
Programming J.J. Horning
Languages Editor

On the Proof of
Correctness of a
Calendar Program
Leslie Lamport
SRI International

A formal specification is given for a simple calendar
program, and the derivation and proof of correctness of
the program are sketched. The specification is easy to
understand, and its correctness is manifest to humans.

Key Words and Phrases: program specification,
program verification, inductive assertions

CR Category: 5.24

Introduction

In [1], Geller introduced a method for proving the
correctness of a program based upon the concept of test
data, and illustrated it with a simple calendar program.
The program accepts as input a pair of dates in the same
year, and computes the number of days between those
dates. Geller presented two proofs for this program: one
using his method, the other using the customary induc-
tive assertion method. He made the following valid
criticism of the assertional proof:

We also have less confidence in the proof that our output
assertion actually ensures that the program computes values that
correspond with the way real calendars behave. The formal specifi-
c a t i o n . . , could easily be off by a constant of 1 or 2.

This criticism echoes the following objection, which
is often raised against the whole idea of proving the
correctness of programs:

Real programs are difficult to specify, and formal specifications
for them are very complicated. A complicated specification is just as
likely to be incorrect as the program itself, so why bother proving
that a program satisfies an unreliable specification?

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: L. Lamport, Computer Science Laboratory, SRI
International, 333 Ravenswood Avenue, Menlo Park, CA 94025.
© 1979 ACM 0001-0782/79/1000-0554 $00.75

554

The example of the calendar program seems to corrob-
orate this view. The calendar program has a precise
informal specification, based upon our knowledge of the
calendar. However, one cannot formally prove that a
program meets an informal specification. It is easy to test
the program to "see if it works", but it would appear
that a formal specification must be quite tedious, and
just as subject to error as the program itself. A specifi-
cation of such a simple program is worthless if its cor-
rectness is not easily verified by human inspection.

Geller's method provides no answer to this objection,
since his proof is not based upon any formal statement
of the problem. In fact, since there is no precise specifi-
cation of what constitutes valid input, the program could
be considered incorrect because it may give wrong an-
swers for dates earlier than 15 October 1582--the "first
day" of the Gregorian calendar. One may object that
this is a quibble, but of what value is a methodology that
cannot produce an unequivocally correct solution to such
a simple problem?

We believe that if one really understands what a
program should do, then he can specify it precisely in an
understandable manner. To demonstrate this, we will
give a specification for the calendar program that is
simple, natural, and quite easy for a human to under-
stand and verify. We will do this by carefully formalizing
our ordinary concepts of dates and calendars, and then
turning our informal idea of what the calendar program
is supposed to do into a formal specification. We will
show that the inductive assertion method is well-suited
to proving that Geller's program satisfies this formal
specification.

The Solution

In general, constructing a correct program requires
the following three steps:

1. Write a correct specification of the problem. A
correct specification is one that expresses what the user
wants the program to do. Only the (human) user knows
what he wants, so only he can decide if the specification
is correct. In order to decide if the specification is correct,
the user must be able to understand it. Programs as
simple as the calendar program should have simple
specifications. As Geller observed, this is not the case for
specifications in terms of complex input and output
assertions. Incorrect specifications are a significant
source of program errors 12].

2. Devise a correct method for solving the problem.
Unless the problem is completely trivial, one cannot
write a program directly from the specification. One
must first derive some method for computing the result,
and prove that it computes a correct result--a result
which satisfies the specification. Formally, this means
proving theorems about the data, which can be used to
construct a correct program. Such theorems usually al-
ready exist. A programmer writing a G CD subroutine

Communications October 1979
of Volume 22
the A C M Number 10

does not have to invent and prove the correctness of
Euclid's algorithm--Euclid already did that. Advocates
of programming methodologies have tended to talk as if
their methodologies automatically generate good pro-
grams. A programming methodology is no substitute for
intelligent reasoning about algorithms and their com-
plexity, and cannot by itself lead one to a good method
of solution. (For example, see [4].) "Structured program-
ming" would not have helped Euclid discover his algo-
rithm.

