
Optimizing CNNs on Multicores for
Scalability, Performance and Goodput

Samyam Rajbhandari
The Ohio State University
rajbhandari.4@osu.edu

Yuxiong He Olatunji Ruwase
Michael Carbin Trishul Chilimbi

Microsoft Research
yuxhe,olruwase,micarbin,trishulc@microsoft.com

Abstract
Convolutional Neural Networks (CNN) are a class of Ar-
tificial Neural Networks (ANN) that are highly efficient at
the pattern recognition tasks that underlie difficult AI prob-
lems in a variety of domains, such as speech recognition,
object recognition, and natural language processing. CNNs
are, however, computationally intensive to train.

This paper presents the first characterization of the per-
formance optimization opportunities for training CNNs on
CPUs. Our characterization includes insights based on the
structure of the network itself (i.e., intrinsic arithmetic inten-
sity of the convolution and its scalability under parallelism)
as well as dynamic properties of its execution (i.e., sparsity
of the computation).

Given this characterization, we present an automatic
framework called spg-CNN for optimizing CNN training on
CPUs. It comprises of a computation scheduler for efficient
parallel execution, and two code generators: one that opti-
mizes for sparsity, and the other that optimizes for spatial
reuse in convolutions.

We evaluate spg-CNN using convolutions from a variety
of real world benchmarks, and show that spg-CNN can train
CNNs faster than state-of-the-art approaches by an order of
magnitude.

1. Introduction
Convolutional Neural Networks (CNN) are a class of Artifi-
cial Neural Networks (ANN) that are highly efficient at the
pattern recognition tasks that underlie difficult AI problems
in a variety of domains such as speech recognition, object
recognition, and natural language processing [13, 15, 17, 32,
34, 38–41, 48, 49].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08-12, 2017, Xi’an, China

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037745

CNNs are computationally intensive to train, especially
for the most challenging tasks. For example, state-of-the-art
CNNs [12, 14, 20] perform billions of floating-point op-
erations on each training input, and must process millions
of inputs to attain good task accuracies. The time to train a
model is therefore on the order of days or weeks. Moreover,
because CNNs are designed iteratively, it may require mul-
tiple months to reach a final model after multiple training
iterations.

Our work focuses on developing an automatic framework
for improving CNN performance on multi-core CPUs. The
motivation for this focus (as opposed to a focus on GPUs
or FPGAs) is twofold: 1) Modern multi-core CPUs are eas-
ily accessible and they can have more than a teraflop of
peak performance (Eg. Xeon Processor E7-8895 v3), which
is enough to train medium and moderately large CNNs in
reasonable time. 2) There is an abundance of multi-core
CPU clusters — which are used in state-of-the-art large
CNNs [12, 20] — that are easily accessible to both aca-
demic community and industry. Performance improvements
on CPUs therefore simultaneously benefits many low-, mid-,
and high-end users.

1.1 Convolutional Neural Networks
In a traditional ANN, the input for a recognition problem
is represented as an array of floating-point values (e.g., pix-
els for image classification) and passed into a stack of layers.
Each layer computes a non-linear function of either the prob-
lem’s input or the output of the previous layer. The multi-
dimensional output of a layer is composed of neurons, where
each neuron first computes a linear function (parameterized
by a set of coefficients or weights) of all the outputs of the
previous layer. The neuron then applies a non-linear function
to that result.

A CNN differs from a traditional ANN in that each neu-
ron connects to only a small region of the previous layer.
Moreover, the neurons of a layer in a CNN are grouped into
feature maps, in which all neurons in a feature map apply
the exact same function (or feature) to its corresponding in-
put region.

267

Figure 1: CNN performance characteristics of using
Unfold+Parallel-GEMM as a function of AIT (≈ 2× Num-
ber of features) and sparsity with respect to scalability, good-
put and single core performance. The design space is di-
vided into six regions. The figure shows their different per-
formance characteristics and the optimization techniques of
our work (depicted in bold) for improving them. In addi-
tion, it illustrates regions that real world image classifica-
tion benchmarks (ImageNet-22k, ImageNet-1K, CIFAR-10,
MNIST) occupy in the convolution space.

For CNN training on multi-core CPUs, state-of-the-art
CNN infrastructures such as CAFFE [33], Theano [7],
Torch7 [16], Chainer [1], CNTK [2], and TensorFlow [5]
all implement convolution computation using a process we
refer to as Unfold+Parallel-GEMM [8], where inputs are
unfolded to cast it as a matrix-multiply (MM). The result-
ing MM is computed efficiently by linking to third party
Basic Linear Algebra Subprogram Libraries (BLAS) such
as MKL [30], ATLAS [53] or OpenBLAS [54], which offer
highly optimized Parallel-GEMM (General Matrix Multi-
ply) implementations for multi-core CPUs.

1.2 Performance Characterization
Fig. 1 presents a characterization of the performance of
Unfold+Parallel-GEMM as a function of the arithmetic in-
tensity and sparsity of the CNN’s computation.

• Arithmetic Intensity (AIT) — the ratio of number of
arithmetic operations to the number of memory operations
in a computation. A high AIT is necessary to get high
performance because memory operations are slower than
arithmetic operations.

• Sparsity — the fraction of elements in a data array that
are zeros. High sparsity in the data means that a naive exe-
cution approach performs many computationally intensive

operations that could instead be elided without affecting
the computation’s correctness.

Based upon the AIT and Sparsity of a convolution com-
putation, we define three performance characteristics of
Unfold+Parallel-GEM: scalability, single core performance,
and goodput.

Scalability: Unfold+Parallel-GEMM scales poorly when
the MM corresponding to a convolution computation does
not have high AIT to begin with (Fig. 1, Region 2, 3, 4
and 5). We show that as we increase the number of cores,
the number of arithmetic operations in Parallel-GEMM per
core reduces proportionately, while the number of memory
operation does not, resulting in a reduced AIT per core.

Single Core Performance: While large convolutions
have adequate AIT to achieve high single core performance
using Unfold+Parallel-GEMM (Fig. 1, Region 0, 1, 2 and
3), small and medium convolutions exhibit poor single core
performance due to very low AIT (Fig. 1, Region 4 and 5).
We show that the unfolding increases the number of memory
operations, and thus reduces AIT.

Goodput: We define goodput as the rate of useful work in
a computation. For example, it is possible to simultaneously
achieve high throughput and low goodput if most of the
computation is avoidable. Because CNN computations often
involve sparse data, Unfold+Parallel-GEMM’s dense MM
results in poor goodput. (Fig. 1, Region 1, 3 and 5).

1.3 Optimization Framework for CNNs
We present spg-CNN, an optimization framework for CNNs
that achieves high Scalability, Performance and Goodput.
spg-CNN consists of three key components that work col-
lectively to address the three limitations of Unfold+Parallel-
GEMM.

• GEMM-in-Parallel: spg-CNN improves scalability over
Parallel-GEMM by running multiple instances of single-
threaded GEMM in parallel (Fig. 1 Region 2, and 3). This
simple re-scheduling prevents AIT reduction when scaling
to multiple cores.

• Stencil-Kernel: spg-CNN improves single-core perfor-
mance over Unfold+Parallel+GEMM for small convolu-
tions where unfolding results in very low AIT. We develop
a new approach inspired by stencil computations [19],
which computes CNN through direct convolution without
unfolding, exploits spatial reuse of inputs and improves
AIT (Fig. 1 Region 4 and 5).

