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Abstract

We present Walkie-Markie – an indoor pathway map-
ping system that can automatically reconstruct internal
pathway maps of buildings without any a-priori knowl-
edge about the building, such as the floor plan or access
point locations. Central to Walkie-Markie is a novel ex-
ploitation of the WiFi infrastructure to define landmarks
(WiFi-Marks) to fuse crowdsourced user trajectories ob-
tained from inertial sensors on users’ mobile phones.
WiFi-Marks are special pathway locations at which the
trend of the received WiFi signal strength changes from
increasing to decreasing when moving along the path-
way. By embedding these WiFi-Marks in a 2D plane us-
ing a newly devised algorithm and connecting them with
calibrated user trajectories, Walkie-Markie is able to in-
fer pathway maps with high accuracy. Our experiments
demonstrate that Walkie-Markie is able to reconstruct
a high-quality pathway map for a real office-building
floor after only 5-6 rounds of walks, with accuracy grad-
ually improving as more user data becomes available.
The maximum discrepancy between the inferred path-
way map and the real one is within 3m and 2.8m for the
anchor nodes and path segments, respectively.

1 Introduction

Accurate and inexpensive indoor localization is one of
the holy grails of mobile computing, as it is the key to en-
abling indoor location-based services. Despite very sig-
nificant research effort, relatively little has actually been
deployed at scale. One reason is that a common and crit-
ical assumption of existing approaches – the availability
of a suitable localization map – is hard to fulfill in prac-
tice. For instance, WiFi triangulation or fingerprinting
based approaches for indoor localization rely on a pri-
ori AP position information, or a signal strength map to
function properly [4, 13, 24]. Such maps are typically
constructed via dedicated, often labor-intensive, data-

gathering processes that map radio signals onto an indoor
map that geographically reflects the physical layout of
the building. Several recent efforts aimed at alleviating
the pain of radio map construction require knowledge of
the real floor plans [26,38]. Similarly, tracking based lo-
calization also requires accurate indoor maps (e.g., floor
plans or pathway maps) to constrain the drifting of in-
ertia sensors [36, 37]. Such indoor maps are difficult to
obtain in general, as they may belong to different own-
ers, may be outdated, and many legacy buildings simply
do not have them at all.

In this paper, we try to fundamentally rethink the as-
sumption and ask the question: can we build an indoor
map without any prior knowledge about the building? In
particular, we are interested in building pathway maps
because they provide a natural framework for localiz-
ing users and points of interest (POIs) as people usually
move along pathways and indoor POIs are connected via
pathways. A pathway map can also serve as the basis
for other maps specific to other localization approaches,
or can be used as a building block to construct seman-
tically richer maps for users, for example through auto-
matic location detection (e.g., [3]) or crowdsourced user
annotation. Finally, we seek a technology that allows to
obtain such pathway maps at scale, say for millions of
buildings across the world, including shopping malls and
office buildings.

We address these problems in Walkie-Markie, a sys-
tem that automatically generates indoor pathway maps
from traces contributed by mobile phone users. The sys-
tem uses crowdsourcing to generate the pathway map of
unknown buildings without requiring any a-priori infor-
mation such as floor-plans, any initial measurements or
inspection, and any instrumentation of the building with
specific hardware. The only assumption Walkie-Markie
requires is that there exists a WiFi infrastructure in the
building that is to be mapped. AP locations do not need
to be known; instead APs must merely exist for the sys-
tem to work.
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Walkie-Markie is based on two key observations.
First, a modern mobile phone can dead reckon the user’s
movement trajectory from its inertial measurement units
(i.e., IMU sensors, including accelerometer, magnetome-
ter and gyroscope) [21, 26, 28, 36]. The idea is that if
sufficiently many users walk inside a building and report
their trajectories, we can infer the pathway map. The
challenge is that IMU-based tracking is accurate only ini-
tially as it suffers from severe drift: rapid error accumu-
lation over time. Moreover, to generate maps at scale via
crowdsourcing, we must deal with trajectories from dif-
ferent users, who may start their walks from anywhere, at
different stride lengths, varying speed, etc. Second, WiFi
networks have been widely deployed, from office build-
ings to shopping malls. WiFi has been successfully used
by fingerprinting-based localization schemes, and com-
bined WiFi and IMU-tracking solutions have also been
proposed, e.g., [5,11,26,31,38]. However, there are well-
known practical concerns when using WiFi for localiza-
tion: signals fluctuate significantly during different times
of day, different phones can have different receiver gains
(i.e., device diversity) [14,34], and readings also vary de-
pending on how people place their phones e.g., in hand,
in pocket, or in backpack (i.e., usage diversity) [19].

Walkie-Markie consists of mobile clients on users’
mobile phones and a backend service in the cloud. When
participants walk, the client collects the rough trajectory
information (step count, step frequency, and walking di-
rection) as well as periodic WiFi scan results. The back-
end service fuses these possibly partial user traces (w.r.t
the overall internal pathways) and generates the pathway
map.

Central to Walkie-Markie is the WiFi-defined land-
mark (WiFi-Mark), which is a novel way to exploit the
widely-deployed WiFi infrastructure to establish accu-
rate and stable landmarks, which serve to anchor the var-
ious partial trajectories. A WiFi-Mark is defined as a
pathway location at which the trend of received signal
strength (RSS) from a certain AP reverses, i.e., changes
from increasing to decreasing, as the user moves along
the pathway. We show in this paper that such WiFi-
Marks based on the RSS trend (instead of the face RSS
value used in previous works) overcomes the aforemen-
tioned challenges in leveraging WiFi signals and yields
highly stable and easily identifiable landmarks. WiFi-
Marks are determined by the relative physical layout of
the AP and the pathway, and are thus location invariant.
Moreover, a single AP often leads to multiple uniquely
identifiable WiFi-Marks, leading to a higher density of
WiFi-Marks.

WiFi-Marks allow us to overcome two key problems
in mapping buildings: i) merging the large volumes
of crowdsourced (partial) trajectories and ii) bounding
the tracking error and drift of IMU sensors. Being

location-invariant, WiFi-Marks yield the common refer-
ence points for fusing snippets of user trajectories. With
more user trajectories, the noise tend to cancel each out,
which leads to more accurate displacement measurement
between WiFi-Marks. Thus, mapping accuracy gradu-
ally improves as more data becomes available. IMU-
based tracking suffers notoriously from rapid error ac-
cumulation as distance increases. WiFi-Marks also help
with the drift problem of IMU-based tracking by bound-
ing the distances between which IMU-based tracking
must be relied upon.

