Control Predicates Are Better Than Dummy
Variables For Reasoning About Program Control

LESLIE LAMPORT
Digital Equipment Corporation

When explicit control predicates rather than dummy variables are used, the Owicki-Gries method
for proving safety properties of concurrent programs can be strengthened, making it easier to
construct the required program annotations.

Categories and Subject Descriptors: D2.4 [Software Enginering]: Program Verification—cor-
rectness proofs; F3.1 [Logics and Meanings of Programs|: Specifying and Verifying and
Reasoning about Programs

General terms: Verification
Additional Key Words and Phrases: concurrent programming, invariance, safety properties, non-
interference, Owicki-Gries method

1. INTRODUCTION

The Owicki-Gries method, an extension to concurrent programs of Floyd’s method
[3] for proving partial correctness of sequential programs, was developed indepen-
dently by Owicki and Gries [11] and by us [8]. These two presentations of the
method differed in two ways. First, Owicki and Gries used a conventional struc-
tured programming language while we used a flowchart language. This was a purely
syntactic difference. The second, more significant difference, involved how control
information is represented.

In the Owicki-Gries method, as in Floyd’s method, a program is annotated by
attaching assertions to control points. The major part of the proof involves showing
the invariance of the annotation [7]. In Floyd’s method, the assertions mention only
the program’s variables. However, for concurrent programs, the assertions attached
to one process must also refer to the control state of other processes—that is,
they must be functions of the values of other processes’ “program counters”. The
presentations in [11] and [8] differed in how dependence on the control state was
expressed. In [11], Owicki and Gries avoided explicit mention of the control state
by using dummy variables'—variables introduced only for the proof—to encode
control information. In [8], we used control predicates—assertions that explicitly

IThey have also been called “auxiliary variables”, “ghost variables”, and “thought variables”.

Author’s address: Systems Research Center, Digital Equipment Corporation, 130 Lytton Ave.,
Palo Alto, CA 94301.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

© 1987 ACM 0164-0925/87/0400-0001 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988, Pages 267-281.

268 . Leslie Lamport

mention the control state.

Since control predicates can be simulated by dummy variables, it appears that
choosing between the two approaches is purely a matter of taste. We have pre-
ferred to use control predicates both for aesthetic reasons and because they are
necessary for certain extensions of the method [10]. However, when applying the
standard Owicki-Gries method, there seems to be no basic difference between the
two approaches.

In this paper, we show that there is a real difference between control predicates
and dummy variables. Although dummy variables can represent the control state,
the implicit nature of this representation limits their utility. The use of explicit
control predicates allows a strengthening of the ordinary Owicki-Gries method that
makes it easier to write annotations.

Our strengthening of the Owicki-Gries method eliminates a well-known weakness
in the original method. Assertional methods for proving safety properties involve
proving the invariance of an assertion. In the Ashcroft method [1], one writes a
single global assertion; in the Owicki-Gries method, the global assertion is decom-
posed into an annotation of the program. It often happens that when the global
invariant used in an Ashcroft-method proof is decomposed in the obvious way, the
original Owicki-Gries method cannot prove its invariance; a different and often more
complicated annotation must be used. This is not the case with the strengthened
version. If the Ashcroft method can prove invariance of a global assertion, then the
strengthened Owicki-Gries method can prove the invariance of the corresponding
annotation.

Strengthening the Owicki-Gries method makes it easier to construct proofs; it
does not change what can be proved. The global invariant used in an Ashcroft-style
proof can always be translated into a proof with the original Owicki-Gries method
by simply attaching the global invariant to all control points, though of course
this defeats the whole purpose of the method, which is to decompose the invariant.
Moreover, even though the original Owicki-Gries method fails on one simple decom-
position of the invariant, there may be another equally simple decomposition for
which it does work. What we claim is that using the strengthened method requires
less cleverness than using the original method. Finding the proper annotation to
prove a property of a concurrent program is a difficult art; anything that makes
the task easier should be welcome.

Section 2 examines two simple algorithms. The first illustrates the Ashcroft
and Owicki-Gries methods and shows why control predicates can permit a simpler
program annotation than dummy variables. However, it does not convincingly
demonstrate the need for control predicates because an extra lemma allows the
same proof to be written with dummy variables. In Section 2.5, another algorithm
is considered, and a proof using control predicates is given that cannot be so easily
rewritten as one using dummy variables.