• Sparse-Kernel: spg-CNN improves the goodput of sparse
CNN computations over Unfold+Parallel-GEMM and its
sparse variants [30] (Fig. 1 Region 1, 3 and 5). Sparse
GEMM libraries are effective when both input matrices
are highly (> 95%) sparse [43], but the inputs of CNN
computations are typically a moderately (50−95%) sparse
matrix and a dense one. spg-CNN incorporates a pointer
shifting technique to compose a sparse convolution as a

268

series of small and dense MMs, performing computation in
place without unfolding. Additionally, it generates efficient
SIMD instructions, and exploits locality enhancing sparse
data structures, to achieve high goodput on sparse and
dense inputs.

Given a CNN, spg-CNN generates codes and chooses the
fastest among Parallel-GEMM, GEMM-in-Parallel, Sparse-
Kernel and Stencil-Kernel for the forward-propagation (FP)
and back-propagation (BP) phases of each layer, optimizing
the training time. For CNNs with different network struc-
tures, spg-CNN generates the best configurations based on
their performance characteristics.

1.4 Contributions
This paper makes the following contributions:

• Performance Characterization. We systematically an-
alyze the CNN performance of using Unfold+Parallel-
GEMM with respect to scalability, single-core perfor-
mance and goodput in a clear design space based on AIT
and sparsity, show its limitations and identify the root
causes (Section 3).

• Optimization Framework. We develop spg-CNN, an op-
timization framework for CNNs, which introduces and
integrates three key components, i) an alternate sched-
ule using GEMM-in-Parallel, improving scalability, ii) a
stencil-based code generator, improving per-core perfor-
mance, and iii) a sparse code generator, exploiting sparsity
and improving goodput, into a unified code generator that
produces optimized codes for various CNN computations
(Section 4).

• Evaluation: We evaluate spg-CNN using the CNN train-
ing frameworks Adam [12] and Caffe [33]. The results
show performance improvements of up to 16x on con-
volutions from real-world benchmarks such as ImageNet-
22K, ImageNet-1K, CIFAR-10 and MNIST. The results
also show an end-to-end speed up of 8.3x on CIFAR-10
image recognition benchmark (Section 5).

2. Background
In this section we present the basic elements of Artificial
Neural Networks, Convolution Neural Networks, and the
contemporary methods for training these networks.

2.1 Artificial Neural Networks (ANN)
An ANN comprises of a stack of layers each of which is a
group of neurons.

Layers and Neurons: A layer, denoted by Al+1, is a
group of neurons in which each neuron in the layer com-
putes a non-linear function of the outputs of neurons in the
preceding (lower) layer. A neuron Al+1[i] specifically ap-
plies a non-linear function (φ) to a linear combination of the
outputs of the layer below (Al) using a set of weights (W).

Al+1[i] = φ

∑
j

Al[j]×W [i, j]

 (1)

Forward Propagation (FP): FP evaluates an entire net-
work to compute the network’s result on an input. It com-
putes the network’s result by successively computing the
output activations of the neurons of each layer based on the
previous layer activations.

Backward Propagation (BP): BP computes the error
gradients of a network’s weights with respect to a loss func-
tion It works backwards from the output layer, using the
chain rule to compute the error gradient of each weight in
a lower layer as a function of the upper layers.

Stochastic Gradient Descent: ANNs are often trained
using stochastic gradient descent (SGD). For an input ex-
ample and corresponding target output, stochastic gradient
descent executes FP to compute the network’s output and
then executes BP to compute error gradients of the weights.
SGD then multiplies the error gradient of each weight by the
value of the input connected to that weight to produce the
delta weights. The delta weights are the updates that SGD
applies to the existing weights to produce an updated model.
Training then proceeds by repeating the procedure on a new
input example with the updated model.

2.2 Convolutional Neural Network (CNN)
A CNN is a sub-class of ANNs where neurons in a layer are
only connected to neurons in its local surroundings in the
previous layer, and the weights are shared.

Layers and Neurons: Fig. 2a shows an example of a
convolution on a two dimensional image of size 3 × 3 with
two input features (Channel 0 and Channel 1), corresponding
to, for example, the red and blue channels of the image. The
convolution has two output features, Feature 0 and Feature 1,
Each feature has individual sets of weights that correspond
to each input feature. The weights for the first feature are
the top two matrices under the Weights column whereas the
weights for the second feature are the bottom two matrices.
The kernel size of each output feature is 2× 2, which is the
size of each weight matrix.

To produce the first element of Feature 0, the convolution
computes the inner product of the sub-region of Channel
0 within the black boundary and the feature’s weights that
correspond to that channel. The convolution then sums this
result with the inner product of the sub-region of Channel
1 within the black boundary and the feature’s weights that
correspond to that channel.

FP: A fully general convolution operation in two di-
mensions is represented using a convolution kernel of 5-
tuple 〈Nf , Fy, Fx, sy, sx〉. This convolution operation can
be mathematically written as

O[f, y, x]=

Nc,Fy,Fx∑
c,ky,kx=0

I[c, y×sy+ky, x×sx+kx]×W [f, c, ky, kx] (2)

269

(a) 2D Convolution
(b) Unfolding (c) MM O = W · UT

Figure 2: (a) An example of a 2D convolution using a 2× 2 kernel with 2 input features of size 3× 3 and 2 output features. (b)
Unfolding a 2D image with two channels for convolving with a 2× 2 convolution kernel. (c) MM O =W ·UT representing a
2D convolution using a 2× 2 kernel with 2 output features.

where O and I represent the output and input activations,
y and x are the spatial coordinates of the output activation,
f represents the features of the output activations, c repre-
sents the features of the input activations, sy and sx are the
strides along y and x, and ky and kx represents the kernel
coordinates (weights corresponding to connections that are
a distance of ky and kx from the output neuron along y and
x dimensions). We use Nf , Nc, Fy and Fx to represent the
number of output features, number of input features, kernel
width along y dimension and kernel width along x dimen-
sion, respectively.

BP and SGD: Just as with ANNs, SGD updates the
network weights using the error gradients computed by BP.
For a given layer, Eq. 3 computes the error in the input
activations (EI) based on the errors of the output activations
(EO), and Eq. 4 computes the corrections to the weights
(dW) using the input activations I and the error in the output
activations (EO).Ny andNx represent the spatial size of the
output activations along y and x dimensions.

EI [c, y, x]=

Nf ,Fy,Fx∑
f,ky,kx=0

EO[f,
y−ky

sy
,
x−kx

sx
]×W [f, c, ky , kx]

(3)

dW [f, c, ky , kx]=

Ny,Nx∑
y,x=0

EO[f, y, x]×I[c, y×sy+ky , x×sx+kx]

(4)

2.3 Executing CNNs
The state-of-the-art execution method for CNNs is to use a
two-step process [8] that we term Unfold+Parallel-GEMM.
We describe this method in FP as below, and BP calculations
are done with similar transformation but in the reverse order.

(1) Unfold: The first step is to unfold the input activation
vector into a matrix. Fig. 2b illustrates the input activation
unfolding procedure for the convolution presented in Fig. 2a.
For each input channel, the unfolding procedure flattens the
inputs to each kernel application into a row vector. The
sequential concatenation of each row vector produces the
unfolded representation of a channel. In the last step of

unfolding, the procedure stacks each unfolded input channel
from left to right to produce the final unfolded input matrix.

