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Abstract

Multilingual speakers switch between lan-
guages displaying inter sentential, intra
sentential, and congruent lexicalization
based transitions. While monolingual
ASR systems may be capable of recogniz-
ing a few words from a foreign language,
they are usually not robust enough to han-
dle these varied styles of code-switching.
There is also a lack of large code-switched
speech corpora capturing all these styles
making it difficult to build code-switched
speech recognition systems. We hypothe-
size that it may be useful for an ASR sys-
tem to be able to first detect the switch-
ing style of a particular utterance from
acoustics, and then use specialized lan-
guage models or other adaptation tech-
niques for decoding the speech. In this
paper, we look at the first problem of de-
tecting code-switching style from acous-
tics. We classify code-switched Spanish-
English and Hindi-English corpora using
two metrics and show that features ex-
tracted from acoustics alone can distin-
guish between different kinds of code-
switching in these language pairs.

Index Terms: speech recognition, code-
switching, language identification

1 Introduction

Code-switching refers to the phenomenon where
bilingual speakers alternate between the languages
while speaking. It occurs in multilingual soci-
eties around the world. As Automatic Speech
Recognition (ASR) systems are now recognizing
conversational speech, it becomes important that
they handle code-switching. Furthermore, code-

switching affects co-articulation and context de-
pendent acoustic modeling (Elias et al., 2017).
Therefore, developing systems for such speech re-
quires careful handling of unexpected language
switches that may occur in a single utterance. We
hypothesize that in such scenarios it would be de-
sirable to condition the recognition systems on the
type (Muysken, 2000) or style of language mixing
that might be expected in the signal. In this paper,
we present approaches to detecting code-switching
‘style’ from acoustics. We first define style of an
utterance based on two metrics that indicate the
level of mixing in the utterance: CodeMixing In-
dex(CMI) and CodeMixing Span Index. Based on
these, we classify each mixed utterance into 5 style
classes. We also obtain an utterance level acous-
tic representation for each of the utterances using
a variant of SoundNet. Using this acoustic repre-
sentation as features, we try to predict the style of
utterance.

2 Related Work

Prior work on building Acoustic and Language
Models for ASR systems for code-switched speech
can be categorized into the following approaches:
(1) Detecting code-switching points in an utter-
ance, followed by the application of monolingual
acoustic and language models to the individual
segments (Chan et al., 2004; Lyu and Lyu, 2008;
Shia et al., 2004). (2)Employing a shared phone
set to build acoustic models for mixed speech
with standard language models trained on code-
switched text (Imseng et al., 2011; Li et al., 2011;
Bhuvanagiri and Kopparapu, 2010; Yeh et al.,
2010). (3) Training Acoustic or Language mod-
els on monolingual data in both languages with lit-
tle or no code-switched data (Lyu et al., 2006; Vu
et al., 2012; Bhuvanagirir and Kopparapu, 2012;
Yeh and Lee, 2015). We attempt to approach this



Class CMI Hi-En Utts En-Es Utts
C1 0 6771 41624
C2 0-0.15 13986 2284
C3 0.15-0.30 492 2453
C4 0.30-0.45 8865 1025
C5 0.45-1 2496 1562

Table 1: Distribution of CMI classes for Hinglish
and Spanglish

problem by first identifying the style of code mix-
ing from acoustics. This is similar to the problem
of language identification from acoustics, which is
typically done over the span of an entire utterance.
Deep Learning based methods have recently

proven very effective in speaker and language
recognition tasks. Prior work in Deep Neural Net-
works (DNN) based language recognition can be
grouped into two categories: (1) Approaches that
use DNNs as feature extractors followed by sep-
arate classifiers to predict the identity of the lan-
guage (Jiang et al., 2014; Matejka et al., 2014;
Song et al., 2013) and (2) Approaches that em-
ploy DNNs to directly predict the language ID
(Richardson et al., 2015b,a; Lopez-Moreno et al.,
2014). Although DNN based systems outper-
form the iVector based approaches, the output de-
cision is dependent on the outcome from every
frame. This limits the real time deployment capa-
bilities for such systems. Moreover, such systems
typically use a fixed contextual window which
spans hundreds of milliseconds of speechwhile the
language effects in a code-switched scenario are
suprasegmental and typically span a longer range.
In addition, the accuracies of such systems, espe-
cially ones that employ some variant of iVectors
drop as the duration of the utterance is reduced. We
follow the approach of using DNNs as utterance
level feature extractors. Our interest is in adding
long term information to influence the recognition
model, particularly at the level of the complete ut-
terance, representing stylistic aspects of the degree
and style of code-switching throughout the utter-
ances.