Another ingredient of Walkie-Markie is a novel graph
embedding algorithm, Arturia, that fixes WiFi-Marks to
“known” 2D locations respecting the constraints sug-
gested by the user trajectories. The resulting pathway
map naturally reflects the physical layout. Arturia dif-
fers from existing embedding algorithms in that it uses
measured displacement vectors as opposed to distances
between nodes as input constraints. After WiFi-Marks
are properly placed on the 2D plane, the pathway map
is generated by connecting the embedded WiFi-Marks
with corresponding user trajectories. The obtained path-
way maps can be used by users to localize themselves
by adding the displacement to the position of the last en-
countered WiFi-Mark. The pathway maps can also be
used to generate other localization maps such as radio
maps.

We have implemented Walkie-Markie and evaluated it
in an office building and a shopping mall. Our experi-
mental results show that we can achieve mapping accu-
racy within 3 meters by merging enough user trajecto-
ries (each as short as one minute) equaling to 5-6 rounds
of walking. The mapping accuracy gradually improves
and stabilizes after about 1-2 times more walking time
along the same paths. Additional experiments on local-
ization using pathway as well as radio maps produced
by Walkie-Markie show that the average and 90 per-
centile localization errors are 1.65m and 2.9m, respec-
tively, when using displacement from the last WiFi-Mark
using the pathway map.

2 Problem and Challenges

Problem Statement: Indoor localization results are
meaningful only when associated with corresponding in-
door maps (e.g., pathway maps) that geographically re-
flect the physical layout. However, in this context the
availability of such maps has largely been taken for
granted, often via assumptions. For instance, IMU-based
tracking and localization systems have assumed accu-
rate indoor maps (e.g., floor plans) to constrain drifting;
WiFi-based localization systems further assume a-priori
knowledge about AP positions or a radio signal map
[4,13,24]. While there are many existing works trying to
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reduce the dependency on such a-priori information (AP
locations [6], radio signal map [12, 16, 22, 26, 38]), they
all assume a known internal map of the floor, which are
often not readily available.

In this paper, we remove this assumption and build an
indoor pathway mapping systems without assuming any
prior knowledge of the building. Our goal is to find a so-
lution that works with existing infrastructure, is applica-
ble to commercial mobile phones, and is “crowdsource-
able” so as to scale to a large number of buildings. The
only assumption we make is the mere existence of a WiFi
infrastructure in the buildings to be mapped.

Challenges: Previous work has tried to combine WiFi
signals and IMU sensing data [5, 10, 11, 31]. The prob-
lem with IMU-based technologies is that they can track
a user’s trajectory at some accuracy for only a short pe-
riod of time, and will drift severely as the walking time
increases. This makes it hard to align multiple trajecto-
ries, and trajectories obtained from different users (with
different start points) are even harder to combine into a
whole pathway map. Leveraging WiFi also poses well-
known challenges. Even though WiFi fingerprints are
statistically locality-preserving [16, 24], an AP’s cover-
age area is overly large for the desired accuracy of a use-
ful internal pathway map. Typically, multiple pathways
are covered by a single AP. The AP’s position is also un-
known. Furthermore, other challenges common to WiFi-
based localization systems are: i) WiFi signal fluctua-
tions due to ambient interference, multipath effect, and
environmental dynamics such as the time-of-day effect;
ii) device diversity with different receiver gains at dif-
ferent phones; and iii) device usage diversity caused by
people placing their phones differently such as in hand,
in pocket, in purse, or in a backpack. We note that usage
diversity is rarely mentioned in the literature, but is a real
impairing factor.

3 WiFi-defined Landmark

In real life, landmarks are often used to give directions.
No matter how one detours, once a landmark is encoun-
tered, previous errors are reset. Using the same idea, we
can leverage landmarks to constrain the drifting in IMU
tracking, and to align different user trajectories. How-
ever, the challenge is the find landmarks that are per-
ceivable by mobile phones without human intervention.
Since mobile phones can sense the WiFi environment in
the background, we would ideally like to identify land-
marks based on WiFi signal. In this section, we show
that–using the concept of WiFi-Marks–this is indeed pos-
sible in spite of the multitude of challenges mentioned
above.

3.1 WiFi-Marks: Concept
Previous work on WiFi-based localization has used the
received WiFi signal strength (RSS) directly. It turns out
that this is the root cause of the aforementioned prob-
lems. The key insight is that significantly more stable
landmarks can be obtained from an existing infrastruc-
ture by using WiFi signal strength indirectly: instead of
looking at the face RSS values, we look at the trend of
RSS changes.

Figure 1: Illustration of WiFi-Marks, as determined by
the relative physical layout of the AP and the pathways.

Figure 1 illustrates the basic idea. A user is walking
from left to right along a pathway covered by an AP. Ini-
tially we see RSS increase as the user moves closer to-
wards the AP. When the user walks past the point from
which the distance to AP increases, the RSS trend re-
verses. In theory, this RSS trend tipping point (RTTP)
should correspond to a fixed position on the pathway that
is closest to the AP in terms of signal propagation.

The key appeal of examining the RSS trend instead
of taking individual RSS readings is that it may solve
the device and usage diversity problems: no matter what
make and model of the phone, what time of the day, and
how the phone is kept with respect to its user, the RTTP
should occur at around the same location. Through de-
tailed experiments, we argue in Section 3.3 that locations
where the RSS trend of a certain AP changes are excel-
lent candidates for landmarks. We call these points WiFi-
defined landmark, or short WiFi-Marks (WM) hereafter.

3.2 WiFi-Marks: Identification
As a landmark, each WiFi-Mark should be uniquely
identifiable. Depending on how the coverage area of
an AP intersects with the pathways, it is possible and in
fact quite likely that one AP will generate multiple WiFi-
Marks (see Figure 2). Hence while BSSID (the MAC
address of the AP) can uniquely identify the master AP,
it alone is insufficient to uniquely identify a WiFi-Mark
since there can be multiple pathways under the cover-
age of the same AP. Therefore, we need to use additional
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information to differentiate different WiFi-Marks of the
same master AP.

Figure 2: Possibly multiple WiFi-Marks for the same AP.