To simplify the exposition, we consider n-process programs of the form

cobegin II, U...01,_; coend
with each process II; consisting of a sequence of statements
(51)5(S2)5 -5 (Sk)

where the angle brackets denote atomic operations. The atomic statements (.S;)

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

Control Predicates are Better Than Dummy Variables . 269

i (x; = true);
Bi: {when —x;g1 do skip)
csi: { critical section)

o

0;: (xi = false)
Fig. 1. A simple algorithm—process i’s program.

are either ordinary assignment statements or statements of the form
(when b do S)

This is a synchronization primitive that causes the process to wait until the boolean
expression b is true, whereupon it executes S as an atomic action. Thus, the
semaphore operation P(s) can be represented as

(whens>0dos:=s—1)

Since we are concerned only with safety properties, it does not matter whether one
assumes any fairness properties of the when statement. However, it is important
that the evaluation of b and, if it evaluates to true, the subsequent execution of S
are a single atomic action.

By restricting attention to such “straight-line processes”, we avoid some irrelevant
issues raised by branching and looping constructs. These constructs are discussed
in Section 3.4.

2. EXAMPLES
2.1 A Simple Example

We begin with a simple algorithm containing two processes, numbered 0 and 1. The
program for each process ¢ is shown in Figure 1, where & denotes addition modulo 2.
This algorithm is a simplified version of a popular mutual exclusion protocol. (In
simplifying it, we have eliminated almost all semblance of a real mutual exclusion
algorithm.) We assume that process i’s critical section statement does not modify
Ty O Tigpy1 -

The property to be proved for this program is that both processes are not si-
multaneously at their critical sections. For any label A, let at(\) be the control
predicate that is true if and only if the process’s control is at the point labeled A.
We must prove that =(at(cso) A at(cs1)) is always true.

In any assertional method, one shows that an assertion P is always true by
exhibiting a global assertion I such that:

(1) I is true of the initial state.
(2) I implies P.
(3) I is invariant—that is, any program step executed with I true leaves it true.

In our example, P is the assertion —(at(cso) A at(cs1)).

2.2 The Ashcroft Method
In the Ashcroft method, one simply writes the global assertion I as a single formula.
For our example, let I be the assertion
—(at(cso) A at(cs1)) A /\ (at(B;) V at(es;)) = x; (1)
i=0,1

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

270 . Leslie Lamport

where = denotes logical implication. Initially, both processes are at control point
a; and [is trivially true, so condition 1 holds. Condition 2 is obvious, so we need
prove only condition 3—the invariance of I.

The invariance of I means that executing any atomic action of the program
starting with I true leaves I true. Let (\) denote the atomic statement with label
A. To prove the invariance of I we must prove {I}{\){I} for every atomic program
statement A\, where { P}{ A\ }{Q} is the Hoare logic formula asserting that if (\) is
executed with P true, then @ will be true after its execution [4]. (By definition
of atomicity, an atomic action can be executed only if it terminates.) Note that,
unlike the Hoare logic ordinarily used for sequential programs, we allow pre- and
postconditions to contain control predicates.

Verifying {I}(A){I} for each atomic operation (A} in the program of Figure 1 is
easy. There are four atomic operations in each process, so there are eight formulas
to check. However, since the two processes are identical except for the value of i, the
corresponding operations in both processes can be handled together, leaving only
four formulas to verify. We will verify {I}(3;){I}, which is the most interesting
one; the reader can check the others.

Statement (3;) can be executed only if at(8;) is true, so it follows di-
rectly from the meaning of {P}(A){Q} that {I}(B;){I} holds if and only if
{I A at(B;)}{ B){I} does. Since at(cs;) must be true after (3;) is executed, instead
of proving {I A at(8;)}(8:;){I} we may just as well prove the stronger condition
{I N at(B:)}{ B Y{I A at(cs;)}. Simple logical manipulation shows that

IAat(Bi) = at(Bi) ANy A(at(Big1) V at(csipt)) = Tigi)
I A at(esi) = at(cesi) Az A—at(csion) A (at(Big1) = Tig1)

We must therefore show

{at(8:) A i A [(at(Bie1) V at(csigr)) = wiga]} (Bi)

{at(es;) AN x; A —at(esigr) A (at(Big1) = Tigp1)} (2)
Executing (3;) does not change the value of any program variable or of the control
state of process i & 1, so the only part of the postcondition that is not immediately
obvious is —at(cs;qp1). Statement (5;) can be executed only when z;g1 equals false,
and the precondition implies that, in this case, at(cs;g1) must also be false. Hence,
after executing (3;), at(cs;p1) is false, which proves (2). Formal proof rules for
deriving this kind of formula are given in Section 3.1.

