contradiction. So ra∗≥ ∆a∗
4 . That implies

ra (xa − 1)≥∆a4
(7)

because for xa to increase, a must be chosen as a∗ in some iteration.
By Definition 2, there exists a constant C0 s.t.

ra (xa − 1)≤ C0√
m(xa − 1)

log 1
δ̃

Combining with Eq. (7), we have:

m(xa − 1)≤
C2

0 log2 δ̃

ra (xa − 1)2
≤

16C2
0 log2 δ̃

∆2
a

(8)

By Hoeffding-Serfling inequality (Theorem 2.4 in [4]), with proba-
bility at least 1 − δ̃ ,

m(xa − 1)S
N (xa − 1) ≥ β −

√
−(S − xa + 1) log δ̃

2N (xa − 1)
(9)

We denote the event that the above equation is true for all a ∈ [C]
as O ′. We have: Pr [O ∩O ′]≥1 − δ̃C(S + 1) = 1 − δ . Now assume
that both O and O ′ happen. Eq. (8) and (9) imply:

xa ≤


⌈
S(C1

∆2
a βN

+
C2

∆a β
√
βN
+

log(1/δ̃)
β 2N)

⌉
∆a > ∆0

S ∆a ≤ ∆0

whereC1 = 16C2
0 log2 δ̃ ,C2 = 4C0 log2 δ̃ , and∆0 =

8C0 log(1/δ̃)√
2βN+

√
β 2N 2− N log δ̃

2

.

When ∆a≤∆0, C1
∆2
a βN

> 1. So with probability at least 1 − δ , Eq. (6)
is true for all a ∈ [C]. □

Theorem 2. (Upper Bound of Sampling Rate)
The sampling rate of Algorithm 1 has the following bound with
probability at least 1 − δ :

ϕ =
x

CS
≤
C1ρ2
CβN

+
C2ρ1

Cβ
√
βN
+

log(1/δ̃)
β2N

=

{
Õ(ρ2

CβN) ρ2 = Ω(1
β)

Õ(1
Cβ 2N) ρ2 = O(1

β)

where C1 and C2 are small logarithmic factors and omitted in the
Õ notation.

Proof. With Lemma 1, we sum up Eq. (6) for all a ∈ [C], and apply
the inequality ⌈x⌉≤x + 1 to prove the theorem. □

An important implication of this theorem is that the upper bound
of query cost ϕCN (i.e., the sample complexity) does not grow with
data size CN when density ρ2 and selectivity β are invariant. The
larger the table, the more speedup over the exact approach.
Lower bound of sampling rate for any algorithm. We prove
the following theorem with nearly matching lower bound.

Theorem 3. (Lower Bound of Sampling Rate)
Every algorithm requires Ω(ρ2

CβN) sampling rate to find top-K at-
tributes with probability at least 2/3.

Proof. To prove the case for ℓ2, we need the following ‘closeness-
test’ lemma (Theorem 1.2 in [6]): With b = max{∥p∥2, ∥q∥2}, it
requires Ω(

√
b
ϵ 2) samples to distinguish the case that p = q from the

case that ∥p − q∥2 > 2ϵ with success probability at least 2
3 .

It follows that, givenK pairs of unknown distributions (pa, qa),a ∈
[K] such that 1 = max{∥pa∥2, ∥qa∥2}, for each pair (pa, qa), using
fewer than Ω(1

ϵ 2) samples from each of pa and qa, no algorithm
can distinguish the two cases:

i. ∥pa − qa∥2 > 2ϵ and
ii. pa = qa.

Assume algorithm Alpha can correctly identify top-K attributes
with probability at least 2

3 . We design a tester Beta, which has a
special database to feed algorithm Alpha. First, we let C = 2K .
Attribute A1 to AK have cardinality d equal to the number of di-
mensions in pa. Attribute AK+1 to A2K are binary. A special binary
attributeA2K+1 is used for predicates and not included in candidate
attributes. Let Na,i, j , i ∈ [d], j ∈ {0, 1} be the number of rows in T
that have value i and j for attribute Aa and A2K+1 respectively. It
is not hard to construct a table T such that