In Walkie-Markie, we identify a WiFi-Mark by the fol-
lowing three-tuple:

WM , {BSSID,(D1,D2),N }

where BSSID is the ID of the master AP, D1 and D2
are the steady walking directions approaching and leav-
ing the RTTP, respectively. They can be obtained from
the phone’s magnetometer. N is the set of neighboring
APs’ information, including their BSSID and the respec-
tive RSS differences to that of the master AP.

The walking direction information (D1,D2) is adopted
to differentiate pathways and turns. For example, Fig-
ure 3 shows the possible RTTPs for AP1, under different
walking patterns. With directions, we can readily dif-
ferentiate RTTP 1, {2,3}, 4, and 5. In addition, the di-
rection can be used to disqualify some erroneous RTTP
detections when the user makes a U-turn (e.g., RTTP 6
and 7). Not identifying such “U-turn RTTPs”, could add
significant noise to the system.

Figure 3: Multiple RTTP possibilities for AP1 under dif-
ferent walking patterns illustrated by arrows.

RTTPs with similar (D1,D2) can arise from parallel
corridors (e.g., RTTP 2 and 3 in Figure 3) or similar
turning styles. To further differentiate such RTTPs, we
leverage neighborhood AP information. In the same ex-
ample, RTTP 2 may see AP2 only and RTTP 3 sees AP3

only. Even if they see the exact same set of APs, there
is still a good chance that the relative RSS values will
be different due to the difference in distance to each AP.
Note that it is important to use the RSS differences to
the master AP’s RSS instead of their real RSS values to
avoid the device diversity problem. From the radio prop-
agation model [1], it can be verified that RSS differences
between multiple APs are not affected by the receiver
gain for a device.

Due to sensing noise, D1, D2, and N of a given WiFi-
Mark can be slightly different each time the WiFi-Mark
is measured. Therefore, we employ a WiFi-Mark clus-
tering process (see Section 6). There are further unreli-
able RTTP detections, such as when a user is not walking
straight or steadily (e.g., zigzagging) or when the phone’s
position changes rapidly (e.g. taken out of the pocket).
Our system therefore accepts an RTTP as a WiFi-Mark
only if the IMU sensor indicates a stable walking mo-
tion and no U-turn is detected during the measurement
process.

3.3 WiFi-Marks: Stability

Evaluation Scenarios: The indoor radio environment is
complex and often deviates significantly from ideal prop-
agation models. To verify the stability of the RTTPs in
practice, we conduct the experiments using different de-
vices (HTC G7, Moto XT800, and Nexus S), at differ-
ent time of day (morning, afternoon, evening, and mid-
night), and with the phones held at different body posi-
tions (hand, trouser pocket, purse, and backpack). All
of these are important factors affecting RSS. In addition,
we perform experiments in two buildings to demonstrate
the generality of our approach.

We present two sets of experiments. In the first set,
we walk and wait, i.e., wait to ensure a complete scan
of all WiFi channels before walking to a next collection
point. This represents an ideal case. In the second set,
we walk continuously at slow or normal speed without
waiting for WiFi scans to complete. Figure 4 shows the
curves of collected RSS values and the locations of the
detected WiFi-Marks. From the figure, we can see that
the RSS values from different devices are evidently dif-
ferent, and the same is true for the same device at dif-
ferent time of day, or at different body positions. In
contrast, the increasing and decreasing RSS trends are
always easily identifiable, and the WiFi-Mark positions
are not only highly clustered and stable, but also consis-
tent between the two devices. Taking the normal walk-
ing case as an example, the average position deviations
are 1.3m and 2.9m for Moto XT800 and Nexus S, re-
spectively, while the mean center position offset is only
2.7m between devices. In the ideal case, the deviations
are even better. The reason is that because of the rela-
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(a) Walk and wait. (b) Slow walking. (c) Normal walking.

Figure 4: RSS curves for one AP along a corridor using two phones. Blue dotted lines and red solid lines are the raw
and filtered RSS curves (see Section 6). Multiple same type of lines are measurement from different time of day. In
(a), all phones were held in hand. In (b) and (c), Moto was held in hand and Nexus S in trouser pocket.

tively long WiFi scanning time in today’s mobile phone
(usually about 1.5s), the user may have already walked a
few steps during a scan.

Stability Evaluation: We also conduct controlled ex-
periments in larger areas with more pathways, still using
various devices and walking at various speeds and at dif-
ferent times of day. For each different setting we collect
data over 5 rounds and calculate the statistical deviation
in WiFi-Mark position. We note that the peak RSS value
at RTTPs are not all strong, some being as weak as -75
dBm.

Figure 5-(a) shows the cumulative distribution func-
tion (CDF) of the deviations for the different settings.
We can see that for over 90% of WiFi-Marks, the devia-
tions are within 2.5m, and about 70% are within 1.5m in
all cases. We further study whether WiFi-Marks detected
with different settings are consistent, using the center off-
set of WiFi-Mark clusters. Figure 5-(b) shows the CDF
of the center offsets. They are indeed consistent: over
95% of the offsets are within 2.5m and over 75% are
within 1.5m. These results demonstrate that WiFi-Marks
are stable and robust across various dimensions, and thus
have ideal properties to be landmarks for our indoor path-
way mapping purpose.

4 Walkie-Markie: Overview

With WiFi-Marks, we now have the common reference
points for fusing crowdsourced user trajectories together.
Walkie-Markie consists of a client–an application run-
ning on users’ mobile phones–and the backend service
running in the cloud. The overall architecture is shown
in Figure 6.

A Walkie-Markie client works as follows: a back-
ground motion state detection engine monitors users’
motion states periodically. When the user is detected in
walking state, IMU-based tracking is activated and the
instantaneous walking frequency and direction of each

step is recorded for displacement estimation. At the same
time, WiFi signal scanning is performed opportunisti-
cally. If a WiFi signal is detected and the device has not
associated with an AP, the WiFi-Mark detection process
is activated. Information about the detected WiFi-Marks
and estimated displacements between neighboring WiFi-
Marks are stored, and later sent to the backend service.