2.3 The Strengthened Owicki-Gries Method

In the Owicki-Gries method, the invariant is written as a program annotation.
An annotation in which, for every \, assertion I* is attached to control point A
represents the assertion

N(at(n) = 1*) (3)
A

To reformulate the proof above in the Owicki-Gries method, using control predi-
cates, we must write the invariant (1) in the form of (3). Using the equivalence

—(at(csp) A at(esy)) = /\ (at(cs;) = —at(csipr))
i=0,1

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

Control Predicates are Better Than Dummy Variables . 271

i (g = true);
{l‘z} 61 (when Tip1 do skip)
{z; N\ —at(csig1)} csi: (critical section)
0i: (x; = false)

Fig. 2. Annotation of process i’s program.

(1) can be written as

N\ (at(8;) = z:) A (at(es;) = (z; A =at(csign)))
i=0,1

This assertion is expressed as the program annotation of Figure 2.

In the original Owicki-Gries method, the invariance of the assertion I defined by
(3) is proved by verifying the following two conditions for each atomic statement
(X)), where AT denotes the control point immediately following (X).

Sequential Correctness: {I*H(A\){I*"}

Interference Freedom: For every control point v in a different process from A:
{I" NPT

Sequential correctness asserts that executing (\) starting with I* (the assertion
attached to) true makes T A" true. Interference freedom asserts that, for each
control point v in a different process, executing () starting with both I* and I”
(the assertion attached to v) true leaves IV true. Since execution of (A) is possible
only when control is at A, and that execution leaves the process’s control at A"
and does not change the control point of any other process, these two conditions
imply {I}(A){I}. Thus, proving these conditions for every statement (\) proves
the invariance of I.

Proving sequential correctness for all the atomic actions in a process involves a
standard Floyd-method verification of that process’s annotation. For our example
annotation of Figure 2, proving sequential correctness for (8;) requires proving the
following verification condition:

{2} (Bi) {mi A —at(esign)} (4)

This cannot be proved. Looking only at process i, there is no reason why an
execution of (3;) starting with x; true should finish with at(cs;e1) false.

The Owicki-Gries method can be strengthened by allowing the use of the other
process’s annotation in proving sequential correctness. To prove sequential cor-
rectness for a statement () of one process, we may assume, as the precondition
for (\), not just that I* is true but that the assertion I defined by the entire
annotation is true. In particular, we can assume that each other process is at a
control point whose attached assertion is true. Let I; be the assertion determined
by process j’s annotation, so

I; = (at(B)) = z;) A (at(es;) = (x5 A —at(csjgr)))

When proving sequential correctness for {3;), we may assume the truth of g1,
the annotation of process ¢ ® 1. Therefore, instead of proving (4), we need prove
only the weaker condition:

{@i A Lig1 } (Bi) {zi A nat(csign)} (5)

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

272 . Leslie Lamport

ai: (xi = true);
{zi} Bi: (when —z;g1 do acs; := true)
{xs A —acsig1} csi: (critical section; acs; := false)
(

0;: {(x; := false)

Fig. 3. Annotation of process ¢ with dummy variables.

This condition can be verified, since I;g1 implies that if ;1 is false (the only case
in which (;) can be executed) then at(cs;g1) must also be false. In fact, except
for lacking the obvious hypothesis at(03;), the precondition of (5) is the same as
that of (2), and the postcondition of (5) is part of the postcondition of (2).

Sequential correctness for the other atomic operations is easily verified, and the
only nontrivial interference-freedom condition to be proved is that executing (3;)
does not falsify the assertion attached to cs;g1. This involves verifying

{Zig1 A —at(css) N xi} (Bi) {zig1 A —at(cs:)}

which is true because (3;) cannot be executed when z;g1 is true. (The formula
{PHX){Q} asserts that every possible execution of (\) starting from a state in
which P is true terminates with @ true, so it is vacuously valid if (A) cannot be
executed when P is true.)