(2) Matrix Multiply: The second step performs a matrix-
matrix multiplication, with one matrix consisting of the
layer’s weights and the other consisting of the unfolded acti-
vations, as shown in Fig. 2c. It constructs the weight matrix
by stacking row vectors that correspond to the flattened rep-
resentation of the weights for each feature. For example,
the black box of the matrix titled “Weights” in the figure
highlights the flattened representation of the weights of the
first feature (which includes weights for both Channel 0 and
Channel 1).

3. Performance Characterization
We categorize CNNs based on arithmetic intensity (AIT)
and sparsity, and characterize the performance of using
Unfold+Parallel-GEMM in terms of 1) single-core perfor-
mance, 2) multi-core scalability and 3) goodput. This study
exposes a range of performance issues of the current ap-
proach and guides the design of spg-CNN. We produced all
of the experimental results presented in this section on an
Intel(R) Xeon(R) CPU E5-2650 with 16 cores with a peak
performance of 41.6GFlops per core. For MM, we used the
OpenBLAS library.

3.1 Single-Core Performance
Unfold+Parallel-GEMM’s unfolding procedure can reduce
the maximum achievable fraction of the intrinsic AIT of the
convolution operation, therefore resulting in poor single core
performance (Fig. 1 Region 4 and 5). The AIT of a convo-
lution is |A|

|I|+|W |+|O| , where |A| is the number of arithmetic
operations and |I| + |W | + |O| is the number of memory
accesses. The sets I , W , and O correspond to the input acti-
vations, weights, and output activations, respectively. Their

270

sizes are calculated as follows:

|A| = 2NfNxNyNcFyFx (5)

|I| = NxNyNc (6)

|W | = NfFxFyNc (7)

|O| = Nf (Nx − Fx + 1)(Ny − Fy + 1) . (8)

The unfolding procedure increases the size of the ac-
tivations by approximately a factor of FxFy . In addition,
the unfolded inputs need to be stored before the MM, dou-
bling the number of memory access to the unfolded input.
Therefore, the minimum number of memory accesses of
Unfold+Parallel-GEMM is 2|U | + |W | + |O|, where U is
the unfolded inputs with size

|U | = (Nx − Fx + 1)(Ny − Fy + 1)NcFxFy .

The resulting fraction of the intrinsic AIT of convolution
that Unfold Parallel-GEMM can achieve is at most r, where

r =
|I|+ |W |+ |O|
2|U |+ |W |+ |O|

.

There are two dominant axes on which the fraction of in-
trinsic AIT achieved via Unfold+Parallel-GEMM changes:

• Kernel Size: When convolution kernel size is much
smaller than the input dimensions (with Fx � Nx and
Fy � Ny), increase in the kernel size reduces r. How-
ever, as the size of the convolution kernels approaches
the size of the input dimensions (with Fx = Nx and
Fy = Ny at the limit), the convolution itself more closely
resembles a matrix multiply (r ≈ 1).

• Output Feature Count: As output feature count (Nf)
increases, the number of memory accesses in the convo-
lution are dominated by those to the weights (r ≈ 1).

Table. 1 illustrates the relationship between these dimen-
sions and the AIT of Unfold+Parallel-GEMM. Specifically,
Unfold+Parallel-GEMM achieves a higher fraction of the in-
trinsic AIT of the convolution for larger kernel sizes and
larger output feature counts because either little unfolding
is required (larger kernel size) or the overhead of unfold-
ing is diminished by the size of the weights (output feature
count). However, small CNNs suffer from poor single-core
performance due to very low AITs caused by the unfolding
process.

3.2 Multicore Scalability
On shared-memory multicore systems, large MM achieves
near peak performance, and scales perfectly to all cores us-
ing Parallel-GEMM (Fig. 1 Region 0 and 1). However, there
is a subspace of MM that renders sub-optimal performance,
or scaling, or both (Fig. 1 Region 2, 3, 4 and 5), because of
low AIT per core.

Fig. 3a presents the absolute performance per core and
scalability for Parallel-GEMM corresponding to different

ID Nx(= Ny), Nf , Nc, Fx(= Fy) Intrinsic AIT Unfold+GEMM Region (Reg)
0 32,32,32,4 362 25 4,5
1 64,1024,512,2 2015 725 0,1
2 256,256,128,3 1510 226 2,3
3 128,128,64,7 3561 113 2,3
4 128,512,256,5 6567 456 2,3
5 64,64,16,11 1921 44 4,5

Table 1: Different Convolutions, their intrinsic AIT, the AIT
corresponding to Unfold+GEMM, and the region in Fig. 1
that they belong to. These benchmarks were chosen to repre-
sent convolutions with high, moderate and low AIT, arching
over a full spectrum of convolutions spanned by kernel size
and number of features. For varying levels of sparsity, these
six benchmarks cover the entire performance characteriza-
tion space shown in Fig. 1.

convolution operations. We timed the execution of three MM
corresponding to FP, gradient calculations and delta-weight
calculations and calculated the GFlops per core. Each curve
in the plot shows a different convolution.

Fig. 3a shows that Parallel-GEMM does not scale linearly
in the number of cores. The AIT of MM depends on the size
of the matrix. Specifically, MM of two square matrices of
size n × n has 2n3 arithmetic operations and at least 3n2

load + store operations. MM therefore has an AIT of at most
2n
3 . While scaling Parallel-GEMM to multiple cores evenly

divides the total number of operations of the MM across the
cores, it does not do the same for loads to and stores from
per core private memory. This reduces the AIT per core.

AIT per Core : This is calculated by dividing the total
amount of computation done per core by the number of
memory load and stores to its private memory (L2 cache).

For instance consider a square MM where two square
input matrices A and B of size n×n are multiplied together
to produce matrix C also of size n×n. The AIT of this MM
is 2n

3 . On a dual-core machine, each core can compute half
of output matrix C. Computing half of C requires either half
of A and entire B, or entire A and half of B, depending on
whether C is partitioned along row, or column. Therefore,
the AIT per core is 0.5×2n×n×n

0.5n×n+n×n+0.5n×n = n
2 resulting in a

reduction from 2n
3 . Scaling to larger number of cores further

reduces the AIT per core. Thus, we see poor scalability in
Fig. 3a as we increase the number of threads.

3.3 Goodput
The conventional approach to BP uses dense MM to com-
pute error activations and delta-weight updates. One of the
inputs to both of these calculations is the output activation
error, denoted as EO in Eq. 3 and Eq. 4. EO represents cor-
rections to the original activations of the layer. In many neu-
ral network models, these corrections tend to be sparse, with
few non-zero elements. When a network exhibits high spar-
sity, dense MM is inefficient because a significant portion of
the computation is multiplying and adding zero values.

In the presence of sparsity, we define efficiency in terms
of goodput. Goodput is the rate of doing non-zero compu-

271

0
10
20
30
40
50

1 2 4 8 16Pe
rfo

rm
an
ce
	P
er
	C
or
e	

(G
Fl
op

s)

Number	of	Cores
ID:0	Reg:	4,	5	 ID:1	Reg:	0,	1 ID:2	Reg:	2,	3
ID:3	Reg:	2,	3 ID:4	Reg:	2,	3 ID:5	Reg:	4,	5

(a) Parallel-GEMM Scalability

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Sp
ar
sit
y

Epochs

MNIST CIFAR ImageNet	100

(b) Sparsity across Epochs

Figure 3: (a) Scalability of Parallel-GEMM on up to 16
cores for convolutions shown in Table. 1. (b) Sparsity across
multiple epochs for three CNN benchmarks.

tation (Eq. 9). By assuming that only the output activation
error in BP calculation is sparse, we establish an upper limit
on the goodput of Parallel-GEMM(Eq. 10), which we refer
to as the goodput of Parallel-GEMM based BP.