The Walkie-Markie backend service listens to WiFi-
Mark updates from all clients. Upon receiving WiFi-
Mark updates, it examines if their master APs are new
or already existing. Updates with new master APs are
recorded and aged to mitigate the impact of transient APs
(e.g., mobile APs). For existing ones that are old enough,
their neighborhood consistency is further checked to en-
sure they are not relocated APs, which would be treated
as new APs. Then a clustering process is executed
to cluster different detections of the same actual WiFi-
Marks. Each cluster is then assigned one coordinate by
the Arturia engine. Finally, with WiFi-Marks positioned
at the right places and user trajectories connecting them,
the backend service can generate the desired pathway
maps.

5 WiFi-Mark Positioning

WiFi-Marks (or landmarks in general) serve their pur-
pose as a reference points only once we can place them
at a known location. For this reason, we need to assign
coordinates to WiFi-Marks, which is a classical node em-
bedding problem in the network coordinate and localiza-
tion literature.

Distance vs Displacement: Previous node embedding
work has unanimously assumed scalar distances (e.g.,
via direct distance measurement or the shortest path) be-
tween nodes [9,23,30]. However, in our case, users may
not always take the shortest path and, in fact, the internal
floor layout may even prevent people from taking short-
est paths (e.g., two nearby WiFi-Marks blocked by a wall

5



0 1 2 3 4 5
0%

20%

40%

60%

80%

100%
CDF of detected WM location deviation

Standard deviation (Meters)

P
er

ce
nt

ag
e

 

 

Scan @ slow moving speed, HTC G7
Scan @ slow moving speed, Nexus S
Scan @ normal moving speed, HTC G7
Scan @ normal moving speed, Nexus S

(a) CDF of WM position deviation

0 1 2 3 4 5
0%

20%

40%

60%

80%

100%
CDF of detected WM location differences

Defference (Meters)

P
er

ce
nt

ag
e

 

 

Different devices @ normal moving speed
Different devices @ slow moving speed
Different walking speed @ HTC G7
Different walking speed @ Nexus S

(b) Consistency of WM positions

Figure 5: Statistics on WM positions. Figure 6: Walkie-Markie system architecture.

or a locked door). If multiple paths exist, taking different
paths will lead to different distances. These factors often
lead to severe violations of the triangle inequality, which
lies at the heart of existing embedding algorithms. Con-
sequently, using distances between WiFi-Marks is insuf-
ficient and the displacement vector (i.e., both the distance
and the direction, obtainable from IMU sensors) between
WiFi-Marks has to be used.

Using direction information in addition to distance
is fundamental, because it can largely avoid the “fold-
freedom” problem of the embedding process [25], and
dismiss flip and rotational ambiguities. The only remain-
ing translational ambiguity can be fixed by fixing any an-
chor point with an absolute location (e.g., entrances or
window positions of a building with GPS readings). In
addition, using direction information also requires fewer
measurements: only N unique displacement measure-
ments are required to localize N WiFi-Marks, whereas
3N − 6 unique measurements would be required when
using distances only (in which case the results would still
suffer from flip and rotational ambiguities). Thus, using
displacement vectors enables faster bootstrapping and is
highly desired for a crowdsourcing system.

5.1 Arturia Positioning Algorithm
In our system, a major challenge is the inaccuracy of
IMU-based displacement measurements (e.g., errors in
stride length and/or direction estimation). To compensate
these errors, we design a new embedding algorithm, Ar-
turia, that handles noisy IMU measurements and assigns
optimal coordinates to WiFi-Marks. Arturia is based on
the spring relaxation concept, where each edge of the
graph is assumed as a spring and the whole graph forms
a spring network.

Building the Graph: An edge (hence, a spring) is
added between two specific WiFi-Mark nodes as long
as there exists a real user trajectory in between. The
rest length of the spring (i.e., the constraint) is the real
displacement measurement from user trajectory. Multi-
ple edges between a pair of nodes are possible if there
exist multiple user trajectories. In this way, we ensure

that more frequently encountered WiFi-Marks will have
more accurate coordinates as compared with the alterna-
tive strategy that uses a single average edge.

Realizing the Graph: With the spring network, our
goal is to minimize the overall residual potential energy
E, which is a function of the discrepancy between the
calculated distance (i.e., actual length of the spring) and
the real measurement (i.e., rest length of the spring). Our
solution is to adjust the node’s position as if it were
pushed or pulled by a net force from all connecting
neighboring springs. Arturia works as follows:

Initialization: We may randomly assign all nodes’s
initial coordinates, or simply to the origin. But for up-
dates due to new incoming data, the previous coordinates
are used for faster convergence and better consistency,
i.e., minimal adjustment to the previous graph.

Iteration: At each iteration, adjust the coordinates for
each node according to the compound constraints of the
neighboring nodes. Let p̂i be the current coordinate of
node i. We have ~di, j = p̂i− p̂ j as the current displace-
ment vector between node i and a neighboring node j.
Assume there are Ne,i, j real measurement constraints
between node i and j, and let~ri, j,k be the kth constraint.
Then the adjustment vector is calculated as

~εi, j =
Ne,i, j

∑
k=1

(~ri, j,k− ~di, j) (1)

The gross adjustment vector ~Fi is obtained by summing
up~εi, j over all neighboring nodes, i.e., ~Fi =∑ j~εi, j. Then,
node i’s coordinate is updated as p̂i = p̂i +~Fi.

The step size of the adjustment (i.e., |~Fi|) plays a criti-
cal role in the convergence speed: large adjustment steps
may lead to oscillation while small adjustments will con-
verge slowly, as also observed in [9]. To obtain a suitable
step size, we empirically amortize the adjustment vector
according to Ne,i, the total number of edges to all neigh-
bors of node i. That is, ~Fi =

1
Ne,i

∑ j~εi, j.
Termination: For each node i, the local residual po-

tential energy Ei is calculated as Ei = ∑ j |~εi, j|2. System
residual potential energy is then E = ∑i Ei. This value
tends to increase with additional edges of the spring net-
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work. To obtain a universally applicable termination cri-
terion, we use the normalized potential energy Ē = E/Ne
with Ne being the total number of constraining edges.
The iteration will terminate when the change of Ē falls
below a small pre-determined threshold.