Na,i, j

N
=



pa,i
2 a ∈ [K], i ∈ [d], j = 0

1
2 a ∈ [K + 1, 2K], i = 0, j = 0
0 a ∈ [K + 1, 2K], i = 1, j = 0
qa,i

2 a ∈ [K], i ∈ [d], j = 1
(1−ϵ/

√
2)

2 a ∈ [K + 1, 2K], i = 0, j = 1
ϵ

2
√

2
a ∈ [K + 1, 2K], i = 1, j = 1

Let P1 be the predicateA2K+1 = 0 and P2 beA2K+1 = 1. β = 1
2 . The

true ℓ2 utility for attribute K + 1 to 2K is ϵ√
2
, and the true ℓ2 utility

for attribute 1 to K is either 0 or larger than
√

2ϵ . For all a ∈ [C],
∆a ≥

ϵ√
2
. ∀a ∈ [K], attributeAa is among the true top-K attributes

if case i happens, and not among the true top-K if case ii happens.
After Alpha terminates, Beta outputs testing result for (pa, qa),a ∈

[K] in the following way: if a ∈ I, output case i; otherwise output
case ii. We know that Alpha can find true top-K attributes with
probability at least 2/3. Therefore, tester Beta can test between case
i and case ii with success probability at least 2/3, for all the pairs
(pa, qa),a ∈ [K]. By ‘closeness-test’ Lemma, the total number of
samples Beta needs for attributeAa is Ω(1

ϵ 2). It follows that the total
number of samples Alpha draws is Ω(Kϵ 2) = Ω(

∑2K
a=1

1
∆2
a
) = Ω(ρ2).

And the sampling rate is Ω(ρ2
CβN).

To prove the case for ℓ1, we need a different lemma about the
hardness of closeness test in ℓ1 distance (Theorem 1.1 in [6]). The
proof process is similar. □

Together with the upper bound, the theorem implies that our algo-
rithm is optimal when ρ2 = Ω(1

β), i.e., when the density dominates
the selectivity as the main source of difficulty.

Efficient Attribute Recommendation with Probabilistic Guarantee KDD’18, August 19–23, 2018, London, United Kindom

4. CONFIDENCE INTERVAL
Standard techniques of confidence interval estimation such as [15,
25] are not applicable to our problem, as we consider more complex
utility function than the mean of a set of numbers. Heuristic appli-
cation of the standard techniques as in SeeDB [22] results in biased
and uninformative confidence intervals. To resolve this challenge,
we develop a new technique for calculating confidence interval
with respect to the number of aggregated rows.

4.1. Derivation
We first present a new view of the utility estimator, which offers a
fine model of the relation between the utility and the data tuples.
For ease of discussion, we assume a and xa are given and use r , Û
and c as the abbreviations for ra (xa), Ûa (xa) and ca .

Let ni andmi be the number of tuples that satisfy Pi in T and
in the first xa partitions respectively. The utility depends on the
two sets of n1 and n2 tuples only. They are present in T0 to TS in a
random order, so each tuple can be modeled as a sample without
replacement. We define Zi ≜ (Zi j)nij=1 as the random permutation
vector where the variable Zi j ∈ [ni] indicates the j-th sample’s
index among theni tuples. Then, the estimator Û can be viewed as a
function of two permutation vectors of lengthn1 andn2 respectively.
Û is only sensitive to the firstmi elements in Zi , i = 1, 2.
Theorem 4. (Confidence Radius for ℓ1)
For ℓ1, the radius r ℓ1 can be calculated as:

r ℓ1 =
2∑

k=1

hk + дk
√√√

2 log
∑2
j=1
√
дj

δ̃
√
дk


hk ≜

1
2

√
(c − 1)(nk −mk)

mk (nk − 1)

дk ≜
1
mk

√√√
(nk −mk)

2
nk∑

j=nk−mk+1

1
j2
≤

√
nk −mk
mknk

(10)

Proof. In this proof,U refers to ℓ1(p1, p2), and Û = ℓ1(q1, q2). First,
by triangle inequality,

|∥q1 − q2∥1 − ∥p1 − p2∥1 |≤∥q1 − p1∥1 + ∥q2 − p2∥1

We define fk = ℓ1(qk , pk). Using Cauchy-Schwarz inequality,

∥q − p∥21 =(
c∑
i=1
|qi − pi |)

2 = (
c∑
i=1

|qi − pi |
√
pi

√
pi)

2

≤

c∑
i=1

(qi − pi)
2

pi

So by Jensen’s inequality, E[fk]≤hk = 1
2

√
(c−1)(nk−mk)
mk (nk−1) .

