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A formal specification is given for a simple calendar 
program, and the derivation and proof of correctness of 
the program are sketched. The specification is easy to 
understand, and its correctness is manifest to humans. 

Key Words and Phrases: program specification, 
program verification, inductive assertions 

CR Category: 5.24 

Introduction 

In [1], Geller introduced a method for proving the 
correctness of  a program based upon the concept of test 
data, and illustrated it with a simple calendar program. 
The program accepts as input a pair of dates in the same 
year, and computes the number of  days between those 
dates. Geller presented two proofs for this program: one 
using his method, the other using the customary induc- 
tive assertion method. He made the following valid 
criticism of  the assertional proof: 

We also have less confidence in the proof that our output 
assertion actually ensures that the program computes values that 
correspond with the way real calendars behave. The formal specifi- 
c a t i o n . . ,  could easily be off by a constant of  1 or 2. 

This criticism echoes the following objection, which 
is often raised against the whole idea of  proving the 
correctness of  programs: 

Real programs are difficult to specify, and formal specifications 
for them are very complicated. A complicated specification is just as 
likely to be incorrect as the program itself, so why bother proving 
that a program satisfies an unreliable specification? 
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The example of  the calendar program seems to corrob- 
orate this view. The calendar program has a precise 
informal specification, based upon our knowledge of  the 
calendar. However, one cannot formally prove that a 
program meets an informal specification. It is easy to test 
the program to "see if it works", but it would appear 
that a formal specification must be quite tedious, and 
just as subject to error as the program itself. A specifi- 
cation of  such a simple program is worthless if its cor- 
rectness is not easily verified by human inspection. 

Geller's method provides no answer to this objection, 
since his proof is not based upon any formal statement 
of  the problem. In fact, since there is no precise specifi- 
cation of  what constitutes valid input, the program could 
be considered incorrect because it may give wrong an- 
swers for dates earlier than 15 October 1582--the "first 
day" of  the Gregorian calendar. One may object that 
this is a quibble, but of  what value is a methodology that 
cannot produce an unequivocally correct solution to such 
a simple problem? 

We believe that if one really understands what a 
program should do, then he can specify it precisely in an 
understandable manner. To demonstrate this, we will 
give a specification for the calendar program that is 
simple, natural, and quite easy for a human to under- 
stand and verify. We will do this by carefully formalizing 
our ordinary concepts of  dates and calendars, and then 
turning our informal idea of  what the calendar program 
is supposed to do into a formal specification. We will 
show that the inductive assertion method is well-suited 
to proving that Geller's program satisfies this formal 
specification. 

The Solution 

In general, constructing a correct program requires 
the following three steps: 

1. Write a correct specification of  the problem. A 
correct specification is one that expresses what the user 
wants the program to do. Only the (human) user knows 
what he wants, so only he can decide if the specification 
is correct. In order to decide if the specification is correct, 
the user must be able to understand it. Programs as 
simple as the calendar program should have simple 
specifications. As Geller observed, this is not the case for 
specifications in terms of  complex input and output 
assertions. Incorrect specifications are a significant 
source of  program errors 12]. 

2. Devise a correct method for  solving the problem. 
Unless the problem is completely trivial, one cannot 
write a program directly from the specification. One 
must first derive some method for computing the result, 
and prove that it computes a correct result--a result 
which satisfies the specification. Formally, this means 
proving theorems about the data, which can be used to 
construct a correct program. Such theorems usually al- 
ready exist. A programmer writing a G CD  subroutine 
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does not have to invent and prove the correctness of  
Euclid's algorithm--Euclid already did that. Advocates 
of programming methodologies have tended to talk as if 
their methodologies automatically generate good pro- 
grams. A programming methodology is no substitute for 
intelligent reasoning about algorithms and their com- 
plexity, and cannot by itself lead one to a good method 
of solution. (For example, see [4].) "Structured program- 
ming" would not have helped Euclid discover his algo- 
rithm. 

3. Write a program that correctly implements the 
method of solution. Finally, one must construct a program 
to implement the method chosen in Step 2, and must 
prove that the resulting program meets its specification. 
(The theorems from Step 2 will be used in that proof.) 
This final step has been the focus of  most of the literature 
on programming methodology and correctness proofs, 
and further discussion by us would be superfluous. 

We now indicate how the calendar problem can be 
solved in these three steps. 

Step 1: Specification 
A date is a triple of  integers such as (7, February, 

1978), where we let "January", . . . .  "December" be 
alternate names for the integers 1 . . . .  , 12. A calendar is 
a method of  assigning dates to days. More precisely, let 
us define an era to be an infinite sequence of  days. A 
calendar for that era is an assignment of  a date to each 
day in the era. For simplicity, we consider the specific 
era beginning on 15 October 1582, and we let the se- 
quence of  days be represented by the sequence of positive 
integers. A calendar is then a mapping from integers to 
dates (triples of integers). We define the Gregorian cal-_ 
endar to be the mapping gregorian from positive integers 
to dates such that 

gregorian[n] -: (day [n], month[n], year[n]), 

where the integer-valued functions day, month, and year 
are defined inductively as follows: 

(day[l], month[1], year[ l ]) ~ (15, October, 1582) 
(day[n + 1], month[n + l], year[n + 1]) 

if (day [n], month[n]) = (31, December) 
then (1, January, 1 + year[n]) 
else if day [n] = daysin[month[n], year [n]] 

then (1, 1 + month[n], year[n]) 
else (1 + day[n], month[n], year[n]). 