Algorithm Comparison: The spring relaxation concept
has previously been adopted, e.g. in [9, 15, 25]. The ma-
jor difference is that the local adjustment (i.e., ~Fi) in each
iteration has direction information and will always move
closer to the target coordinates in Arturia. This is not the
case in other algorithms where the moving direction is
calculated based on the noisy, intermediate coordinates.
Figure 7 illustrates this difference between Arturia and

Figure 7: Illustration of an intermediate adjustment step
of Vivaldi [9] and Arturia.

the Vivaldi [9] algorithm for an intermediate adjustment
step to Node 3. We can see that in Arturia, the net force
of the adjustment points directly to Node 3’s target po-
sition, while in Vivaldi it does not. The reason is that
the constraints in Arturia are displacement vectors (e.g.,
~r3,1 and~r3,2) with direction information, while in Vivaldi
they are scalar distances (e.g., |~r3,1| and |~r3,2|).

5.2 Arturia Evaluation
We evaluate Arturia with simulations. We randomly de-
ploy N nodes in a 100×100 square area. For each node,
we build n edges to n random neighboring nodes. For
each edge, the direction is adjusted by a random number
within ±30 degrees, while the distance (i.e., the mag-
nitude of displacement) is randomly adjusted by within
±10 percent. These numbers reflect the real displace-
ment estimation error ranges.

Anti-folding Capability: As mentioned, using direc-
tion helps to avoid “fold-freedom” issues. We demon-
strate this by comparing the snapshots of intermediate
steps of Arturia against those of Vivaldi and AFL (see
Figure 8). We see that after 100 iterations, the nodes are
still heavily folded in Vivaldi. AFL is better than Vivaldi
in shape, but at a wrong scale. For Arturia, the nodes are
almost in correct positions after only 30 iterations.

Speed and Accuracy: We study the convergence
speed and the resulting accuracy of different algorithms
by varying the parameters N and n. Each experiment is

Ground Truth Vivaldi, K = 100

AFL, K = 100 Arturia, K = 30

Figure 8: Snapshots of node positions at the different
iterations for Vivaldi, AFL and Arturia.

repeated 10 times and average results are reported. Note
that in the simulation, we have used the magnitude of
displacement as the distance for Vivaldi and AFL to en-
sure the obeyance of triangular inequality, i.e., all nodes
are mostly localizable.

The speed is measured as the number of iterations.
For the accuracy metric, we adopt the Global Energy Ra-
tio (GER) because it captures the global structural prop-
erty [25]. GER is defined as the root-mean-square nor-
malized error value of the node-to-node distances, i.e.,
GER =

√
Σi, j:i< j ε̂

2
i j/(N(N−1)/2) where N is the to-

tal node number and ε̂i j = |∆~di j|/|~di j| is the normalized
node distance error.

Speed (Iterations) Accuracy (GER)
N n

Viv. AFL Art. Viv. AFL Art.
4 319k 193k 763 .687 .241 .0091

100 6 38k 27k 450 .660 .106 .0072
8 11k 2244 232 .615 .015 .0061

10 6954 971 170 .614 .012 .0056
4 340k 334k 1552 .745 .279 .0068

200 6 42k 19k 706 .736 .060 .0053
8 20k 3299 441 .710 .012 .0049

10 10k 1552 339 .699 .010 .0046

Table 1: Speed and Accuracy comparison of Vivaldi,
AFL, and Arturia. N is the node number and n is the
node connectivity degree.

Table 1 shows the results. We see that the proposed
Arturia algorithm is significantly better than the other
two algorithms in terms of both convergence speed and
accuracy. In general, with higher connectivity, both
speed and accuracy improve for all three algorithms.
This is due to larger damping effects resulting from more
densely interconnected springs. However, even with
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dense connectivity, the accuracy of Vivaldi is poor be-
cause of heavy folding. AFL works better by finding
better initial positions. In our target scenario, the node
connectivity cannot go very high since there will rarely
be direct displacement measurements between faraway
WiFi-Marks. This highlights the advantage of Arturia in
the context of Walkie-Markie.

6 System Implementation

We have implemented the Walkie-Markie system, with
mobile client on Android phones and backend services
as Web Services. In this section, we detail a few key
components.

WiFi-Mark Detection: In mobile client, the collected
RSS value is first smoothed over a 9-point weight win-
dow in a running fashion to detect WiFi-Marks. The
weight window is empirically set as a triangle func-
tion ({0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2}). We
tested other window functions (e.g., cosine, raised co-
sine) and found not much difference in detection accu-
racy. Then, the trend detection is done by taking deriva-
tives of the smoothed RSS curves, i.e., the differences be-
tween neighboring points. The consecutive positive and
negative spans of the differences are identified and the
corresponding walking directions are checked. If there
are no U-turns and the trend change is significant as con-
trolled via a threshold (e.g., 5 dBm), the point with the
peak (filtered) RSS during the trend transition is selected
as a WiFi-Mark.

Displacement Estimation: Displacement between
WiFi-Marks is estimated from user trajectories by accu-
mulating the displacement of each step. Step displace-
ment carries stride length and walking direction and is
captured by IMU sensors. Many techniques exist for
stride length estimation [17, 29, 32]. We chose a simple
frequency-based model by Cho et al [7]: stride len =
a · f + b with f being the instantaneous step frequency,
and a, b being parameters that can be trained offline.
However, model parameters are specific to a user’s walk-
ing conditions, e.g., parameters trained from wearing
sport shoes will not work well when wearing high heels.
Improper parameters will lead to large estimation error.

Interestingly, leveraging common WiFi-Marks among
user trajectories, we can avoid the error-prone stride
length estimation and instead rely on simpler and more
robust step counting under regular walking, which can
be easily be done from the regularity of the IMU data.
We first randomly select a user and treat her stride length
as the benchmark unit (BU). We then normalize other
users’ stride against hers using partial trajectories be-
tween common WiFi-Marks and obtain a normalization
factor θ . This normalization process is transitive. Ulti-

mately all users will normalize their traces to the same
BU and obtain their respective θs. Then we obtain the
average normalization factor θ̄ . The product of θ̄ and
the BU will be the real stride length of the “average”
user, to which we can assign the demographic average
stride length.

Walking Direction Estimation: We use the magne-
tometer and the gyroscope to obtain the walking direc-
tion and the turning angles, similar to [18, 21]. Unlike
step detection and stride length that is determined on a
per-step basis, the direction of each step needs to be de-
termined by considering those of neighboring steps be-
cause magnetometer readings are sometimes not stable
due to disturbance of local building construction or ap-
pliances, and the gyroscope may drift over time. In our
implementation, we simply discard portions of magne-
tometer data where drastic changes occur, and rely on the
gyroscope to decide whether there is a direction change
in that period. For the portions with stable magnetometer
readings, we use a Kalman Filter to combine the mag-
netometer and the gyroscope readings to tell the user’s
walking directions.

