
Programming Languages for

Building Trustworthy Systems

Ben Zorn

Microsoft Research

Ben Zorn, Microsoft Research 1ITI Workshop Core Technologies

Which Programming Language To Use?

 Safe versus unsafe, difficult choice?

 Safe – Java, C#, Modula-3, …

 Unsafe – C, C++, assembler, …

 But choice is really more complex

 How much of a Java app is “safe”?

 In a large system, there are many components

 Should they all be safe?

 Does it make sense to have 50% safe?

 Platforms require extensibility

 Economics may demand leveraging existing code

 Is the debate religious? Is one answer right?

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 2

Amdahl’s Law Recast

 “Fraction of a system that is sequential determines

maximum possible speedup”

similarly…

 “Fraction of a system that is unsafe determines that

maximum possible trustworthiness”

 Suggests two research agendas:

 Build systems with 0% unsafe code (Singularity)

 Make existing C / C++ code safer (DieHard)

 We don’t know the answer yet, but we do know what

questions to ask…

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 3

0% Approach - Singularity (MSR)

 Jim Larus, Galen Hunt, and others

 “Punctuated equilibrium” approach to evolution

 Re-architect and implement OS from scratch

 Design based on latest analysis techniques

 Design principles (partial list)

 Complete process isolation

 Type-checked process interaction (channels)

 As much static analysis / checking as possible

 Controlled dynamic extensibility (no dlls)

 Type-safe at the bottom (all code, including OS)

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 4

Ben Zorn, Microsoft Research

Making C and C++ Safer

 Gradualism approach

 Static analysis / safe subset of C or C++

 Cyclone [Morrisett], SAFECode [Adve], etc.

 Runtime detection, fail fast

 Jones & Kelly, CRED [Lam], CCured [Necula],

SAFECode [Adve], SafeMem [Zhou], etc.

 Runtime toleration

 Failure oblivious [Rinard] (unsound)

 Rx [Zhou], Boundless Memory Blocks [Rinard],

ECC, DieHard, Samurai, etc.

5Tolerating and Correcting Memory Errors in C and C++

DieHard Allocator in a Nutshell

 Emery Berger and Ben Zorn
 “Gradualism” approach

 Existing heaps are packed
tightly to minimize space
 Tight packing increases

likelihood of corruption

 Predictable layout is easier for
attacker to exploit

 We randomize and
overprovision the heap
 Expansion factor determines how

much empty space

 Semantics are identical

 Easy to use – rejust relink app

6

Normal Heap

DieHard Heap

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Summary

 Most applications and systems are…

 Written in C and C++

 Do not detect memory corruptions as they happen

 Nevertheless, usually robust and reliable…

 Alternatives are available, but

 More research is needed

 Answering the question “rebuild from scratch” is

expensive

 Runtime technologies are promising

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 7

Additional Information

 Web sites:
 Singularity: http://research.microsoft.com/os/singularity/

 Spec# : http://research.microsoft.com/specsharp/

 DieHard: http://www.diehard-software.org/

 Publications
 Galen Hunt and James Larus, “Singularity: Rethinking the

Software Stack”, Operating Systems Review, Vol. 41, Iss. 2, pp.
37-49, April 2007.

 Emery D. Berger and Benjamin G. Zorn, "DieHard: Probabilistic
Memory Safety for Unsafe Languages", PLDI’06.

Ben Zorn, Microsoft Research 8Tolerating and Correcting Memory Errors in C and C++

http://research.microsoft.com/os/singularity/
http://research.microsoft.com/specsharp/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

Backup Slides

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 9

 Buffer overflow

char *c = malloc(100);

c[101] = ‘a’;

 Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

Avoiding Heap Memory Corruptions

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 10

c

0 99

p1

0 99

p2

x