The function daysin used in this definition gives the 
number of days in the specified month, and is defined 
(for all months from January to December) by: 

daysin[month, year] =- 
if month = February 

then if (year --- 0 mod 4) and 
(year ~ 0 mod 100 or year -= 0 mod 400) 

then 29 
else 28 

else if month ~ [September, April, June, November} 
then 30 
else 31. 

We believe that this definition of  a calendar is simple 
and natural, and that a human can understand it and 
verify its correctness. We will use this definition to 
specify a calendar program. 

Before we can write a specification, we must decide 
just what we want to specify. We will consider the 
problem of  specifying a function, called DAYS, to be 
written in some Algol-like programming language. (We 
adopt the convention of  using uppercase letters as the 
names of objects in the programming language.) This 
function takes three arguments: a year and two (day, 
month) pairs, and returns the number of days from the 
first (day, month) to the second (day, month) of that 
year. More precisely, the function DAYS is specified as 
follows: 

If (dayl, monthl,  yr) = gregorian[hi] 
and (day2, month2, yr) = gregorian[n2] 
and n I <_ n2 

then DAYS(yr, (dayl, monthl), (day2, month2)) 
= n 2 -  nl. 

Observe that the first two hypotheses state that the 
arguments represent valid dates--i.e, that there exist 
days n l and n2 having these dates, thereby excluding 
such inputs as (32, January). The third hypothesis states 
that the second date is not earlier than the first. The 
conclusion is the precise statement that DAYS computes 
what we want it to: the number of  days between the two 
dates. Note how clear and precise this specification is. 

Step 2: The Method 
To compute the values of DAYS directly from its 

specification, we would need to compute the inverse of 
the function gregorian. Since this is impractical, we might 
reason as follows to obtain a practical method for com- 
puting it. We first ask: How many days are there between 
a given date and the beginning of  the year? The answer 
is provided by the following result, where a sum of the 
form 

0 

i = 1  

is defined to equal zero. 

Theorem: If (dy, mon, yr) = gregorian[n] 
and (1, January, yr) = gregorian[m], 

mon  -- I 

t h e n n - m = d y -  1 + ~ daysin[i, yr]. 
i=1  

The proof of  this theorem, using our definition of 
gregorian, is a nice exercise in mathematical induc- 
tion, and is left to the reader. If  we write n2 - n l = 
(n2 - m) - (nl - m) and apply the theorem twice, 
using the easily proved result that if n l _< n2 and 
year[nl ] = year[n2] then month[nil _< month[n2], and 
do some algebra, we obtain the following corollary to the 
theorem. 

Corollary: if (day 1, month 1, yr) = gregorian[n 1 ] 
and (day2, month2, yr) = gregorian[n2] 
and nl _< n2 

m o n t h 2 - -  I 

then n2 - n l = day2 - day l + ~ daysin[i, yr]. 
i = m o n / h l  
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Comparing this corollary with the specification, we 
see that it provides the simple method for computing 
DAYS that we were looking for .  

Step 3: Writing the Program 
We are now faced with a simple exercise in construct- 

ing and proving the correctness of  a program. We define 
the function DAYS in terms of two program statements: 
C O M P U T E . D A Y S I N  and COMPUTE.SUM.  The 
statement C O M P U T E . D A Y S I N  sets the ith element of  
the array DAYSIN equal to daysin[i, YEAR],  where 
YEAR is a program variable. Its formal specification in 
terms of  input and output assertions is as follows: 

Input Assertion: YEAR = yr 

Output Assertion: 
For all i E {January . . . . .  December}: 

DAYSIN(i) = daysin[i, yr]. 

The program statement C O M P U T E . S U M  computes 
the sum over i in the above corollary when month l < 
month2. Its formal specification is as follows: 

Input Assertions: 
M O N T H I  = ml  
MONTH2 = m2 
ml  < r n 2  
For all i e {January . . . . .  December}: 

DAYSIN(i) = dn(i) 

Output Assertion: 
m 2 - i 

SUM = Y~ an(i). 
t = m  I 

It is a simple exercise in the inductive asser- 
tion method to write and prove the correctness of  
C O M P U T E . D A Y S I N  and COMPUTE.SUM.  The 
proof  of  correctness of  C O M P U T E . D A Y S I N  must use 
the definition of the function daysin that we gave in Step 
1, since that function appears in the output assertion. 
After proving that these statements meet the above in- 
put /output  specifications, it is a simple matter to use the 
corollary from Step 2 to prove that the following function 
DAYS satisfies the specification given in Step 1: 

DAYS(YEAR, (DAYI,  MONTHI) ,  (DAY2, MONTH2))  --- 
if M O N T H  1 = MONTH2 

then return(DAY2 - DAYI)  
else COMPUTE.DAYSIN;  

COMPUTE.SUM;  
return(DAY2 - DAYI + SUM) 

fi. 

This function is essentially the same as the program 
given by Geller in [1]. 

humanly understandable. Most of  the work on formal 
specification seems to have concentrated on the first 
requirement and neglected the second. We believe that 
if one understands what the program is supposed to do, 
then he can specify it both formally and understandably. 
One cannot expect a more complicated program to have 
as simple a specification as the calendar program. How- 
ever, the specification should be much easier to under- 
stand than the program. We believe that such specifica- 
tions are possible, and we cite as evidence our calendar 
program as well as a more complicated example given in 
[3]. However, these are just examples, and much work 
remains to be done in this area.  
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Conclusion 

Of the three steps in constructing a correct program, 
the first--specifying the p rob lem--has  received the least 
attention. The inductive assertion method is useful fo r  
proving that a program meets a specification, but it does 
not help with the problem of writing that specification. 
To be useful, a specification must be both formal and 
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