Second, we bound the maximal change of fk (Zk) = ∥qk − pk ∥1
with a perturbed permutation vector Zi jk , i ∈ [mk], j ∈ [mk + 1,nk]
(obtained by swapping Zki with Zk j). Without loss of generality,
we assume the i-th tuple has value 1 and j-th tuple has value 2 for
attribute Aa .

| fk (Zk) − f (Zi jk)| =
1
2

����|mk1
mk
−
nk1
nk
| + |

mk2
mk
−
nk2
nk
|

− |
mk1 − 1
mk

−
nk1
nk
| − |

mk2 + 1
mk

−
nk2
nk
|

���� ≤ 1
mk

Applying Lemma 2 in [11] to fk (Zk), we have:

Pr [fk − E[fk]≥ϵi]≤e
− ϵ2

2д2
k

Set ϵk = дk
√

2 log
∑2
j=1
√дj

δ̃
√
дk

. We have:

Pr [fk − E[fk]≥ϵk]≤

√
дk∑2

j=1
√
дj
δ̃⇒Pr [fk≥hk + ϵk]≤

√
дk∑2

j=1
√
дj
δ̃

With union bound,

Pr

[2∑
k=1

fk≥
2∑

k=1
hk + ϵk

]
≤Pr [∪2

k=1[fk≥hk + ϵk]]

≤

2∑
k=1

Pr [fk≥hk + ϵk]≤δ̃

Finally, due to |Û −U |≤
∑2
k=1 fk , we have Pr (|Û −U |≥rL1)≤δ̃ . □

Theorem 5. (Confidence Radius for ℓ2)
The radius r ℓ2 for ℓ2 follows Eq. (10), with hk ’s definition replaced
by hk ≜

√
(c−1)(nk−mk)
2cmk (nk−1) .

The proof is similar to the case of ℓ1 and omitted. It is easy to verify
the square root convergence rate.

4.2. Practical Discussion
The confidence intervals are dependent on n1 and n2, the number of
tuples satisfying the predicates P1 and P2. In general, these numbers
are unknown before the predicates are evaluated in the full data.
To apply the theorems, we can use the inequality nk≤N and дk <√

N−mk
mkN

to get an upper bound of the radius. However, N is a
rather rough bound of n. The following theorem offers a tighter
probabilistic upper bound of n.
Theorem 6. (Upper Bound of n)
With probability higher than 1 − δ̃

2 ,

nk ≤ max(ńk , n̂k), ńk ≜ N
©­«mk
M
+

√
ρM log(2/δ̃)

2M
ª®¬

n̂k ≜ N
©­«mk
M
+ σ̂k

√
2ρM log(10/δ̃)

M
+
z log(10/δ̃)

M

ª®¬
where M is the total number of tuples in the first xa partitions,

σ̂ ≜
√
mk (M−mk)

M , z = (7/3 + 3/
√

2), and

ρM ≜

{
1 − M−1

N M ≤ N
2

(1 − M
N)(1 +

1
M) M > N

2

Proof. We can prove it using Theorem 2.4 and 4.3 in [4], and union
bound. □

The dominant factor in our confidence radius is the inverse square
root of the aggregated rows, while the previous confidence radius
in [22] is dominated by the inverse square root of partitions. For

KDD’18, August 19–23, 2018, London, United Kindom Chi Wang and Kaushik Chakrabarti

Name Rows Attributes Size Partitions
TPCH3 300M 17 108G 10
TPCH6 600M 17 211G 10
TPCH12 1200M 17 410G 10
Flight 168M 77 58G 4
Prod 341M 225 195G 7

Table 3. Datasets

comparison, when a partition contains millions of rows, our result
can be tighter by 3 orders of magnitude. That difference has a big
impact on the effectiveness of sample-based pruning.

