

I recently obtained a tattered, partially destroyed copy of a

manuscript that appears to be an early draft of EWD1013. This raised a

difficult question for me. Should I honor Dijkstra's right as a

scientist to be judged only by what he publishes and destroy the

manuscript, or should I share with others this rare chance to observe

the evolution of his ideas? In the end, I felt that the insight

afforded by the manuscript was great, and Dijkstra's reputation is too

secure to be damaged by this disclosure. I have therefore attached a

copy of the manuscript, which I took the liberty of having retyped.

 Leslie Lamport

 EWD1013 - 0 (draft)

Position paper on "termination"

 Life is a very complicated business if you want to do it well. This is

because anything of any importance is always a many-sided affair and none of

its different aspects may be neglected, while at the same time, in order to

do

the whole job well, the different concerns have to be separated as ruthlessly

as possible.

 Before embarking on a major research topic, you had better choose your

 [this portion of the manuscript is illegible - L.L.]

about your "how" you will almost certainly discover that in major parts of

your

investigations automatic computers, with all their quirks and physical

limitations, are totally irrelevant and had better be forgotten.

 * *

 *

 One area in which it has proved to be very fruitful to forget that auto-

matic computers exist is programming. One forgets that computers exist, one

ignores that one's programs admit --in another world, so to speak-- the

interpretation of executable code and treats the program text as a

mathematical

object in its own right. All by itself it is not a very interesting object,

but in combination with its functional specification, the statement that the

program meets its functional specification is a theorem. At that

intellectual

level, programming is about how to design such theorems and their proofs.

And

from sad experience we all know that this activity reveals a core challenge,

if

not the core challenge, of computing science, viz. "How not to make a mess

of

it and how not to get confused in the complexities of one's one making.".

 What is at that level the role of the programming language used?

Essentially only one, viz. to define the proof obligations engendered by

presenting the combination of program and functional specification as a

theorem.

 In this part of the exercise it is clearly totally irrelevant whether the

programming language used to express this theorem has been implemented. It

is even irrelevant whether an economically acceptable implementation is

technically feasible.

 EWD1013 - 1 (draft)

 [the top of this page was missing from the manuscript - L.L.]

machine-- computations meeting the specification. In this sense, a

programming

language emerges as a contract between programmer and the implementer,

stating

the rights and the obligations for both partners in the deal. If the

programmer has met his proof obligation, he is entitled to the correct

results;

the implementer has the obligation to see to it that the correct result is

produced, but has the right to refuse programs violating the stated

constraints.

 Let us now consider the little program fragment

 print("done")

While still dealing with abstract programs I am perfectly willing to accept

this as a program that cannot terminate without printing the string "done".

I am even willing to accept this as a program that under the assumption of a

sufficiently benevolent scheduler will, sooner or later, terminate. Such

"behaviour" is thinkable and at that level thinkability is the only thing

that matters. (I may add that my willingness has been a very active one.

Inclusion of termination amounts to the inability of regarding a program

purely in terms of Hoare triples; how to go beyond Hoare's concept of pre-

and

postconditions has been one of my earlier contributions.)

 So far, so good. But things change drastically as soon as we start

talking

about an implemented programming language. Then the programming language

emerges as a contract stating rights and obligations, and there are such

things

as void obligations.

 I call an obligation void if it is impssible to detect if it has not been

fullfilled. I can easily promise to think at least three times per week

about

you, but that is a very cheap promise because no one will ever be able to

show

that I failed to fulfill my commitment. As a promise it is void.

 EWD1013 - 2 (draft)

 Assume now that the language definition is such that above programming

fragment is eventually to print "done" and then terminate.

This would be the prototype of a void obligation for the implementer.

Firstly, nothing prevents him from implementing it in a way semantically

equivalent to

 i := 100000

 ; do i > 0 -- i := i-1 od

 ; print("done")

As user of his sytem you may be disappointed that takes so long to

print the string "done" and terminate, but the implementer can shrug

his shoulders and say "Your computer must have been running unusually

slowly at the time! Try again.". What you may consider as a

regrettable breach of contract on his part won't cause the implementer

a single sleepless night because he knows that though his obligation

was void, he has fulfilled it. After all, the program did eventually

terminate.

Secondly, suppose that you pester him and start threatening with a law

suit if you don't get a better implementation. This time the

implementer agrees to replace his previous implementation, and now he

implements the fragment semantically equivalently to

 do true -- skip od

 ; print("done")

And now we are in the paradoxical situation that the implementer knows

that he has violated the contract, for he knows that his product will not

terminate. At the same time he knows that, no matter how many

experiments you take, no matter how many instances of his program you

start, you will never be able to produce the evidence that he has

violated the contract. So, again you won't cause him a single

sleepless night.

 The moral of the story is that void obligations should not occur in

contracts.

Finally I would like to point out that in the case of termination the

implementor's situation is drastically different from that of the quality

 [Some dozen lines of the manuscript were here blotted out by

 a stain. A preliminary chemical analysis revealed the

 presence of barley, possibly accompanied by a trace of

 hops. - L.L.]

settled by the roulette in question.

But termination is not a probabilistic notion and if the implementer is

sued, he will be acquitted for lack of evidence. My conclusion from

the above is that termination, being an unworkable notion, can be ignored

with impunity.

prof. dr. Edsger W. Dijkstra Austin, 13 October 1987

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712-1188