3 Style of Mixing and Motivation

Multiple metrics have been proposed to quantify
codemixing (Guzmán et al., 2017; Gambäck and
Das, 2014) such as span of the participating lan-
guages, burstiness and complexity. For our cur-
rent study, we categorize the utterances into dif-

Class Description Hi-En Utts En-Es Utts
S1 Mono En 5413 27960
S2 Mono Hi/Es 0 12749
S3 En Matrix 626 2883
S4 Hi/Es Matrix 36454 1986
S5 Others 8307 3345

Table 2: Distribution of span based classes for
Hinglish and Spanglish. Note that the term ‘Ma-
trix’ is used just here notionally to indicate larger
word span of the language.

ferent styles based on two metrics: (1) Code Mix-
ing index (Gamback and Das, 2014) which at-
tempts to quantify the codemixing based on the
word counts and (2) CodeMixed Span information
which attempts to quantify codemixing of an utter-
ance based on the span of participating languages.

3.1 Categorization based on Code Mixing
Index

CodeMixing Index (Gamback and Das, 2014) was
introduced to quantify the level of mixing between
the participating languages in a codemixed utter-
ance. CMI can be calculated at the corpus and ut-
terance level. We use utterance CMI, which is de-
fined as:

Cu(x) = 100
wm(N(x)−maxLi∈L{tLi}(x)) + wpP (x)

N(x)
(1)

whereN is the number of languages, tLi are the
tokens in language Li, P is the number of code
alternation points in utterance x and wm and wp

are weights. In our current study, we quantize the
range of codemixed index ( 0 to 1) into 5 styles and
categorize each utterance as shown in Table 1. A
CMI of 0 indicates that the utterance is monolin-
gual. We experimented with various CMI ranges
and found that the chosen ranges led to a reason-
able distribution within the corpus. For example,
the C2 CMI class in Hindi-English code switched
data has utterances such as "पंधरा पे start ȟकये थे Ĉयारा
पंधरा पे यार अभी तो कुछ नही ɷआ" (’started at fifteen,
eleven or fifteen but buddy nothing has happened
so far’). The C4 class on the other hand, has ut-
terances such as ”actual मȅ आज यह rainy season का
मौसम था ना" (’actually the weather today was like
rainy season, right?’). An example of a C5 utter-
ance is ”ohh Englishअċछा Englishकौनसा favourite
singer मतलब English मȅ?" (’Ohh English, ok who
is your favorite English singer?’)



3.2 Categorization based on Span of
codemixing

While CMI captures the level of mixing, it does not
take to account the span information (regularity)
of mixing. Therefore, we use language span in-
formation (Guzmán et al., 2017) to categorize the
utterances into 5 different styles as shown in Ta-
ble 2. We divide each utterance based on the span
of the participating languages into five classes -
monolingual English, monolingual Hindi or Span-
ish, classes where the two languages are dominant
(70%ormore) and all other utterances. The classes
S3 and S4 indicate that the primary language in the
utterance has a span of at least 70% with respect
to the length of utterance. This criterion makes
these classes notionally similar to the construct of
‘matrix’ language. However, we do not consider
any information related to the word identity in this
approach. As we can see from both the CMI and
span-based classes, the distributions of the two lan-
guage pairs are very different. The Spanglish data
contains much more monolingual data, while the
Hinglish data is predominantly Hindi matrix with
English embeddings. The Hinglish data set does
not have monolingual Hindi utterances which is
due to the way the data was selected, as explained
in Section 4.1.