Note that our calculation method is agnostic of data distribu-
tions and has generic applicability. In practice, if we only keep
the dominating factor in the confidence interval calculation, it still
works well whenm is large. In experiments, we use the following
simplified formulas.

r ℓ1 =
2∑

k=1

√√√
(c − 1) log 2

δ̃

2mk (1 − M
N)
, r ℓ2 =

r ℓ1

c
(11)

5. EXPERIMENTAL EVALUATION
This section presents an experimental evaluation of the techniques
proposed in this paper. The goals of the study are: (a) compare the
TopKAttr algorithm with the exact approach and the state-of-the-
art approximate approaches and (b) isolate the individual impacts
of the adaptive querying algorithm and the confidence interval
calculation.

5.1. Experimental Setting
Datasets. We use both synthetic and real-world datasets.
• Synthetic data. We use the TPC-H benchmark2 and consider the
join of all the relations as the dataset to explore. We remove long
text fields that contain random strings, such as c_phone. We create
three TPC-H datasets of different size. They are named TPCH3,
TPCH6 and TPCH12, which contain 300, 600 and 1200 million rows.
• Flight. We use the flight on-time performance dataset from Bureau
of Transportation3. Each row is a flight record from 1987-2016.
The attributes can be categorized as time periods, airline, origin,
destination, departure and arrival performance, cancellations and
diversions, cause of delay, gate return information and so on.
• Prod. We use a production dataset from a large company. The
dataset contains user demographics such as gender and age groups,
and product usage activities aggregated in a period.

The statistics of the datasets are summarized in Table 3. Note
that our technique has an even larger advantage for datasets with
more than hundreds of columns. But such datasets are beyond the
reach of most relational DBMSs due to column size limitation, so
we do not include them in order to have a consistent evaluation
environment.
Test case generation. For each dataset, we generate random test
cases for the two utility functions. For each test case, we randomly

2http://www.tpc.org/tpch/default.asp
3https://www.transtats.bts.gov/Fields.asp?Table_ID=236

generate equality and range predicates covering different attributes,
with selectivity varying from 10−9 to 1. All categorical attributes
except predicate attributes are used as candidate attributes. We
enumerate the number K of top attributes to return in {1, 3, 5, 10},
as these are natural choices. We generate 1224 test cases in total.
An example test case is shown in Table 4.
Metrics.We evaluate efficiency and correctness. To evaluate effi-
ciency, we calculate the speedup of each sampling-based approach
over the exact approach. To evaluate correctness, we report the
error rate of each algorithm.
Methods compared.
• Exact approach. We use SQL Server 2016 which supports highly-
efficient columnstore, and enable multi-thread query processing.
We tried the sharing-based optimization proposed by [22], but did
not find any performance gain, probably due to the highly optimized
query processing by the DB engine. So this is a strong baseline.
Rowstore is too slow to query for these datasets.
• SeeDBCI. The sampling and pruning method proposed in [22]
based on confidence interval. Note that the definition of confidence
interval in [22] is different from this work, as discussed in Section 4.
• SeeDBMAB. The multi-armed bandit alike pruning in [22]. The
two SeeDB methods are the best known approximate methods.
• TopKAttr as outlined in Algorithm 1. δ ’s impact to the speedup
and error rate is negligible when it varies from 0.3 to 0.9. We fix
δ = 0.5 in experiments.
♢ RoundRobin. This is an algorithm for ablation study. The only
difference from TopKAttr is that it chooses attributes to query in a
round-robin fashion. It is implemented by replacing line 9 in Algo-
rithm 1 with a∗←a∗%C + 1.
♢ TopKAttrSeeDBCI. This is an algorithm for ablation study. The
only difference from TopKAttr is that it uses SeeDB’s definition of
confidence interval.

All the experiments are performed in a Azure VM with 16 cores.
For preprocessing, we need to choose the size of each partition
such that the overhead of sequentially querying partitioned data is
low. A good size can be found by an offline tuning process: use no
predicates, and increase the number of partitions until the overhead
is larger than a threshold (e.g., 10%). In our testing environment, we
found that 50-60 million rows in one partition is generally a good
size, and ended up with 10, 4 and 7 partitions for TPCH6, Flight
and Prod accordingly. TPCH3 and TPCH12 have the same partition
size as TPCH6, for the purpose of controlled comparison. All the
compared methods share identical preprocessing.