2.4 The Owicki-Gries Method with Dummy Variables

Let us now try to reformulate the proof above using dummy variables instead of
control predicates. The first problem we encounter is that our correctness condition,
that —(at(cso) Aat(cst)) is always true, is a control predicate. We therefore have to
introduce a dummy boolean variable acs; to represent the control predicate at(cs;),
where acs; is set true by (5;) and set false by (cs;). This leads to the annotated
program of Figure 3.2

Let us consider the proof of sequential correctness for statement (G;). The
verification condition corresponding to (5) is

{xi N Ligr } (Bi) {xi A —acsigr } (6)

where ;g1 is the assertion
(at(Big1) = Tig1) A [at(csig1) = (ig1 A —acs;)]

that corresponds to the annotation of Figure 3 for process i®1. We cannot verify
(6). The assertion I;g implies that at(cs;g1) is false when z;41 is false; it does
not imply that acs;qi is false when z;g7 is false. FEven though we introduced
the variable acs;g1 to represent the control predicate at(cs;e1), they are formally
different. The implication at(csip1) = wig1 can be obtained directly from the
annotation of process ¢ & 1. The implication acs;g1 = Zig1, which is needed to
prove (6), is not obtainable directly from the annotation.

There are two ways to correct this problem. The first is to attach to each control
point of the program the additional assertion acs;g1 = x;p1. (More precisely, this
assertion is conjoined with each of the assertions in the annotation, including the

2A proof in the style of [11] requires additional dummy variables; for simplicity, the following
argument uses control predicates instead.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

Control Predicates are Better Than Dummy Variables . 273

ai: (x:=1)
Bi: (when y = —1 do skip)
Yir (Y =1)
{r=i=y# -1} &: (when z =1 do skip)
{P;} csi: (critical section)
(P} e (y:=-1)

Fig. 4. Process ¢ of another mutual exclusion algorithm.

implicit assertion true at control points «; and ¢;.) The resulting annotation can
then be verified with the original Owicki-Gries method.

One can always convert an Ashcroft-method proof to a proof in the original
Owicki-Gries method with dummy variables by strengthening the assertions. In-
deed, this can be done quite trivially by attaching the global invariant to every
control point, replacing control predicates with dummy variables. However, the
whole point of the Owicki-Gries method is to break the large global assertion of
Ashcroft’s method into the simpler local assertions of the annotation, making the
invariant easier to understand and to verify. If this requires more complicated local
assertions, then the Owicki-Gries method may not offer any advantage. In our ex-
ample, most people would probably prefer the Ashcroft proof to the Owicki-Gries
proof with the extra assertion acs;p1 = ;01 added to all control points.

The second way to fix the problem is to prove a lemma stating that, if the program
is started in a proper initial state, then acs;q1 = zig1 is always true. Such a lemma
is easily proved with the original Owicki-Gries method. This is the better approach
because, in the spirit of the Owicki-Gries method, it breaks the proof into small
parts. The use of such lemmas is described by Schneider in [12]. However, while
possible in this case, an Ashcroft method proof cannot always be converted by a
simple lemma to an Owicki-Gries method proof with dummy variables. In the next
section, an example is given in which the use of dummy variables instead of control
points forces one to use a different annotation.

2.5 Another Example

Our second example is a highly simplified version of a mutual exclusion protocol
used in [6]. It is an n-process program, with processes numbered 0 through n — 1,
where process ¢ is given in Figure 4 with its annotation. The shared variables x
and y are of type integer, with y initially equal to —1. The assertion P; in the
annotation of process i is defined to equal

Vi # i (mat(es;)) Al(at(y;) V at(8;)) = = # j]

With the ordinary Owicki-Gries method, proving sequential correctness of this
annotation for statement (J;) requires proving the following condition:

{z=i=y#-1}(6){P}

This is not directly provable, since the postcondition asserts (among other things)
that in no other process j is control at control point cs;, which cannot be inferred
from the precondition. However, in the strengthened method, we are allowed to
assume in the precondition that the assertion determined by every other process

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

274 . Leslie Lamport

J’s annotation is true. Letting I; denote this assertion, so
I = [at(6;) = (x =j =y # —1)] Alat(cs;) = Pj] Alat(e;) = Pj]
it suffices to prove the weaker condition

{@=i=y#-1)Aat(d:;) NN,z L3){Pi}

This formula follows from the observation that at(d;) A I; implies that, if at(cs;) is
true, then = # i and statement (J;) cannot be executed.

The verification of the other sequential correctness conditions and of interference
freedom is straightforward and is left to the reader.

In this example, the proof of sequential correctness for (;) requires assuming
that, if another process j is at control point cs;, then the attached assertion P; is
true. However, sequential correctness for (d;) proves that P; is true when process i
reaches control point cs;. Thus, we are using an induction argument, showing that
if every other process that has already reached control point cs; did so with P;
true, then P; will be true when process i reaches cs;.