3. Write a program that correctly implements the
method of solution. Finally, one must construct a program
to implement the method chosen in Step 2, and must
prove that the resulting program meets its specification.
(The theorems from Step 2 will be used in that proof.)
This final step has been the focus of most of the literature
on programming methodology and correctness proofs,
and further discussion by us would be superfluous.

We now indicate how the calendar problem can be
solved in these three steps.

Step 1: Specification
A date is a triple of integers such as (7, February,

1978), where we let "January", "December" be
alternate names for the integers 1 , 12. A calendar is
a method of assigning dates to days. More precisely, let
us define an era to be an infinite sequence of days. A
calendar for that era is an assignment of a date to each
day in the era. For simplicity, we consider the specific
era beginning on 15 October 1582, and we let the se-
quence of days be represented by the sequence of positive
integers. A calendar is then a mapping from integers to
dates (triples of integers). We define the Gregorian cal-_
endar to be the mapping gregorian from positive integers
to dates such that

gregorian[n] -: (day [n], month[n], year[n]),

where the integer-valued functions day, month, and year
are defined inductively as follows:

(day[l], month[1], year[l]) ~ (15, October, 1582)
(day[n + 1], month[n + l], year[n + 1])

if (day [n], month[n]) = (31, December)
then (1, January, 1 + year[n])
else if day [n] = daysin[month[n], year [n]]

then (1, 1 + month[n], year[n])
else (1 + day[n], month[n], year[n]).

The function daysin used in this definition gives the
number of days in the specified month, and is defined
(for all months from January to December) by:

daysin[month, year] =-
if month = February

then if (year --- 0 mod 4) and
(year ~ 0 mod 100 or year -= 0 mod 400)

then 29
else 28

else if month ~ [September, April, June, November}
then 30
else 31.

We believe that this definition of a calendar is simple
and natural, and that a human can understand it and
verify its correctness. We will use this definition to
specify a calendar program.

Before we can write a specification, we must decide
just what we want to specify. We will consider the
problem of specifying a function, called DAYS, to be
written in some Algol-like programming language. (We
adopt the convention of using uppercase letters as the
names of objects in the programming language.) This
function takes three arguments: a year and two (day,
month) pairs, and returns the number of days from the
first (day, month) to the second (day, month) of that
year. More precisely, the function DAYS is specified as
follows:

If (dayl, monthl, yr) = gregorian[hi]
and (day2, month2, yr) = gregorian[n2]
and n I <_ n2

then DAYS(yr, (dayl, monthl), (day2, month2))
= n 2 - nl.

Observe that the first two hypotheses state that the
arguments represent valid dates--i.e, that there exist
days n l and n2 having these dates, thereby excluding
such inputs as (32, January). The third hypothesis states
that the second date is not earlier than the first. The
conclusion is the precise statement that DAYS computes
what we want it to: the number of days between the two
dates. Note how clear and precise this specification is.

Step 2: The Method
To compute the values of DAYS directly from its

specification, we would need to compute the inverse of
the function gregorian. Since this is impractical, we might
reason as follows to obtain a practical method for com-
puting it. We first ask: How many days are there between
a given date and the beginning of the year? The answer
is provided by the following result, where a sum of the
form

0

i = 1

is defined to equal zero.

Theorem: If (dy, mon, yr) = gregorian[n]
and (1, January, yr) = gregorian[m],

mon -- I

t h e n n - m = d y - 1 + ~ daysin[i, yr].
i=1

The proof of this theorem, using our definition of
gregorian, is a nice exercise in mathematical induc-
tion, and is left to the reader. If we write n2 - n l =
(n2 - m) - (nl - m) and apply the theorem twice,
using the easily proved result that if n l _< n2 and
year[nl] = year[n2] then month[nil _< month[n2], and
do some algebra, we obtain the following corollary to the
theorem.