5.2. Comparison of Various Approaches
Figure 4 plots the tail distribution of the speedup in three datasets,
and the error rate in all testcases. For more than 85% test cases of
TPCH12, TopKAttr is 5-25× faster than the exact approach, and
the average speedup is 13×. In contrast, the highest speedup of
SeeDBCI and SeeDBMAB over the exact approach are 1.2× and
2.3×, and the average speedup is only 0.7× and 1.5× respectively.
It is surprising that the average speedup of SeeDBCI is below 1×.
A further investigation reveals that its average sampling rate is
above 96%, which is not low enough to counter the overhead due
to querying partitioned data. This confirms that the exact approach
using a mature commercial DBMS is not easy to beat.

http://www.tpc.org/tpch/default.asp
https://www.transtats.bts.gov/Fields.asp?Table_ID=236

Efficient Attribute Recommendation with Probabilistic Guarantee KDD’18, August 19–23, 2018, London, United Kindom

Question Input Top attributes Discovered insight
What distinguishes Alaska P1: UniqueCarrier=AS, DivReachedDest, Higher fraction of diverted flights
airline from other airlines P2 : ∅, Utility: Euclidean DestState, OriginState do not reach scheduled destination

Table 4. Example test case and result in Flight data; insight explained for attributes in bold

1 10
0

20
40
60
80

100

Speedup

%
te
st
ca
se
s

TPCH12

1 10
Speedup

Flight

1 10
Speedup

Prod

1 3 5 10
0

10

20

K

%
te
st
ca
se
sw

/e
rr
or

Error rate

TopKAttr SeeDBMAB SeeDBCI

Fig. 4. Tail distribution of log-scale speedup (the first three plots) and the error rate (the fourth plot) in all test cases

Regarding correctness, TopKAttr makes only 3 mistakes among
all 1224 test cases, resulting in a near-zero error rate 3/1224=0.00245.
The accuracy of these 3 top-K answers is 70%, 80% and 90%. As
a comparison, SeeDBCI and SeeDBMAB produce wrong top-K in
19% and 21% test cases respectively when K=10. The accuracy of
the wrong top-K answers from SeeDB is as low as 0%, 0%, 40%,
40% for K=1, 3, 5, 10 respectively. So the advantage of TopKAttr in
correctness is also significant.

In summary, TopKAttr is a clear winner in both efficiency and
correctness. It has a dominant speedup across all datasets, with
almost zero error.

5.3. Ablation Study
This section evaluates the impact of the two sources of efficiency
improvement in TopKAttr: the adaptive querying algorithm and
the confidence interval calculation. We compare with RoundRobin
(adaptive querying replaced) and TopkAttrSeeDBCI (the confidence
interval calculation replaced) to see the impact of removing each
source. Figure 5 shows the sampling rate of each algorithm. For
synthetic datasets, we vary the number of rows from 300M to 1200M
in TPCH3 to TPCH12 (Figure 5a). For example, the sampling rate
of TopKAttr, RoundRobin, SeeDBMAB and TopKAttrSeeDBCI for ℓ1
is 7%, 38%, 70% and 90% respectively in TPCH6. And we vary K
for Flight dataset (Figure 5b). For example, the sampling rate of
TopKAttr and RoundRobin for ℓ2 is 9% and 72% when K=3, whereas
the other two methods have close to 100% sampling rate.

From the result, it is clear that the sample size required by Top-
KAttr is significantly lower than competing methods, which ex-
plains the superior performance in efficiency. Moreover, both the
confidence interval calculation and the adaptive querying algo-
rithm are critical. When proper confidence interval is used, the
adaptive selection of the next attribute to query is the key to saving
unnecessary cost. Comparing TopKAttr and RoundRobin, we see
more than 60% of the cost reduction due to the adaptation in Flight

0

0.5

1

300 600 1200
Rows (million)

Sa
m
pl
in
g
ra
te

L1

300 600 1200
Rows (million)

L2

(a) TPC-H

1 3 5 100

0.5

1

K

Sa
m
pl
in
g
ra
te

ℓ1

1 3 5 10
K

ℓ2

(b) Flight
TopKAttr RoundRobin
SeeDBMAB TopKAttrSeeDBCI

Fig. 5. The impact of adaptive querying and confidence interval

dataset. On the other hand, the algorithm does not work as well
when improper confidence interval is used – the performance of
TopkAttrSeeDBCI is worse than baseline as seen in Figure 5a.