WiFi-Mark Clustering: The backend service receives
many crowdsourced trajectories and WiFi-Mark reports.
Due to sensing noise and user motion, the same actual
WiFi-Mark may be reported slightly differently in di-
rections (D1,D2) and neighborhood (N ). We design a
clustering process to detect the same actual WiFi-Mark:
we first classify reported WMs with the same BSSID us-
ing D1 and D2. To accommodate sensing noise, the di-
rections are considered the same if they are within ±20
degrees. For those WMs with same BSSID and similar
directions, a bottom-up hierarchical clustering process as
in [6,24] is applied on the neighborhood set N . Initially,
each WM is one cluster. Then the closest clusters are it-
eratively merged if their inter-cluster distance is smaller
than a pre-determined threshold, which is set to 15 dBm
as recommended in [24].

The inter-cluster distance is the average distance
between all inter-cluster pairs of WMs. The distance
between two WMs is defined over the RSS of the sensed
APs (A ) as follows:

DN( ~Ai, ~A j) =

√
K

∑
n=1

(ai
n−a j

n)2/K

where ~Ai are the RSS differences (to ensure device in-
difference) between the master AP and neighboring APs
at WMi, and K is the total number of unique APs de-
tected at the two WMs. For orphan APs appearing in
one WM’s neighborhood but not the other, the RSS dif-
ference is set to peak RSS of the master AP minus -100
dBm. Finally, each WiFi-Mark cluster is treated as one
node in Arturia and assigned one coordinate. All WiFi-
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Marks in the same cluster have the same coordinate.

Pathway Map Generation: With WiFi-Marks and con-
necting user trajectories, we design the following expan-
sion and shrinking procedure to generate the pathway
map systematically. Initially, user trajectories are parti-
tioned into snippets delimited by WiFi-Marks. Snippets
with U-turns are filtered out. The remaining trajectory
snippets are calibrated by proportionally adjusting the
length and direction of each step using the WiFi-Marks’
coordinates assigned by Arturia (affine transformation).
For each calibrated trajectory snippet, we first draw it on
a canvas and further expand it to a certain width (i.e.,
from line to shape). Pixels being occupied are weighted
differently according to their distances to the center line:
the closer the pixels, the higher the weight. Due to the
multiplicity of user trajectories, there may exist multiple
snippets connecting the same two WiFi-Marks. Thus,
expanded snippets will overlay together and the weight
of overlapping pixels are summed up. The expansion
process will result in a fat pathway map. A shrinking
process is then applied to prune away those outer pixels
whose weights are less than a threshold. As some WiFi-
Marks may be encountered more frequently than others,
we adapt the threshold as a percentage to the maximum
weight in the local neighborhood. Finally, we remove
isolated pixels and also smooth the edges of the resulting
shrunk pathway map.

Note that the pathway map generated from above
expansion-shrinking process is a bitmap. It is also pos-
sible to generate a vector pathway map as all the turns
can be effectively determined from user trajectories. We
adopt bitmap in this paper for its immediacy in visually
reflecting the quality of users’ trajectories.

Practical Considerations: In our implementation, we
have considered other important issues to build a practi-
cal crowdsourcing system.

Robustness: We have designed two mechanisms to
improve the robustness of the system. First, the back-
end service implements an enrollment selection mecha-
nism. WiFi-Marks from new master APs are recorded
and will be incorporated into the Arturia positioning en-
gine only when the AP becomes sufficiently aged. This
is to counter transient WiFi-Marks, e.g., those caused by
mobile APs or WiFi hotspot created on mobile phone
through tethering. Relocated APs are detected via neigh-
borhood (carried in WiFi-Mark reports) consistency and
treated as new APs. Second, to mitigate the impact of
outlying WiFi-Marks, e.g., resulting from transient mo-
bile AP or wrongly detected due to magnetometer mal-
function, we enroll a WiFi-Mark cluster only when it has
a sufficient number of members (e.g., three).

Energy consumption: IMU-sensing consumes little
energy, especially at low sampling rate (e.g., 10Hz in our

case). Our preliminary test shows that 10Hz IMU sens-
ing shortens the depletion time of a fully charged battery
from 18.3 hours to 17.8 hours. We reduce data commu-
nication to the server by performing step detection and
WiFi-Mark detection entirely on the mobile phone. The
final communication data rate is about 1KB every 100
steps. Note that it can be delayed and piggybacked on
other network sessions. The major energy consumption
is from WiFi scanning. To work around, our client trig-
gers WiFi scanning only when the user is walking (de-
tected from low duty cycled IMU sensors), and we task
a user to collect just a few minutes of walking data. As
shown in Section 7, even short trajectories can still be
used to infer pathway maps.

7 Walkie-Markie System Evaluation

7.1 Visual Comparison

Before presenting quantitative evaluation results, we first
visually examine the inferred pathway map with the
ground truth or reference floor plan. This will give us
a general feel for Walkie-Markie’s practicality.

An Office Floor: We first show the study in our of-
fice floor for which we have the groundtruth floor plan.
The internal layout consists of meeting rooms, offices,
cubicle areas, and relatively large open areas in the mid-
dle. The experiment floor size is 3,600m2 and the to-
tal internal pathway length is 260m. Figure 9 shows the
aligned user trajectories and the inferred pathway maps
under different amounts of user trajectory data. The stars
in user trajectories are the detected WiFi-Marks. As
expected, the quality of the resulting pathway map im-
proves with more user data. After 50 minutes of random
walk, the resulting map is already very close to the real
map shown in the bottom-left figure.

A Shopping Mall Floor: We also study a nearby
shopping mall. There is no managed WiFi LANs, but
many isolated WiFi islands deployed by coffee shops
or from POS machines. The floor has an irregular lay-
out and the internal pathway length is roughly 310m.
We walked about 10 rounds for about 40 minutes with
a Nexus S phone. The results are shown in Figure 10.
The first two figures show the raw IMU-tracked user tra-
jectories and those aligned with WiFi-Marks. The third
figure shows the inferred pathway map. Unable to obtain
a groundtruth floor plan, we took a picture of an emer-
gency guidance map and highlighted the pathways in the
last figure. We see that the pathway map generated by
Walkie-Markie is visually very close to the real one.
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(a) after 20 minutes walk. (b) after 30 minutes walk. (c) after 50 minutes walk. (d) after 100 minutes walk.