Corollary: if (day 1, month 1, yr) = gregorian[n 1]
and (day2, month2, yr) = gregorian[n2]
and nl _< n2

m o n t h 2 - - I

then n2 - n l = day2 - day l + ~ daysin[i, yr].
i = m o n / h l

555 Communications October 1979
of Volume 22
the ACM Number 10

Comparing this corollary with the specification, we
see that it provides the simple method for computing
DAYS that we were looking for .

Step 3: Writing the Program
We are now faced with a simple exercise in construct-

ing and proving the correctness of a program. We define
the function DAYS in terms of two program statements:
C O M P U T E . D A Y S I N and COMPUTE.SUM. The
statement C O M P U T E . D A Y S I N sets the ith element of
the array DAYSIN equal to daysin[i, YEAR], where
YEAR is a program variable. Its formal specification in
terms of input and output assertions is as follows:

Input Assertion: YEAR = yr

Output Assertion:
For all i E {January December}:

DAYSIN(i) = daysin[i, yr].

The program statement C O M P U T E . S U M computes
the sum over i in the above corollary when month l <
month2. Its formal specification is as follows:

Input Assertions:
M O N T H I = ml
MONTH2 = m2
ml < r n 2
For all i e {January December}:

DAYSIN(i) = dn(i)

Output Assertion:
m 2 - i

SUM = Y~ an(i).
t = m I

It is a simple exercise in the inductive asser-
tion method to write and prove the correctness of
C O M P U T E . D A Y S I N and COMPUTE.SUM. The
proof of correctness of C O M P U T E . D A Y S I N must use
the definition of the function daysin that we gave in Step
1, since that function appears in the output assertion.
After proving that these statements meet the above in-
put /output specifications, it is a simple matter to use the
corollary from Step 2 to prove that the following function
DAYS satisfies the specification given in Step 1:

DAYS(YEAR, (DAYI, MONTHI) , (DAY2, MONTH2)) ---
if M O N T H 1 = MONTH2

then return(DAY2 - DAYI)
else COMPUTE.DAYSIN;

COMPUTE.SUM;
return(DAY2 - DAYI + SUM)

fi.

This function is essentially the same as the program
given by Geller in [1].

humanly understandable. Most of the work on formal
specification seems to have concentrated on the first
requirement and neglected the second. We believe that
if one understands what the program is supposed to do,
then he can specify it both formally and understandably.
One cannot expect a more complicated program to have
as simple a specification as the calendar program. How-
ever, the specification should be much easier to under-
stand than the program. We believe that such specifica-
tions are possible, and we cite as evidence our calendar
program as well as a more complicated example given in
[3]. However, these are just examples, and much work
remains to be done in this area.

Received February 1979; revised June 1979

References
I. Geller, M. Test data as an aid in proving program correctness.
Comm. ACM 21, 5 (May 1978), 368-375.
2. Gerhart, S., and Yelowitz, L. Observations of fallibility in
applications of modern programming methodologies. IEEE Trans.
Software Eng. SE-2, 3 (Sept. 1976), 195-207.
3. Lamport, L. The specification and proof of correctness o f
interactive programs. Proc. Mathematical Studies of Information
Processing, Kyoto, Japan, Aug. 1978, E.K. Blum, M. Paul, and S.
Takasu, Eds., Lecture Notes in Computer Science 75, Springer-Verlag,
Berlin, pp. 474-537.
4. McMaster, C.L. An analysis of algorithms for the Dutch national
flag problem. Comm. ACM 21, 10 (Oct. 1978), 842-846.

Conclusion

Of the three steps in constructing a correct program,
the first--specifying the p rob lem--has received the least
attention. The inductive assertion method is useful fo r
proving that a program meets a specification, but it does
not help with the problem of writing that specification.
To be useful, a specification must be both formal and

556 Communicat ions October 1979
of Volume 22
the ACM Number 10