Goodput =
Number of NonZero Flops

T imeElapsed
(9)

≤ (1.0− Sparsity)× Throughput . (10)

For BP of real world DNN benchmarks, the goodput
of Parallel-GEMM is significantly smaller than through-
put because there is high level of sparsity in BP. Fig.3b
shows sparsity in activation errors across multiple training
epochs for three real world benchmarks, MNIST, CIFAR and
ImageNet-100. After the second epoch, all three benchmarks
have a sparsity level of more than 85% in their activation er-
rors. Further, as the model becomes more accurate, these
activation errors become even sparser.

At this level of sparsity, dense GEMM goodput is at most
15% of the throughput. For example, if dense GEMM has a
throughput of 60 GFops per core, then the goodput is only
9 GFlops, while the remaining 51 Gflops is wasted in zero
calculations. In Fig. 1, regions 1, 3 and 5 have poor goodput.

4. Optimization Framework
This section presents spg-CNN, a CNN training optimiza-
tion framework. Motivated by Sec. 3, spg-CNN introduces
and integrates three techniques specified below into a unified
optimization framework, generating optimized codes cover-
ing various CNN computations with different characteris-
tics. The CNN description to spg-CNN can be specified us-
ing Google Protocol Buffer [3] similar to how CAFFE [33]
describes its inputs.

Stencil-Kernel: Improve single-core performance for
convolutions with smaller kernel sizes and fewer output fea-
tures through custom-generated stencil-based kernels for FP.
These kernels avoid unfolding and therefore avoid the AIT
reduction that unfolding introduces.

GEMM-in-Parallel: Improve multicore scalability by
running single-threaded GEMM on multiple training in-
puts in parallel. This technique avoids the AIT reduction

that arises from partitioning the computation via Parallel-
GEMM.

Sparse-Kernel: Improve the goodput for sparse mod-
els through custom-generated sparse-based kernels for BP.
These kernels elide computations on zero values that have
no effect on the convolution’s result.

We next describe each of our techniques in the order of
their relative complexity to facilitate readability.

4.1 GEMM-in-Parallel
We improve the scalability of convolutions on multi-core
hardware using GEMM-in-Parallel: multiple instances of
single-threaded GEMM run concurrently on different cores.
GEMM-in-Parallel performs better than Parallel-GEMM be-
cause inputs are not divided across cores, and so, per-core
AIT (and therefore performance) stays the same.

Evaluation: Fig.4a shows the scalability of GEMM-in-
Parallel, depicting the absolute performance per core with
varying core number from 1 to 16. The results show the per-
formance per core is roughly steady, and drops by< 15% on
average. In contrast, the average performance drop per core
for Parallel-GEMM is> 50% (Fig.3a). Fig.4b shows the rel-
ative speedup of GEMM-in-Parallel over Parallel-GEMM.
The relative speedup grows with more cores, indicating bet-
ter scalability. Also, convolutions with fewer output features
benefit more from GEMM-in-Parallel because their low AIT
is further reduced by Parallel-GEMM on more cores.

4.2 Sparse-Kernel
Our framework takes advantage of the sparsity in error gradi-
ents to improve BP goodput by using sparse kernels to com-
pute error gradients and weight deltas. These kernels exploit
efficient data representation, vectorization, cache and TLB
optimization as well as a new pointer shifting technique, to
achieve high goodput on sparse and dense inputs. Sparse
convolution is performed in place, without unfolding, as a
composition of small and dense MMs.

Sparse Data Representation: Error gradients are stored
in Column Tiled-Compressed Sparse Row (CT-CSR), our
adaption of the popular CSR format for sparse matrices. In
CSR, a sparse matrix is stored using three arrays: i) value
array for storing non-zero values, ii) column index array for
storing column indices of the non-zero values, and iii) row
index array for storing the starting position of each row in
the data array or column index array. In CT-CSR, the sparse
matrix is tiled along columns, and each tile is stored in CSR
(see Fig. 5a). CT-CSR provides better locality than CSR by
tiling along both row and column of the sparse matrix to
enable greater reuse of tile elements (in both dimensions).

Another advantage of CT-CSR is the reduction in TLB
misses when accessing elements within a tile. In CT-CSR
elements of two adjacent rows within a tile are also adja-
cent in memory. Without this explicit tiling, elements corre-
sponding to two adjacent rows may be far apart depending
on the column width of the entire matrix requiring two TLB

272

0

10

20

30

40

50

1 2 4 8 16

Pe
rfo

rm
an
ce
	P
er
	C
or
e	

(G
Fl
op

s)

Number	of	Cores

(a) Scalability of GEMM-in-Parallel on up to 16 cores.

0.5

1

2

4

8

1 2 4 8 16Sp
ee
d	
Up

	o
ve
r	P
ar
al
le
l-

GE
M
M

Number	of	Cores

(b) Relative Speed Up of GEMM-in-Parallel over Parallel-GEMM

0
5
10
15
20
25
30
35

1 2 4 8 16

Pe
rfo

rm
an
ce
	p
er
	C
or
e

(G
Fl
op

s)

Number	of	Cores

(c) Scalability and Performance of Stencil-Kernel (FP).

0.5

1

2

1 2 4 8 16

Sp
ee
d	
Up

	o
ve
r	G

EM
M
-in

-
Pa
ra
lle
l

Number	of	Cores

(d) Speed up of Stencil-Kernel (FP) over GEMM-in-Parallel.

0

50

100

150

200

250

0.5 0.7 0.9

Go
od

pu
t	(
Gf
lo
ps
/s
ec
)

Sparsity
ID:0 ID:1 ID:2 ID:3 ID:4 ID:5

(e) Goodput of Sparse-Kernel (BP) as a function of sparsity.

0.25

1

4

16

64

0 0.5 0.75 0.88 0.94 0.97 0.99

Sp
ee
d	
Up

	o
ve
r	G

EM
M
-

in
-P
ar
al
le
l

Sparsity
ID:0 ID:1 ID:2 ID:3 ID:4 ID:5

(f) Speed up from Sparse-Kernel (BP) over GEMM-in-Parallel

Figure 4: The set of figures shows absolute performance for six dense convolutions, goodput for six sparse convolutions, and
relative speedups over baselines achieved using the three optimization techniques in spg-CNN. Each convolution is labeled
using an ID in the legend. The convolution specification and the Region that it belongs to can be identified by looking up the
ID in Table. 1. Fig. a and b indicate that GEMM-in-Parallel significantly improves scalability in Region 2 (ID: 2, 3 and 4).
Fig. c and d show that Stencil-Kernel (FP) significantly improves performance in Region 4 (ID: 0 and 5). Fig. e and f show
significant goodput improvement in Regions 1 (ID: 1), 3 (ID: 2, 3 and 4), and 5 (ID: 0 and 5).

lines to access them. Thus, CT-CSR reduces the number of
TLB entries required to hold the tile in cache, resulting in a
reduction in TLB misses.

spg-CNN generates efficient AVX vector instructions us-
ing Intel Intrinsics, that vectorize across the dense input, op-
timize for cache locality, and reduce TLB misses. Our local-
ity optimization techniques are similar to [26].