KDD’18, August 19–23, 2018, London, United Kindom Chi Wang and Kaushik Chakrabarti

6. RELATEDWORK
We review related work in different areas.
Attribute recommendation. Research in modern exploratory
analysis of multi-dimensional data has recognized a growing de-
mand of automated query recommendation [21], which dates back
to two decades ago in the context of data cubes [18]. We mainly
review the attribute recommendation work in the ad-hoc explo-
ration setting. Hierarchical Clustering Explorer (HCE) [20] ranks
attributes to visualize distributions for 1 or 2 dimensions. The rank-
ing criteria include modality, entropy etc.. VizDeck [14] generates
all possible queries for 2-D visualizations of a dataset in a dashboard
and ranks them with a combination of heuristics and supervised
training. The features used for training include number of distinct
values, entropy, variation etc.. Voyager [24] shows all univariate
summaries for each attribute prior to user interaction. Once users
select some elements of the query, it suggests additional attributes
beyond those explicitly selected, without ranking. Anand and Tal-
bot [3] suggests one additional attribute to partition the data such
that conditional correlations between two attributes are revealed.
SeeDB [22] is the first work to handle large datasets, and it is ex-
tended by [10, 19] to explore numeric attributes.
Feature selection. Filter-based feature ranking algorithms are
commonly used for large datasets due to its computational effi-
ciency. Each feature is scored according to a ranking function,
such as chi-square and information gain [12]. The goal of feature
selection is to maximize the accuracy of a classifier or regressor
while minimizing the model complexity. Our goal is to recommend
attributes for data scientists to explore ad-hoc subsets and find
insights. Hence, both the ranking criterion and the data to compute
for the ranking (static training data v.s. ad-hoc subsets specified
via predicates) are different. These differences hinder application of
previous sampling techniques designed for feature selection, such
as [16], to attribute recommendation.
Multi-armed bandit. Researchers have studied the best arm iden-
tification problem, which aims to find the arms with highest ex-
pectation of reward using adaptive pulls of the arms [5, 7]. They
target applications where the reward is repeatedly sampled from a
distribution, such as scientific experiments and clinical trials. In our
problem, the ranking criterion is a function of samples and cannot
be directly sampled from a distribution, so these methods are not
applicable. But the adaptive sampling idea has inspired both [22]
and our work.
Sampling for data mining. As Cormode and Duffield [9] pointed
out, the interplay between sampling and data mining is an impor-
tant subject in the big data era, but not well understood in general. A
few recent studies represent the advances of sampling techniques in
frequent pattern mining [17], collaborative filtering [8], and graph
mining [2]. The problem of attribute recommendation bears similar-
ity to the problem of mining discriminative patterns [1] (of length 1).
Our confidence interval result and the adaptive sampling technique
can be potentially integrated with a pattern mining algorithm for
mining longer patterns.

7. CONCLUSION
In this work, we address the efficiency of attribute recommendation,
and develop a new solution based on the principle of adaptively

querying randomly partitioned data. Our solution has provable
correctness and near-optimal sample complexity with high proba-
bility. It vastly outperforms previous sampling approaches in both
correctness and efficiency.

Our techniques have a few other desirable traits, which make
thempromising to solve broader problems. First, although this paper
focuses on recommending top-K attributes, the algorithm and the
theoretical guarantee apply to the generic problem of finding top-K
utilities with square root convergence rate from algebraic queries.
Second, our confidence interval results enable robustly bounding
the error of sample-estimated statistical distances ℓ1 and ℓ2, which
are fundamental metrics in data mining.

Acknowledgments. We would like to thank Surajit Chaudhuri,
Vivek Narasayya, Christian Konig, Wentao Wu for their insightful
discussion, and the reviewers for their constructive feedback.

REFERENCES
[1] C. C. Aggarwal, and J. Han. Frequent Pattern Mining. Springer. 2014.
[2] N. K. Ahmed, N. Duffield, T. L. Willke, and R. A. Rossi. “On Sampling from

Massive Graph Streams.” Proc. VLDB Endow. 10 (11): 1430–1441. 2017.
[3] Anushka Anand, and Justin Talbot. “Automatic Selection of Partitioning Variables

for Small Multiple Displays.” IEEE Transactions on Visualization & Computer
Graphics 22 (1): 669–677. 2016.