In the previous example, the information contained in the annotation of another
process needed to prove sequential correctness could be established separately as a
simple lemma. We now indicate why this is not the case here. In the sequential
correctness proof, the information obtained from the annotation of process j is
exactly the result we are trying to prove for process 7. Assuming the truth of
the assertion I; in the sequential correctness proof for process ¢ is analogous to
assuming, in the proof of some theorem by mathematical induction, that the desired
result is true for all j < ¢ and proving that it is true for i. Trying to replace the
assumption that I; holds for j # ¢ by a lemma would be like trying to replace the
induction assumption that the theorem is true for all j < i by a lemma, which
cannot be done because proving the lemma is equivalent to proving the original
theorem.

The correctness of the annotation of Figure 4 cannot be proved with the original
form of the Owicki-Gries method, and thus this proof cannot be translated into
one using dummy variables instead of control predicates. A different annotation is
required when dummy variables are used.

In writing a proof of this algorithm for the original version of [6], we were unable
to find a simple annotation that could be proved invariant with the original Owicki-
Gries method, and we were forced to introduce the extended method to give a simple
proof. Afterwards, J. Misra discovered a proof as simple as ours using dummy
variables and the original Owicki-Gries method [2]. We do not know if it is always
possible to construct a simple proof with the ordinary Owicki-Gries method, but
we do know that it is not always easy.

3. THE FORMALISM

The discussion of the examples in the preceding section included an informal ex-
planation of how one applies the Owicki-Gries method using control predicates in
the annotation. In this section, we develop a formalism that justifies our informal
reasoning. For now, we continue to consider only simple straight-line multiprocess
programs. Section 3.4 discusses the extension of the formalism to other control
structures.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

Control Predicates are Better Than Dummy Variables . 275

We continue using the notation that A and A™ denote the control points at and
immediately after the atomic statement (A). In the examples, A was a unique
label written in front of the statement. However, the formalism does not require
statement labels; any naming scheme could be used.

3.1 Hoare Logic with Control Predicates

To prove that a program II leaves invariant a global assertion I, one must prove the
Hoare logic formula {I}{ A){I} for every (atomic) statement (A) of II. (This can be
viewed as either the definition of invariance or an application of the Decomposition
Principle of [10].)

The presence of control predicates in P and @ makes the formulas { P} A)}{Q}
fundamentally different from ordinary Hoare triples. The Control Predicate Hoare
Logic (CPHL) for reasoning about these formulas is therefore different from ordi-
nary Hoare logic. Consider the statement «;: (x := i) from the program of Fig-
ure 4. If the assertion P does not mention the variable x, then the ordinary Hoare
formula {P}x :=i{P} is valid, but the CPHL formula {P}{a;){P} need not be
valid. For example, even though the predicate at(c;) does not mention x, the for-
mula {at(a;)}{a;){at(a;)} is valid only if j # 4; it is invalid when j = ¢ because
executing (a;) makes at(«;) false.

CPHL subsumes ordinary Hoare logic through the following rule.

Subsumption Rule: For the statement \: (.S'), the validity of the ordinary Hoare
logic formula { P}S{Q} (where P and @ do not contain control predicates) implies
the validity of the CPHL formula {P}{A){Q}.

Using the subsumption rule, we can derive the following CPHL rule from ordinary
Hoare logic:

when Rule: For the statement A: (when b do S'), the validity of the ordinary

Hoare logic formula {P}S{Q} implies the validity of {P V —=b}{ A){Q}.

Given the axioms and rules of ordinary Hoare logic, the subsumption rule cap-
tures the semantics of atomic language constructs. Ordinary Hoare logic also has
rules that are independent of the language constructs. These rules, as listed below,
are included in CPHL. (They differ from the corresponding rules of ordinary Hoare
logic only in allowing control predicates in the pre- and postconditions.)

Rule of Consequence: If {PHA)Y{Q}, P’ = P, and Q = @', then {P'}{\){Q'}.
Disjunction Rule: If {P}{(A){Q} and {P'}{(A){Q'}, then {PV P'}{A){QV Q'}.
Congunction Rule: If {PH M) {Q} and {P'}{(A){Q'}, then {P AP A {QAQ'}.
Thus far, all our CPHL rules are derived from ordinary Hoare logic rules. Rea-
soning about control predicates requires the following additional axiom and rule.

Their soundness is self-evident. Recall that A* denotes the control point immedi-
ately following statement (A).