Vectorization: Our code generator uses sparse-dense ma-
trix multiplication as a basic code block for the generated

code to efficient execute the convolution with vectorization
and without (un)folding. The output of these basic code
blocks are computed in place without unfolding using a
novel technique that we call pointer shifting.

For illustration, consider the error gradient calculation
in Eq. 3. First we identify the MM operations within this
calculation. We rewrite the equation as Eq. 11, where
S[c, y, x, ky, kx] is given by Eq. 12. For a fixed value of

273

(a)

(b)

Figure 5: (a) Sparse matrix is first tiled along the columns,
then each tile is stored in CT-CSR format. (b) A sparse
column matrix is multiplied with a dense matrix to produce
a dense column matrix as showing in Eq. 13.

Figure 6: Sparse Kernel for backward gradient calculations.
Each arrow on the left represents a sparse-dense MM. The
arrows on the right show the result’s storage location.

ky , kx, y and x, Eq. 12 reduces to Eq. 13, which is a matrix-
matrix multiply.

EI [c, y, x] =

Fy,Fx∑
ky,kx=0

S[c, y, x, ky, kx] (11)

S[c, ky, kx] =

Nf∑
f

EO[f,
y − ky
sy

,
x− kx
sx

]×W [f, c, ky, kx]

(12)

S′[c] =

Nf∑
f

E′
O[f]×W ′[f, c] . (13)

Because E′O is sparse, and W ′ is dense, Eq. 13 can be
computed efficiently by vectorizing along channels (c), as
shown in Fig. 5b. We first perform data layout transforma-
tion: the weights (W ′) and outputs (EI or S′) are trans-
formed so that c is the fastest varying dimension in mem-
ory, and input (EO or E′O) is transformed so that f is the
fastest varying dimension in memory. Then each non-zero

element E′O[f] is multiplied with the corresponding vector
W ′[f, ∗], shown using the bold black boxes to produce a
vector of S′[∗], where ∗ represents c = 0, 1, 2 stored as a
vector.

Now, consider all the inputs EO[y
′, x′, f] contributing to

output vector EI [y, x, ∗]. This can be written as

EI [y, x, ∗]← EO[f,
y − ky
sy

,
x− kx
sx

] (14)

where y′ = y−ky

sy
and x′ = x−kx

sx
for a given value of ky

and kx. In other words, each input value EO contributes to
multiple output vectors EI , given by

EO[y
′, x′, f]→ EI [y

′sy + ky, x
′sx + kx, ∗] . (15)

Using this relation, we can identify the position of the
output vector EI [y, x, ∗] for a given input EO[f, y

′, x′], and
kernel coordinates ky and kx. We can thus compute sparse
MM given by Eq. 13 in place, for all values of ky and kx,
without unrolling them. This is shown in Fig. 6. Each arrow
between EO and W represents a sparse MM between input
E[y′, x′, f], weights W [ky, kx, f, ∗], for different values of
ky and kx. The arrows between W and EI shows the posi-
tion of the output vector resulting from the sparse MM.

Evaluation: We refer to the code generated by our sparse
code generator as Sparse-Kernel (BP). Fig. 4e shows its
goodput for various levels of sparsity on 16 cores. The costs
of data-layout transformations and creating the CT-CSR rep-
resentation are included. For < 90% sparsity, our kernels
achieve consistently high goodput for all sizes of the convo-
lutions. The performance drop after > 90% sparsity is due
to the bottleneck shifting from error gradient computation
to data-layout transformations, but the goodput is still much
higher than Unfold+Parallel-GEMM as we see next.

Fig. 4f shows the relative speedup of our sparse kernel
over Unfold+Parallel-GEMM. With sparsity >= 0.75, we
consistently outperform. With sparsity of>= 0.90%, we are
significantly faster with 3x-32x speedup. The much larger
improvement for blue and green kernels (first and last) is not
just due to sparsity but also because Sparse-Kernel (BP) does
not reduce AIT of the convolution by casting it into MM as
described in Sec. 3.1.

4.3 Stencil-Kernel
We develop a new approach inspired by stencil computations
[19] to improve single-core performance of small CNNs due
to low AIT caused by the unfolding process, which we refer
to as Stencil-Kernel. It computes CNNs through direct con-
volution without unfolding, exploits spatial reuse of inputs
and improves AIT. In stencil computation [19], each ele-
ment of an array is updated based on the neighbouring values
specified by the stencil. For example, consider the following
three-point stencil in one dimension:

A[x] =W0A[x] +W1A[x+ 1] +W2A[x+ 2] . (16)

274

Each element of A is used to compute three output ele-
ments (e.g., A[x+2] is used to compute A[x], A[x + 1] and
A[x + 2]). This spatial reuse property of stencils improves
AIT by reusing an input value, while it is in fast memory,
to compute multiple output values. Convolutions also ex-
hibit spatial reuse since each input neuron contributes to
multiple neighboring output neurons. Thus, stencil computa-
tion is more efficient for convolutions than unfolding which
destroys spatial reuse by replicating the input neurons. Al-
though there is a rich body of work exists on optimizing
stencil computations [28, 29, 35, 46, 47], we present the first
work to extend those optimization techniques for training
CNNs on CPUs.

We illustrate how to use stencil computation for FP with
the following example:

O[f, y, x] =
∑

c,ky,kx

I[c, y + ky, x+ kx]×W [f, c, ky, kx] (17)

=
∑
c

(
∑
ky,kx

I[c, y + ky, x+ kx]×W [f, c, ky, kx])

(18)

=
∑
c

(S[f, c, y, x]) (19)

where, O, I , W are output activations, input activations and
weights, respectively. For a given y, x, c and f , the compu-
tation inside the parenthesis in Eqn. 18 is a two dimensional
Fx × Fy point box stencil operation. S[f, c, y, x] represents
the result of this stencil operation. For a given f, c we can
simplify and write the stencil operation as

S[y, x] =
∑
ky,kx

I[y + ky, x+ kx]×W [ky, kx]) . (20)

Our FP kernel generator uses this stencil operation as the
building block for generating efficient vector code. It con-
sists of two components: i) a basic block generator, ii) a
schedule generator. The basic block generator generates reg-
ister tiled vector instructions to improve the reuse of each in-
put vector load and reduce the total number of load instruc-
tions. The schedule generator tiles the generated computa-
tion blocks to optimize for cache locality and TLB misses.