Figure 9: Aligned user trajectories and generated pathway maps at different amount of user trajectories.
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(a) normal IMU-tracking (b) with WM alignment (c) Inferred pathway map (d) Picture from flyer.

Figure 10: The picture and generated pathway map for a real shopping mall.

7.2 Quantitative Evaluation

We conduct experiments in our office building, for which
we have the groundtruth floor plan.

Data Collection: We have collected data from seven
users, six male and one female, with heights range from
158cm to 182cm. A stride length model is trained for
each user. We asked them to walk normally and cover
all the path segments in each round, but they could start
anywhere. Three phone models (Nexus S, HTC G7, and
Moto XT800) were used. The phones were held in hand
in front of body, hip-pocket, and also a backpack. In
total, the users walked 30 rounds for about two hours.

In real crowdsourcing scenarios, users may walk only
a portion of all pathways, or we may need to discard por-
tions with irregular walking, or a user may only want to
be tasked for a short time for consumption of energy con-
sumption. To simulate these constraints and see if short
trajectories are still useful, we chop the complete user
trajectories into one-minute snippets, and randomly se-
lect a certain number of such snippets to infer the map.
Results reported below are averaged over 10 such exper-
iments.

Performance Metrics: To quantify the quality of the in-
ferred pathway map, we use the following metrics.

• Graph Discrepancy Metric (GDM): This metric re-
flects the differences in the relative positioning among
anchor nodes, i.e. singular locations such as crosses

or sharp turns. Like GER, we compare the Euclidean
distances among all node pairs using coordinates from
respective maps.

• Shape Discrepancy Metric (SDM): This metric quan-
tifies differences between the shape of inferred paths
and real ones. Path segments between corresponding
anchor nodes are uniformly sampled to obtain a series
of sample points. The metric is defined as the distance
between corresponding sampling points. Note the in-
ferred map needs to be registered to the real map first
by aligning at some anchor nodes.

Mapping Accuracy: Figures 11-(a) and (b) show the
cumulative distribution (CDF) of GDM from different
amount of trajectory data. We can see that the geomet-
ric layout of all anchors are well preserved with only
2-hour walking data. The maximum difference in dis-
tances between corresponding node pairs is about 3 me-
ters, and the 90 percentile difference is around 2 meters.
We also observe that the performance improves as more
data becomes available. In addition, an accurate pathway
map can be built from trajectories as short as one-minute
walking, as long as we can obtain sufficiently many of
them.

Comparing the curves with similar walking time (e.g.,
100min vs 26 rounds) in the two subfigures, we can see
that using complete trajectories leads to better perfor-
mance. This is because chopping the walks into snippets
reduces the displacement measurements between WiFi-
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Figure 11: CDF of GDM.
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Figure 12: CDF of SDM.

(a) GDM

(b) SDM

Figure 13: System performance using
step count only.

Marks. In general, longer trajectories yields better per-
formance.

In measuring SDM, we have different options to align
the inferred map to the real map to fix the only remaining
translational ambiguity. In reality, such alignment can be
automatically performed by leveraging user trajectories
that enter or leave the building. Here, we study the results
by aligning at any outermost anchor point (e.g., Points A,
B, C, D in the bottom-left figure in Figure 9), and also an
optimal alignment at the geometric center of all anchors.
In all experiments below, we have obtained 10 sample
points on each path segment between two neighboring
anchors.

Figure 12-(a) shows the CDF of SDM using 100 one-
minute snippets. We can see that aligning at different
points indeed leads to different performance. Neverthe-
less, the maximum difference among all the five align-
ment trials is small, within 1.3 meters. In the remainder
of the evaluation, we use the optimal alignment. From
Figure 12-(b), we see that the shape of inferred pathways
agrees well with the shape of real ones. When over 50
minutes of walking data is used, the maximum path dis-
crepancy is within 2.8 meters, and the 90 percentile error
is within 1.8 meters.

Step Count Only: We stated above that Walkie-
Markie can avoid error-prone stride length estimation.
To verify this claim, we use only the direction and step
count from the same set of user trajectories. Figure 13
shows the results. Since we do not know the demo-

graphic average step length, we scale the resulting shape
to best fit the ground truth. This gives the upper bound of
system performance. We also simply assign 0.7m as the
demographic average step length and obtain the results.
From the figure we can see that even using step count
only leads to high accuracy maps. Comparing with the
curve using the trained stride length model, we can see
that the 90 percentile GDM is only slightly worse (within
0.4m) and the 90 percentile SDM is actually better by
about 0.4m.

Impact of AP Density: Our office floor has a relatively
dense AP deployment, about 21 APs covering an area
of 3,600m2. It is natural to conjecture that the perfor-
mance of Walkie-Markie may be highly affected by the
AP density. To study this impact, we emulate sparse de-
ployments by randomly blanking out a certain percent-
age of APs, i.e., eliminating all the WiFi-Marks defined
by those APs and their appearances in other WiFi-Mark’s
neighbor AP list.

Figure 14 shows the results with varying percentage
of remaining APs. In general, the performance degrades
when the number of AP decreases. But for a dense de-
ployment like our office building, the number of APs
is more than enough for a good result. The result does
not suffer if AP density is reduced to 40%. And even a
further reduction to 20% degrade the mapping accuracy
only slightly.

System Agility: We are also interested in learning how
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Figure 14: Impact of WiFi AP density. Figure 15: GDM and SDM statistics under different amount of trace data.

agile Walkie-Markie can construct a useful internal path-
way map. System agility reflects the adaptation capa-
bility to the internal layout changes of a building. It is
measured by the achievable GDM and SDM under dif-
ferent amount of user trajectories incorporated into the
system. Figure 15 shows that both discrepancy metrics
decrease with more data input, and the system converges
quickly: with about 5 to 6 rounds of trajectories (i.e., vis-
its per path segment), a highly accurate pathway map can
already be inferred.

8 Application to Localization

Radio Map as Side Product: In Walkie-Markie, WiFi
fingerprints are collected when the users walk. When the
internal pathway map is generated, the position of each
user step can be obtained from the calibrated walking tra-
jectory. With reference to the timestamps of WiFi scans
and steps, we can easily interpolate the position of each
WiFi scan. As a result, we can generate a dense WiFi
fingerprint map for free.