Noninterference Aziom: If v is a control point in a different process from (),
then {at(v)} () {at(v)}
Locality Rule: If {P A at(A\)} (A) {QV —at(AT)} then {P}HN){Q}.

Since {true}(A){¢rue} always holds (by the Subsumption Rule), the Locality Rule

implies {true}(\){at(A*)}. The Rule of Consequence then implies the following
general result.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

276 . Leslie Lamport

Control Theorem: {at(\)} (\){at(A1)}

In addition to these rules and axioms, we need axioms for proving simple formulas
about state predicates. For example, we must be able to prove that, if v and u
are different control points in the same process, then at(v) A at(u) = false. Such
axioms are given in [7] for a more complicated language; we do not consider them
here.

Observe that CPHL has no equivalent to the Rule of Composition of ordinary
Hoare logic—the rule for reasoning about the “;” construction. The semantics
of the “” are given by the Control Theorem, together with the implicit rule for
calculating A*. (For example, in the program of Figure 4, we know that o = £3;.)
As we shall see, it is characteristic of CPHL that flow of control is specified by
relations among control predicates rather than by the special inference rules of
ordinary Hoare logic.

As an illustration of how the rules of CPHL are applied, we sketch the formal
proof of (5) from our first example. By the Rule of Consequence and the definition
of I;p1, it suffices to prove

{zi A (at(csign) = mio1)} (Bi) {zi A —at(csign)}

Expressing the precondition as a disjunction and applying the Disjunction Rule
reduces the problem to proving the following two conditions:

{zi Awig1} (Bi) {mi A —at(csion)} (7)
{zi Aat(csion)} (Bi) {zi A —at(csipn)} (8)
Formula (7) follows from the Rule of Consequence and the formula
{ziw1}(Bi){false}
which is a consequence of the when Rule (with false substituted for both P and

Q).
To prove (8), we apply the Conjunction Rule to break it into the two conditions:
{i} (Bi) {=:}
{—at(csigr)} (Bi) {~at(csian)}

The first follows from the proof rule for the when statement. To prove the second,
we use the equivalence

—at(csipr) = at(ig1) V at(Big1) V at(Sig1) V at(6;5,)

and the Disjunction Rule, and we apply the Noninterference Axiom four times.

3.2 The Strengthened Owicki-Gries Method

We assume an n-process program II with processes Iy, ..., II,_1. We let v € II
mean that v is a control point of I, and similarly v € II; means that v is a control
point of process II;.

In the Owicki-Gries method, the invariant I has the form

/\ at(v) = 1" 9)
vell

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

Control Predicates are Better Than Dummy Variables . 277

where 1" is the assertion attached to control point v. Let I; denote A\, ¢, at(v) =

I", the assertion represented by the annotation of process II;. If () is a statement
of process II;, then

atV) AT = at(\) AP A /\ I
J#i
at(W) AN AN I
J#i
Thus, by the Locality Rule and the Rule of Consequence, to prove the invariance
condition {I}{\){I} it suffices to prove:

(AN OV AN 1) (10)

In the standard Owicki-Gries method, one applies the Conjunction Rule to break
the verification of (10) into two parts:

at(ZNT) AT

(I} () {17} (11)
Vi #iVv eIl {I*A (at(v) = 1)} (\) {at(v) = 1"} (12)

Condition (11) is sequential correctness for (A). To verify (12), we write at(v) =
I as I" V —at(v) and apply the Disjunction Rule and the Rule of Consequence to
decompose it into the problem of verifying the following two conditions:

Vi#ivVv eIl s {IMATY} (\) {17} (13)
Vi#iVv ellj: {-at(v)} (A) {—at(v)} (14)

Condition 13 is interference freedom. Since —at(v) =V cp, .z, at(p) (because
control must be somewhere in process 5), formula (14) follows from the Disjunction
Rule and the Noninterference Axiom.

Formulas (11) and (13) represent the sequential correctness and interference free-
dom conditions of the standard Owicki-Gries method. Since our goal is to prove the
invariance of I, it is easy to see that we can weaken these conditions (by strength-
ening their preconditions) as follows:

Weak Sequential Correctness: {I* A Nji Lit (X) {1}
Weak Interference Freedom: Vj # 1 Vv € 11, :
{IX ATV A at(v) A /\k;éi,j I} (M) {17}

It is this weak sequential correctness condition that we used in our two examples.
The weak interference freedom condition is weaker than (13) because, to prove that
executing the statement (\) of process i leaves invariant the assertion IV attached
to process j, we are allowed to use the additional hypothesis that, for any third
process k, the assertion [defined by the annotation of process k is true.