Basic Block Generator: The basic block generator vec-
torizes the stencil computation along x dimension and gener-
ates the instructions within a block as follows. For an output
vector register tile of width rx and height ry , the block gen-
erator identifies all the input vectors that contribute to the
tile. For each input vector, it generates instructions for load-
ing it, and for computing its contributions to all the output
vectors in the register tile. Fig. 7 shows the basic computa-
tion block for a convolution with Fx = 1 and Fy = 2, and
a register tile size of rx = 1 and ry = 2. The block consists
of three vector loads. The load of vector ivec0 only con-
tributes to one output vector ovec[0][0] in the register tile,
while the load of ivec1 contributes to two vectors ovec[0][0]
and ovec[0][1] in the output register tile. In other words, the
load of ivec1 is reused twice. The shape and size of the regis-

1 /*load input vector 0 and compute 1 contribution*/
2 m256 ivec0 = mm256_loadu(input + (y + 0)*NX + x);
3 wvec[0][0] = mm256_set1(weight[0]);
4 m256 temp0 = mm256_mul(ivec0, wvec0[0][0]);
5 ovec[0][0] = mm256_add(ovec[0][0], tmpvec);
6
7 /*load input vector 1 and compute 2 contributions*/
8 m256 ivec1 = mm256_loadu(input + (y + 1)*NX + x);
9 wvec[0][1] = mm256_set1(weight[1]);

10 m256 temp1 = mm256_mul(ivec1, wvec[0][1]);
11 ovec[0][0] = mm256_add(ovec[0][0], temp1);
12 m256 temp2 = mm256_mul(ivec1, wvec[0][0]);
13 ovec[0][1] = mm256_add(ovec[0][1], temp1);
14
15 /*load input vector 2 and compute 1 contribution*/
16 m256 ivec2 = mm256_loadu(input + (y + 2)*NX + x);
17 m256 temp3 = mm256_mul(ivec2, wvec0[0][1]);
18 ovec[0][1] = mm256_add(ovec[0][1], temp3);

Figure 7: Basic code block for 1 × 2 stencil with a register
tile size of rx = 1 and ry = 2

ter tile can change the overall reuse of each input vector load.
In general, the size of rx and ry should be chosen such that
rxry ≤ number of physical vector registers and the number
of load instructions is minimized. While this is a geomet-
ric optimization problem, our code generator finds optimal
solution by iterating over all possible values for rx and ry
meeting the first criteria as commodity machines typically
have a relatively small number of vector registers.

Strided Convolutions: The code generation technique
above works well for convolutions with unit stride along x
dimension; the convolutions with non-unit stride are more
challenging because strided access can hinder effective vec-
torization. More specifically, for efficient vectorization, the
inputs corresponding to an output vector should be contigu-
ous in memory so that a single vector load instruction can
load the inputs from memory to a vector register. However,
any non-unit stride along x dimension will require loading
inputs into a vector that is not contiguous in memory. Thus,
our code generator performs a data-layout transformation to
get the required input contiguous in memory for effective
vectorization. For a given stride sx, the layout of the input is
transformed as

I[f, y, x]→ I[f, y, s, x′] (21)

such that s = x mod sx, x′ = x/sx and Nx

sx
s + x′ = x,

where Nx is the size of the x dimension. This data-layout
transformation, inspired by [28], converts unaligned vector
loads into aligned vector loads.

Schedule Generator: Locality optimizations are used
to reduce TLB and cache misses. Corresponding input and
output are copied into contiguous memory to reduce the
required number of TLB entries for accessing them, and then
tiled so that input and output tiles fit in cache.

Evaluation: Fig. 4c shows scalability and absolute per-
formance of Stencil-Kernel(FP) (including the data-layout
transformation time). We see that Stencil-Kernel (FP) scales

275

Table 2: Convolution specifications for different benchmarks
: Nx(= Ny), Nf , Nc, Fx(= Fy), sx(= sy). The disparity in
Nx values of Layer 0 is due to image padding/cropping.

Layer ID ImageNet 22K ImageNet 1K CIFAR-10 MNIST
0 262,120,3,7,2 224,96,3,11,4 36,64,3,5,1 28,20,1,5,1
1 64,250,120,5,2 55,256,96,5,1 8,64,64,5,1
2 15,400,250,3,1 27,384,256,3,1
3 13,400,400,3,1 13,256,192,3,1
4 11,600,400,3,1

better than GEMM-in-Parallel (Figure 3a) as the impact of
increasing core count on the performance per core is small.

Fig. 4d compares the performance of Stencil-Kernel(FP)
and GEMM-in-Parallel. Stencil-Kernel(FP) outperforms
GEMM-in-Parallel for small convolutions (< 128 output
features) because it improves their AIT; GEMM-in-Parallel
performs better for larger convolutions, which already have
large AIT.

4.4 Putting it all together
spg-CNN integrates the three techniques and automati-
cally identifies the best set for each convolution layer of
CNNs with different characteristics. It runs each layer with
Parallel-GEMM, GEMM-in-Parallel, and Stencil-Kernel(FP)
for FP and Parallel-GEMM, GEMM-in-Parallel and Sparse-
Kernel(BP) for BP. Based on the measured performance, it
chooses the fastest technique to deploy for each layer. For
BP, it checks for a change in relative performance between
these techniques after a pre-specified number of epochs as
error gradient sparsity changes during the training. This en-
sures performance optimality at all training phases.

For our implementation and machine, GEMM-in-Parallel
scales better than Parallel-GEMM for layers with < 1024
features, Sparse-Kernel(BP) is faster than GEMM-in-Parallel
for layers with > 75% sparsity, and Stencil-Kernel(FP) is
faster than GEMM-in-Parallel for layers with < 128 output
features. These numbers are sensitive to the parameters of
the implementation and the machine.

5. Experimental Evaluation
We implement and evaluate our framework on state-of-the-
art training platforms and show its performance improve-
ment on the convolutional layers of four well-known bench-
marks, as well as end-to-end performance of training CI-
FAR.

5.1 Methodology
Benchmarks: We use four popular image recognition CNNs
in our experiments: MNIST (LeCunn) [40], CIFAR-10 [50],
ImageNet-1K (AlexNet) [38], and ImageNet-22K (Adam-
ImageNet) [12]. The convolutional layer specifications for
these benchmarks, based on the corresponding publications,
are summarized in Table 2. The MNIST model classifies
28x28 black-and-white hand-written digits into 10 cate-
gories, CIFAR-10 classifies 32x32 RGB images into 10

categories, while ImageNet-1K and ImageNet-22K classify
256x256 RGB images into 1000 and 22000 categories.

Training Platforms: We use the ADAM [12] and
CAFFE [33] CNN training platforms to obtain baseline
results of the conventional approach, which we label as
Parallel-GEMM (ADAM) and Parallel-GEMM (CAFFE).
The parallel-GEMM implementations in ADAM and CAFFE
use Intel MKL [30] and OpenBLAS [54] GEMM libraries
respectively. Our results show that the limitation of the con-
ventional approach is independent of the specific training
platforms and GEMM library implementations.

Our Framework: We implement our framework on top
of ADAM. To show overall performance as well as the in-
cremental contributions of individual techniques, we present
the results for i) GEMM-in-Parallel for both FP and BP ii)
GEMM-in-Parallel for FP and Sparse-Kernel for BP, and ul-
timately, iii) Stencil-Kernel for FP and Sparse-Kernel for BP.

Hardware: All of the experiments were run on a Xeon
Intel(R) Xeon(R) CPU E5-2650 with 16 physical cores (32
logical cores with hyper-threading enabled).