Localization: Both the resulting internal pathway map
and the radio map can be used for localization pur-
pose. For the former, we can localize a user by track-
ing the relative displacement since the last WiFi-Mark
encountered, whose position is known. For the latter,
we can apply any WiFi fingerprinting-based method such
as the RADAR localization system [4]. For evaluation,
we walked one round along the pathway in the office
floor. During walking, we ensured every step to be at
boundaries of carpet tiles. Thus fingerprints are col-
lected at half-meter (i.e., the tile size) interval and their
groundtruth positions are also known. We compare the
localization results in Figure 16. We can see that Walkie-
Markie outperforms RADAR, and more interestingly, the
localization error is bounded. Quantitatively, the average
and 90 percentile localization errors are 1.65m and 2.9m
for Walkie-Markie, and 2.3m and 5.2m for RADAR. We
note that the resulting accuracy is comparable with that
reported in Zee [26], and slightly better than that from

LiFS [38].
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Figure 16: Localization results of Walkie-Markie and
RADAR in an office floor, using crowd sourced map.

9 Discussion
Open Area: Our system works well for normal indoor
pathways that are typically narrow (say a few meters),
which helps ensuring regular user motion. For large open
areas, the performance depends on how users walk. If
most users walk along roughly the same path (e.g., from
one entrance to another), Walkie-Markie will still work.
In general, however, the performance may deteriorate as
users may walk arbitrarily, which will cause noisy WiFi-
Mark detection and clustering. For wide pathways, the
inferred map tends to be thinner than the real ones. This
is because we have assumed a point representation of a
WiFi-Mark cluster, and we have also assumed the path-
way to be around 2-meter wide pruning outer pixels in
the shrinking process. We note that WiFi-Mark clusters
from wider pathway segments tend to be more diverged
than those from thinner ones, we may leverage this fact
to estimate the pathway width.

Multiple Floors: Users may walk across different floors
using either elevators, escalators, and stairs. These mo-
tion states can be discriminated using accelerometer with
advanced detection mechanisms [20,35], and can thus be
excluded in the WiFi-Mark detection. Interestingly, these
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functional areas may serve as landmarks as they are sta-
ble and reliably detectable via phone sensors. Thus, they
can also be incorporated into the Walkie-Markie system,
and treated in the same way as WiFi-Marks by the Ar-
turia engine. To discriminate different functional areas
of the same type, we can use the covering WiFi APs.

Dedicated Walking vs Crowdsourcing: While Walkie-
Markie is crowdsourcing-capable, it can also be used by
dedicated or paid war-walkers. Dedicated walkers can
walk longer and better traces, which leads to a higher
efficiency in generating the desired maps (as shown in
Figure 11).

10 Related Work

Although we focus on internal pathway mapping,
Walkie-Markie is essentially a system of simultaneous
localization and mapping (SLAM), which is heavily
studied in the robotics field [33]. SLAM methods typ-
ically rely on visual landmarks or obstacles detected
by camera, sonar or laser range-finders and on accurate
kinematics of robots [2]. FootSLAM [28] uses shoe-
mounted inertial sensors to construct the internal map.
PlaceSLAM [27] further incorporates manually anno-
tated places. In contrast, Walkie-Markie requires no spe-
cial hardware and uses IMU sensors on commercial mo-
bile phones, and requires no human intervention, which
is necessary for a crowdsourcing system.

Escort [8] navigates users via the map built from other
users’ trajectories and instruments audio beacons to con-
strain IMU-tracking drift. Unloc [?] further explores var-
ious types of natural landmarks detectable from sensor
readings, including the landmarks from WiFi networks.
Their WiFi landmarks are determined as locations least
similar (with ratio of common APs as the similarity met-
ric) to all other places. Walkie-Markie does not need to
instrument the environment, and uses the RSS trend to
detect WiFi-Marks. This idea makes it robust to sig-
nal fluctuations, device diversity, and usage diversity,
whereas how Unloc handles such practical issues was not
reported. The detection is much simpler. In addition, un-
like Unloc where multiple APs may determine one WiFi
landmark, one AP may determine multiple WiFi-Marks
in Walkie-Markie. Thus, we are able to find significantly
more WiFi-Marks (e.g., over 100 WMs in one floor) than
Unloc (e.g., around 10 WiFi landmarks and overall 40
landmarks in one building). One recent work [19] also
exploits the point of maximum RSS, which bears simi-
larity to WiFi-Mark. However, instead of exploiting it
as a landmark, they use it to switch between two loca-
tion inference modules. A dedicated training stage is
required to obtain the locations of such maximum RSS
points. Walkie-Markie builds the pathway map without

pre-training.
There are several papers that combine WiFi and IMU-

tracking for mapping purpose. WiSLAM [5] seeks to
construct the WiFi radio map and uses the RSS values
to differentiate different paths. WiFi-SLAM [11] uses
a Gaussian process latent variable model to build WiFi
signal strength maps and can achieve topographically-
correct connectivity graphs. SmartSlam [31] employs
inertial tracing, a WiFi observation model and Bayesian
estimation method to construct the floor plan. LiFS [38]
and Zee [26] seek to reduce efforts in generating the
radio map, with the necessary aid of the actual floor
plan. All these work has exploited the WiFi signal in
the same way as other WiFi-based localization meth-
ods, and thus still face the same challenges, namely WiFi
signal fluctuations, device diversity and usage diversity.
Again, Walkie-Markie avoid such challenges by using
RSS trend instead of face values.

11 Conclusion

We have presented the design and implementation
of Walkie-Markie – a crowdsourcing-capable pathway
mapping system that leverages ordinary pedestrians with
their sensor-equipped mobile phones and builds indoor
pathway maps without any a-priori knowledge of the
building. We propose WiFi-Marks–defined using the
tipping-point of an RSS trend–to overcome the chal-
lenges common to WiFi-based localization. Its location-
invariant property helps to fuse user trajectories and
make the system crowdsourcing-capable. We also
present an efficient graph embedding algorithm that as-
signs optimal coordinates to the landmarks through a
spring relaxation process based on displacement vec-
tors. With the located WiFi-Marks and user trajectories,
highly accurate pathway maps can be generated system-
atically. Our experiments demonstrate the effectiveness
of Walkie-Markie.
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