[4] R. Bardenet, and O.-A. Maillard. “Concentration Inequalities for Sampling without
Replacement.” Bernoulli 21 (3): 1361–1385. Aug. 2015.

[5] S. Bubeck, T.Wang, andN. Viswanathan. “Multiple Identifications inMulti-Armed
Bandits.” In ICML’13. 2013.

[6] S.-O. Chan, I. Diakonikolas, G. Valiant, and P. Valiant. “Optimal Algorithms for
Testing Closeness of Discrete Distributions.” In SODA’14. 2014.

[7] S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen. “Combinatorial Pure Exploration
of Multi-Armed Bandits.” In NIPS’14. 2014.

[8] T. Chen, Y. Sun, Y. Shi, and L. Hong. “On Sampling Strategies for Neural Network-
Based Collaborative Filtering.” In KDD’17. 2017.

[9] G. Cormode, and N. Duffield. “Sampling for Big Data: A Tutorial.” In KDD’14.
2014.

[10] H. Ehsan, M. A. Sharaf, and P. K. Chrysanthis. “Efficient Recommendation of
Aggregate Data Visualizations.” IEEE Transactions on Knowledge and Data Engi-
neering 30 (2): 263–277. Feb. 2018.

[11] R. El-Yaniv, and D. Pechyony. “Stable Transductive Learning.” In COLT’06. 2006.
[12] J. Han, and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers. 2001.
[13] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer. “Profiler: Integrated

Statistical Analysis and Visualization for Data Quality Assessment.” In Proc. Intl.
Working Conf. on Advanced Visual Interfaces. AVI’12. 2012.

[14] A. Key, B. Howe, D. Perry, and C. Aragon. “VizDeck: Self-Organizing Dashboards
for Visual Analytics.” In SIGMOD’12. 2012.

[15] A. Kim, E. Blais, A. G. Parameswaran, P. Indyk, S. Madden, and R. Rubinfeld.
“Rapid Sampling for Visualizations with Ordering Guarantees.” PVLDB 8 (5). 2015.

[16] H. Liu, H. Motoda, and L. Yu. “A Selective Sampling Approach to Active Feature
Selection.” Artificial Intelligence 159 (1): 49–74. 2004.

[17] M. Riondato, and E. Upfal. “Mining Frequent Itemsets Through Progressive
Sampling with Rademacher Averages.” In KDD’15. 2015.

[18] S. Sarawagi. “Explaining Differences in Multidimensional Aggregates.” In
VLDB’99. 1999.

[19] T. Sellam, and M. Kersten. “Fast, Explainable View Detection to Characterize
Exploration Queries.” In SSDBM’16. 2016.

[20] J. Seo, and B. Shneiderman. “A Rank-by-Feature Framework for Interactive Ex-
ploration of Multidimensional Data.” Information Visualization 4 (2): 96–113.
2005.

[21] B. Tang, S. Han, M. L. Yiu, R. Ding, and D. Zhang. “Extracting Top-K Insights
from Multi-Dimensional Data.” In SIGMOD’17. 2017.

[22] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis. “SeeDB: Ef-
ficient Data-Driven Visualization Recommendations to Support Visual Analytics.”
Proc. VLDB Endow. 8 (13): 2182–2193. Sep. 2015.

[23] A. Wasay, M. Athanassoulis, and S. Idreos. “Queriosity: Automated Data Explo-
ration.” In Proc. IEEE Intl. Congress on Big Data. 2015.

[24] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer.
“Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recom-
mendations.” IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis). 2016.

[25] Y. Yan, L. J. Chen, and Z. Zhang. “Error-Bounded Sampling for Analytics on Big
Sparse Data.” In VLDB’14. 2014.

	Abstract
	1. Introduction
	2. Problem Statement
	2.1. Attribute Recommendation
	2.2. System Architecture

	3. Algorithm and Analysis
	3.1. Algorithm
	3.2. Theoretical Guarantee
	3.2.1. Correctness
	3.2.2. Efficiency

	4. Confidence Interval
	4.1. Derivation
	4.2. Practical Discussion

	5. Experimental Evaluation
	5.1. Experimental Setting
	5.2. Comparison of Various Approaches
	5.3. Ablation Study

	6. Related Work
	7. Conclusion
	References