5.2 Improvements of Real World Convolutions
Fig. 8 shows performance improvement using our frame-
work over Parallel-GEMM for convolution layers in the four
real-world benchmarks. We achieve 2x - 16x speedup on
FP. More specifically, for ImageNet 22K and 1K, the speed
up is a result of using GEMM-in-Parallel. These convolu-
tions, with the number of output features ranging from 96 to
384, do not have enough AIT for Parallel-GEMM to be ef-
fective, but enough for GEMM-in-Parallel to perform well.
For CIFAR and MNIST, we achieve even higher speedup
than ImageNet22K and 1K, by using Stencil-Kernel. Their
number of features ranges between 20 and 64, resulting in
low AIT. While using GEMM-in-Parallel improves AIT, it
is still not highly effective. Stencil-Kernel increases AIT
further and achieves higher performance. Take layer 1 of
CIFAR as an example: speedup of GEMM-in-Parallel over
Parallel-GEMM is 11.5x (shown as blue bar in Fig. 8), while
Stencil-Kernel boosts the speedup further to 16x (green
bar). For smaller CNNs like MNIST, both Parallel-GEMM
and GEMM-in-Parallel perform poorly while Stencil-Kernel
achieves 9x speedup over them.

Last but not the least, Fig. 8 also shows performance
improvement on BP using our Sparse-Kernel. These speedup
values are based on 85% sparsity in errors. We pick this
sparsity level conservatively based on Fig. 3b. We achieve
speedup of 2− 14x over the baselines.

5.3 End-to-End evaluation on CIFAR-10 training
Our framework accelerates the end-to-end training of CIFAR-
10 by 12.3x and 8.3x compared to Parallel-GEMM(ADAM)
and Parallel-GEMM(CAFFE) respectively. Figure 9 reports
the peformance (throughput) of the different techniques in
terms of images trained per second. The x-axis shows the
number of cores used for training.

276

0

Forward Pass Backward Pass

2
4
6
8
10
12
14
16
18

 L0 L1 L2 L3 L4 L0 L1 L2 L3 L0 L1 L0
ADAM-ImageNet AlexNet CIFAR-10 MNIST

Figure 8: Performance improvement using our framework
over Parallel-GEMM for convolution layers in real world
benchmarks. For FP, the speedup of GEMM-in-Parallel over
Parallel-GEMM is shown in blue, and if there is any, the
additional speedup from Stencil-Kernel is shown in green.
For BP, the speedup of Sparse-Kernel is shown in orange.

0

500

1000

1500

2000

2500

1 2 4 8 16 32

Im
ag
es
	p
er
	s
ec
on

d

Number	of	Cores
Parallel-GEMM	(CAFFE) Parallel-GEMM	(ADAM)
GEMM-in-Parallel	(FP	and	BP) GEMM-in-Parallel	(FP)+Sparse-Kernel	(BP)
Stencil-Kernel(FP)+Sparse-Kernel	(BP)

Figure 9: End-to-end performance comparison in CIFAR.

For one and two cores, Parallel-GEMM (CAFFE) is the
fastest, but for more than two cores, both Parallel-GEMM
(CAFFE) and Parallel-GEMM (ADAM) stop scaling — due
to decrease in AIT per core as discussed in Sec. 4.1. For
more than 2 cores, GEMM-in-Parallel scales better than both
Parallel-GEMM (CAFFE) and Parallel-GEMM (ADAM) —
GEMM-in-Parallel does not reduce AIT as we increase the
number of cores.

Fig. 9 also shows the performance improvement using
Sparse-Kernel on BP and Stencil-Kernel on FP. At 32 cores,
Sparse-Kernel on BP increases the number of images per
second from 1, 600 to 2, 061, improving throughput of about
28%. Adding Stencil-Kernel to FP increases the throughput
to 2, 283, a further 10% improvement. Notice these are net
improvements on the end-to-end performance of the system,
while the improvement on convolution layers is even higher,
up to 30%, as seen in Fig. 8.

Summary: Parallel-GEMM (CAFFE) and Parallel-
GEMM (ADAMS) peak performance are 273 and 185 im-
ages per second, respectively. Using Stencil-Kernel (FP) and
Sparse-Kernel (BP), we increase the training throughput to
2, 283, a net speedup of 8.36x. To put this in perspective, it
takes Parallel-GEMM (CAFFE) 36 mins to train our model,
while the optimized version takes only 4.3 minutes.

6. Related Work
This section reviews the related work on optimizing CNNs
from various perspectives.

Parallelism. There are two forms of parallelism for CNN
training on multicore CPUs, parallel-GEMM and GEMM-
in-parallel. Many deep learning frameworks such as CAFFE,
TensorFlow, Theano and Torch 7 use the first approach.
Our study presents the first performance characterization of
parallel-GEMM vs. GEMM-in-parallel for CNNs, and we
show that while both approaches are similar in Region 0,
GEMM-in-parallel is faster in Region 2, especially with in-
creased number of cores. Alternatively, Caffe con Troll[6]
improves Parallel-GEMM performance in Region 2 by exe-
cuting a batch of image partitions (rather than one partition)
per core.

Sparsity. [51, 52] were the first to propose reducing com-
putation in multilayer perceptrons by simply avoiding calcu-
lations with zero values, but they do not discuss how to im-
plement this efficiently on modern architectures. The poster
[25] describes a sparse dense MM algorithm using com-
pressed sparse row to store the sparse error/activation ma-
trix. Their approach and evaluation is limited to large sparse
MM that are not applicable to real CNNs. [42] also presents
a sparse dense MM algorithm, which exploits sparsity in the
weights. Their algorithm is based on knowing the position
of non-zero elements in weights in advance to generate the
sparse MM code, therefore, their approach is only applica-
ble for CNN inference but not training. In contrast, our ap-
proach is designed for training and we exploit sparsity in
activation errors. Additionally, instead of using sparse MM
we compose a sparse convolution as a series of small and
dense MMs, achieving high goodput on sparse dense inputs.

Direct convolution. Although CNNs can be computed
on CPUs via direct convolution, most CNN libraries/frame-
works in practice use GEMM instead because (1) direct con-
volution is much harder to optimize due to its more complex
computation structure and (2) highly optimized GEMM im-
plementations are widely available, achieving significant
fraction of peak hardware performance for large CNNs.
However, as we pointed out in Section 3, for small CNNs,
GEMM based approach has a lower AIT compared to direc-
tion convolution.

Our stencil kernel is designed for small CNNs, perform-
ing direct convolution. Beyond that, we optimize vector reg-
ister reuse and L1 cache locality by exploiting spatial reuse
in convolutions. Other CNN frameworks such as cuDNN
[11], NeuFlow [24], implement direct convolution on GPUs
and custom hardware, but not on CPUs. On CPUs, Intel
Deep Learning Framework (IDLF) [4] does direct convo-
lution without the stencil-based optimzations we perform.
Additionally, it only supports AVX2 ISA based CPUs, mak-
ing it unavailable for abundantly available legacy CPU hard-
ware.

Distributed training platforms. There are complemen-
tary efforts to train large CNNs on a cluster of distributed

277

machines with multicore CPUs, for example, Google’s Dis-
tBelief [20] and Microsoft’s Adam [12]). They exploit mas-
sively parallel architectures through data parallelism. Specif-
ically, to expedite CNN training on very large data sets,
many worker machines train in parallel on different sub-
sets of the training data. Each worker periodically synchro-
nizes its model parameters with other workers. The time to
train a model is therefore a function of the throughput of the
worker machines (inputs processed per second) and the la-
tency of synchronizing model parameters. Our work, focus-
ing on CNN optimization on multicore CPUs, could improve
the throughput of each worker machine, and therefore help
to accelerate the training of large CNNs that are compute
bound (e.g., image models).