We did not need the weak interference freedom condition in our two examples.
(Indeed, except for the extra hypothesis at(v), it is the same as the original con-
dition (13) when there are only two processes, as in our first example.) In most of
the concurrent algorithms that we have studied, safety properties can be proved by
considering the processes two at a time, so the stronger postcondition employed in
the weak interference freedom condition does not help. However, as the examples
indicate, the weak sequential correctness condition is very useful.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

278 . Leslie Lamport

3.3 Equivalence to the Ashcroft Method

We now show that the strengthened Owicki-Gries method is as powerful as the
Ashcroft method. More precisely, we prove that, given an assertion I of the form (9),
the CPHL formula {I}(A){I} that must be verified (for all A) with the Ashcroft
method is provable if and only if the weak sequential correctness and interference
freedom conditions for A are provable. The proof assumes the ability to prove simple
logical equivalences among predicates. This means that, barring some pathological
weakness in the ability to reason about predicates, an annotation can be proved
correct with the strengthened Owicki-Gries method if and only if the corresponding
global assertion can be proved invariant with the Ashcroft method.

We showed above that the two weak verification conditions of the extended
Owicki-Gries method imply the Ashcroft method condition {I}{A){I}; we now
show the converse. Recall that I; = A (at(v) = I"), so I = \; I;. Our proof
is based upon the equivalence

I = \/ (at(v) ANTY) (15)

vell,

vell,

which follows from the observation that (\/uenj at(u)) = true and, for any v, u €
IT; with v # p: at(v) A at(p) = false.

Assume {I}(A){I}. From the Control Theorem, the Conjunction Rule, and the
observation that I; A at()\) = I A at()\), we infer

{1 N at(N) AN I () ATY (16)
The weak sequential correctness condition now follows from the Locality Rule and
the Rule of Consequence.
To prove the validity of the weak noninterference condition, we use (15) to sub-
stitute for I; and apply the distributive law for the logical operators to rewrite (16)
as

{Voen, A atN) AT A at(v) A Njga s Te} (V) {1}
The weak noninterference condition now follows from the Locality Rule and the
Rule of Consequence.

3.4 Other Control Structures

To indicate how sequential control structures are handled, we consider first the
while statement. Suppose a process contains

while 8:(b) do 0:S od; ~: ...

where (3, o, and -y are labels and S is any sequence of statements. The angle brack-
ets indicate that the evaluation of the expression b is a single atomic action. The
evaluation of b is one of the atomic operations of the program; to prove the invari-
ance of an assertion I, we must show this evaluation leaves I true. In other words,
we must prove the CPHL formula {I}(3){I}, where () denotes the evaluation of
the condition in the while statement.

Ordinary Hoare logic includes only formulas {P}S{Q} in which S is a complete
statement; it has no such formulas as {I}{5){I} where () is a while-statement
test. The need for these formulas indicates that the Owicki-Gries method is a gener-
alization of Floyd’s method, which has a proof rule for flowchart “test” boxes, rather

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

Control Predicates are Better Than Dummy Variables . 279

than Hoare’s method, which doesn’t. (The generalized Hoare logic of concurrency,
described in [10], does not have these Floyd-like rules.)

The proof rule for the while test (3) is complicated by the fact that, after its
execution, control is either at o or at . Hence, there is no unique successor control
point BF. Tt is useful to define the control predicate after(\) to be true if and
only if control is immediately after the statement or test (A). For an assignment
or when statement, after(\) = at(\T). However, for the while statement above,
after(8) = at(o) Vv at(y). We generalize the Locality Rule and the Control Theorem
to more general control structures by replacing at(A™) with after()). All our rules
for reasoning about concurrent programs, including the strengthened Owicki-Gries
method for proving invariance, then remain valid, where we define

177 = (at(o) = I9) A (at(y) = I7)

when () is the while test above.
To enable us to prove CPHL formulas for the atomic action §, we need the
following axiom:

while Test Axziom: If P contains no control predicates, then
{P}(B){(at(c) NP Ab)V (at(y) AP A-b)}

This axiom does not completely define the semantics of the while statement; ad-
ditional axioms are needed to specify the flow of control. We already mentioned
one such axiom: after(8) = at(o) V at(y). This asserts that, after executing the
test, control goes to either o or «v. We also need to specify that, after executing .5,
control goes back to 3. Define after(S) to be after()\), where X: (S,) is the last
statement in the list S of atomic statements. The axiom after(S) = at(3) asserts
that control loops back to 3 after executing the body of the while statement. The
semantics of the while statement are captured by the while Test Axiom and these
two axioms about control predicates.