3.3 Style Modeling using Modified SoundNet

SoundNet (Aytar et al., 2016) is a deep convolu-
tional network that takes raw waveforms as input
and is trained to predict objects and scenes in video
streams. Once the network is trained, the activa-
tions of intermediate layers can be considered as
a high level representation which can be used for
other tasks. However, SoundNet is a fully convo-
lutional network, in which the frame rate decreases
with each layer. Each convolutional layer doubles
the number of feature maps and halves the frame
rate. The network is trained to minimize the KL
divergence from the ground truth distributions to
the predicted distributions. The higher layers in
SoundNet are subsampled too much to be used di-
rectly for feature extraction. To alleviate this, we
train a fully connected variant of Soundnet (Wang
and Metze, 2017): Instead of using convolutional
layers all the way up, we switch to fully connected
layers after the 5th layer. We have also change the
input sampling rate to 16 KHz to match the rate of
provided data.

Figure 1: Architecture for style modeling using
modified Soundnet

4 Experimental Setup

4.1 Data

We use code-switched Spanish English (referred
to as Spanglish hereafter) released as a part of Mi-
ami Corpus (Deuchar et al., 2014) for training and
testing. The corpus consists of 56 audio record-
ings and their corresponding transcripts of infor-
mal conversation between two or more speakers,
involving a total of 84 speakers. We segment the
files based on the transcriptions provided and ob-
tain a total of 51993 utterances. For Hinglish,
we use an in-house speech corpus of conversa-
tional speech. Participants were given a topic and
asked to have a conversation in Hindi with another
speaker. 40% of the data had at least one English
word in it, which was transcribed in English, while
the Hindi portion of the data was transcribed in De-
vanagari script. We split the data into Hindi and
Hinglish by filtering for English words, hence the
Hinglish data does not contain monolingual Hindi
utterances. Note that this data did contain a few
monolingual English sentences, but they were typ-
ically single word sentences. Such English utter-
ances were considered to be part of the Hinglish
class. The number of Hinglish utterances is 54279.

4.2 Style Identification

For style identification we perform the following
procedure: We first categorize the utterances into
5 styles based on the criteria described in section
3. We pass each utterance through pretrained mod-
ified SoundNet and obtain the representations at
all the layers. We use the representation from
7th (penultimate) layer as embedding for the utter-
ance. We experimented with combining the repre-



Figure 2: Precision, Recall and F1 scores for 5 way style classification of Hinglish and Spanglish

sentations at multiple layers but found that they do
not outperform the representation at the 7th layer
alone. Therefore for the purposes of this paper, we
restrict ourselves to the representation at the penul-
timate layer. The embedding is obtained by per-
forming mean pooling on the representation. Fi-
nally, we train a Random Forest classifier using the
obtained embedding to predict the style of mixing.

4.3 Results and Discussion
Figure 2 shows the results for 5 class classification
for Hinglish and Spanglish based on CMI (classes
C1-C5) and span (classes S1-S5). Some classes
(C1, C2, C3, S1, S4 for Hi-En and C1, C4, C5, S1,
S4, S5 for En-Es) are easier to predict and are not
always the majority classes. In our current imple-
mentation, we use a two stage approach for feature
extraction and classification. We hypothesize that
there might be better approaches to perform each
of the components independently. It might also be
possible to incorporate a style discovery module in
an end to end fashion (Wang et al., 2018). As we
plan to include the predicted style information in
our recognition system, we also evaluate our ap-
proach using language models. For this, we build
style specific language models tested on style spe-
cific test sets and include the average perplexity
values for all of them in table 3. Ground Truth in-
dicates that the model was built on the classes seg-
regated based on approaches described in section
3. Predicted indicates that the language model was
built based on the classes predicted by the model
described in section 4.2. We also build a language
model on utterances from the majority class for

CMI and Span, as well as all the Spanglish data
with no style information. As can be observed, the
perplexity has a considerable reductionwhen using
style specific information, while the majority style
does not lead to the same reduction over the model
with no style information. This further validates
our hypothesis that style specific models may help
decrease LM perplexities and ASR error rates.

Table 3: Language Model Experiments
Language Avg Ppl

Spanglish

CMI
GroundTruth 54.8
Predicted 56.2
Majority Class 81.2

Span
GroundTruth 59.1
Predicted 62.8
Majority Class 80.2

No Style Info 82.1

5 Conclusion

In this paper, we present a preliminary attempt at
categorizing code-switching style from acoustics,
that can be used as a first pass by a speech recog-
nition system. Language Model experiments indi-
cate promising results with considerable reduction
in perplexity for style-specific models. In future
work, we plan to improve our feature extraction
and classification models and test our language
models on code-switched speech recognition.
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