Hardware Accelerators. There is rich complementary
work of optimizing CNNs on hardware accelerators. GPUs [27],
FPGAs [23, 45, 55] and ASICs [9, 10] have being used
to accelerate CNN inference, which is a subset (i.e., for-
ward propagation phase only) of CNN training. Cuda-
Convnet [36] provides fast implementation of convolu-
tion on NVIDIA GPUs, and several studies [14, 37] exploit
multi-GPU clusters to speed up CNN training. Our observa-
tion of exploiting sparsity could be applicable on some of
these accelerators to improve goodput and speed up CNN
training, which might be an interesting area of future work.
While optimizing CNNs on GPUs, FPGAs, and ASICs is im-
portant, the abundance and easy accessibility of CPU based
systems makes CNN optimizations for CPUs vital.

Other techniques. There are other complementary ef-
forts to optimize CNN, e.g., by exploiting redundancies [21,
22, 31, 42], using FFT-based computation [44], and applying
more efficient MM computation [18].

7. Conclusion
This paper presents the first characterization of the optimiza-
tion opportunities for training CNNs on CPUs. Given this
characterization, we have designed and implemented an op-
timization framework spg-CNN that beats the state-of-the-
art approaches to training CNNs by an order of magnitude.
In an environment where competitive CNN models may take
weeks to train, our results enable CNN model engineers to
iterate an order-of-magnitude more quickly through the mul-
tiple model designs that are often required to identify a good
model for one’s domain.

References
[1] http://chainer.org.

[2] http://www.cntk.ai.

[3] https://developers.google.com/
protocol-buffers/.

[4] https://01.org/intel-deep-learning-framework.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow. org.

[6] F. Abuzaid, S. Hadjis, C. Zhang, and C. Ré. Caffe con troll:
Shallow ideas to speed up deep learning. arXiv preprint
arXiv:1504.04343, 2015.

[7] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfel-
low, A. Bergeron, N. Bouchard, and Y. Bengio. Theano: new
features and speed improvements, 2012.

[8] K. Chellapilla, S. Puri, and P. Simard. High performance con-
volutional neural networks for document processing. In Suvi-
soft Tenth International Workshop on Frontiers in Handwrit-
ing Recognition, 2006.

[9] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam. Diannao: A small-footprint high-throughput ac-
celerator for ubiquitous machine-learning. In ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[10] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, et al. Dadiannao: A machine-learning
supercomputer. In IEEE/ACM International Symposium on
Microarchitecture, 2014.

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[12] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep learning
training system. In 11th USENIX Symposium on Operating
Systems Design and Implementation, 2014.

[13] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep
neural networks for image classification. In IEEE Conference
on Computer Vision and Pattern Recognition, 2012.

[14] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew. Deep learning with cots hpc systems. In Proceed-
ings of the 30th International Conference on Machine Learn-
ing, 2013.

[15] R. Collobert and J. Weston. A unified architecture for natu-
ral language processing: Deep neural networks with multitask
learning. In ACM Proceedings of the 25th international con-
ference on Machine learning, 2008.

[16] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
Neural Information Processing Systems Workshop, number
EPFL-CONF-192376, 2011.

[17] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language pro-
cessing (almost) from scratch. The Journal of Machine
Learning Research, 2011.

[18] J. Cong and B. Xiao. Minimizing computation in convolu-
tional neural networks. In Springer International Conference
on Artificial Neural Networks. 2014.

[19] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil com-
putation optimization and auto-tuning on state-of-the-art mul-
ticore architectures. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008.

[20] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale

278

distributed deep networks. In Advances in Neural Information
Processing Systems, 2012.

[21] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting
parameters in deep learning. In Advances in Neural Informa-
tion Processing Systems, 2013.

[22] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for
efficient evaluation. In Advances in Neural Information Pro-
cessing Systems, 2014.

[23] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. Cnp: An fpga-
based processor for convolutional networks. In International
Conference on Field Programmable Logic and Applications,
2009.

[24] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun. Neuflow: A runtime reconfigurable dataflow
processor for vision. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition Workshops,
2011.

[25] Y. Gao, Y. Liu, R. Zhao, and S. Chiu. An efficient sparse
matrix multiplication for deep neural network-based applica-
tions. 2014.

[26] K. Goto and R. A. Geijn. Anatomy of high-performance
matrix multiplication. ACM Transactions on Mathematical
Software, 2008.

[27] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li,
T. Mudge, R. G. Dreslinski, J. Mars, and L. Tang. Djinn and
tonic: Dnn as a service and its implications for future ware-
house scale computers. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, 2015.

[28] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ra-
manujam, and P. Sadayappan. Data layout transformation for
stencil computations on short-vector simd architectures. In
Springer International Conference on Compiler Construction,
2011.

[29] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-
performance code generation for stencil computations on gpu
architectures. In Proceedings of the 26th ACM international
conference on Supercomputing, 2012.

[30] M. Intel. Intel math kernel library, 2007.

[31] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding
up convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866, 2014.

[32] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural
networks for human action recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2013.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the
ACM International Conference on Multimedia, pages 675–
678, 2014.

[34] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, 2014.

[35] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanu-
jam, A. Rountev, and P. Sadayappan. Effective automatic par-

allelization of stencil computations. In ACM Sigplan Notices,
2007.

[36] A. Krizhevskey. Cuda-convnet, 2014.

[37] A. Krizhevsky. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997, 2014.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, 2012.

[39] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hi-
erarchical invariant spatio-temporal features for action recog-
nition with independent subspace analysis. 2011.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 1998.

[41] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional
deep belief networks for scalable unsupervised learning of
hierarchical representations. In ACM Proceedings of the 26th
Annual International Conference on Machine Learning, 2009.

[42] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.
Sparse convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015.

[43] W. Liu and B. Vinter. A framework for general sparse matrix-
matrix multiplication on gpus and heterogeneous processors.
arXiv preprint arXiv:1504.05022, 2015.

[44] M. Mathieu, M. Henaff, and Y. LeCun. Fast training
of convolutional networks through ffts. arXiv preprint
arXiv:1312.5851, 2013.

[45] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss,
and E. S. Chung. Accelerating deep convolutional neural
networks using specialized hardware, 2015.

[46] L. Peng, R. Seymour, K.-i. Nomura, R. K. Kalia, A. Nakano,
P. Vashishta, A. Loddoch, M. Netzband, W. R. Volz, and C. C.
Wong. High-order stencil computations on multicore clusters.
In IEEE International Symposium on Parallel & Distributed
Processing, 2009.

[47] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines. ACM SIGPLAN Notices, 2013.

[48] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices
for convolutional neural networks applied to visual document
analysis. In IEEE International Conference on Document
Analysis and Recognition, 2003.

[49] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 2014.

[51] F. Wang and Zhang. An adaptive and fully sparse training
approach for multilayer perceptrons, 1996.

[52] F. Wang and Q. Zhang. A sparse matrix approach to neural
network training. In Proceedings of the IEEE International
Conference on Neural Network, 1995.

279

[53] R. C. Whaley. Atlas (automatically tuned linear algebra soft-
ware). In Springer Encyclopedia of Parallel Computing. 2011.

[54] Z. Xianyi, W. Qian, and Z. Chothia. Openblas. URL:
http://xianyi. github. io/OpenBLAS, 2012.

[55] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Op-
timizing fpga-based accelerator design for deep convolutional
neural networks. In Proceedings of the 2015 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
2015.

280