Other sequential control structures are handled similarly. For example, consider
the statement

if 5:(b) then ¢:5 fi; ~: ...

The axiom for the test (3) in this statement is identical to the while Test Axiom
above. The flow of control axioms are: after(8) = at(o) V at(y) and after(S) =
at(7).

Observe that the only difference in the axioms for the while and if statements are
in the axiom for after(S). This reflects the fact that the only difference between the
two statements is that, after executing S, the while loops back to the beginning and
the if continues to the following statement. In CPHL, flow of control is described
by relations among control predicates, not by special inference rules.

One can also extend the Owicki-Gries method to programs having any process
structure that can be expressed with nested cobegin statements. In this case, the
interference freedom condition must be generalized by letting v range over all con-
trol points in concurrently active processes. (These control points are determined
syntactically.) Control predicate axioms assert that control is at the beginning
of each clause (process) when it is at the beginning of the cobegin, and control
is at the point immediately following the coend when it is at the end of each

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

280 . Leslie Lamport

clause. Care must also be exercised in defining I* and I A" for the control points
immediately before and after the cobegin when applying the method.

4. DISCUSSION

We have shown how the Owicki-Gries method can be strengthened by using weaker
sequential correctness and interference freedom conditions. The significant change
is the weaker sequential correctness condition, which permits the use of information
from other processes’ annotations. This strengthening is useful only when control
predicates appear in the annotation; it is of no benefit if the control predicates are
replaced by dummy variables, as in the method originally advocated by Owicki and
Gries. Unlike the original Owicki-Gries method, the strengthened version has the
property that it works for any annotation that represents an invariant assertion.

When expressed formally, the weak sequential correctness and interference free-
dom conditions are more complicated than the original ones (11) and (13). However,
this is a welcome complication because it adds hypotheses to the precondition of a
Hoare formula. In practice, one adds only those extra hypotheses that are useful.
(Formally, this means applying the Rule of Consequence.)

The significant distinction between control predicates and dummy variables is
not between predicates and variables, but between control and “dummy”. When
proving properties of concurrent programs, one must reason about the control state.
Although dummy variables can be used to represent the control state, the lack of
a formal connection between these variables and the control predicates that they
represent limits their utility.

As mentioned in [9], control predicates can be viewed as implicit variables. (We
prefer the term “implicit” to “dummy” or “auxiliary” because these variables rep-
resent a part of the program state that is just as real as that represented by ordi-
nary variables; they differ from ordinary variables only in that the programming
language provides no explicit mechanism for representing their values.) Relations
among control predicates, such as after(8) = at(o) V at(y), become aliasing rela-
tions among these variables. Our Control Predicate Hoare Logic can be obtained
by extending the ordinary Hoare logic to handle aliasing relations (as in [9]) and
assertions containing implicit variables.

Considering control predicates to be implicit variables can provide a more elegant
formal justification of the Owicki-Gries method, but it does not change the way the
method is used to reason about specific programs. This formal approach works best
with the generalized Hoare logic of concurrency. It provides one of the techniques
used in [5] to define a formal semantics for concurrent programming languages.

ACKNOWLEDGMENTS

I wish to thank Fred Schneider for his help in clarifying the distinction between
CPHL and ordinary Hoare logic and Edsger Dijkstra for communicating Misra’s
correctness proof of the algorithm of Figure 4.

REFERENCES

1. AsHCROFT, E. Proving assertions about parallel programs. J. Comput. Systm. Sci. 10 (Jan.
1975), 110-135.
2. DUKSTRA, E. W. Misra’s proof for Lamport’s mutual exclusion. Nov. 1985. EWD948.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

10.

11.

12.

Control Predicates are Better Than Dummy Variables . 281

. Froyp, R. W. Assigning meanings to programs. In Proceedings of the Symposium on Applied

Math., Vol. 19 (1967), American Mathematical Society, pp. 19-32.

HoARE, C. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.
1969), 576-583.

LAMPORT, L. An axiomatic semantics of concurrent programming languages. In Logics and
Models of Concurrent Systems (Berlin, 1985), K. R. Apt, Ed., Springer-Verlag, pp. 77-122.
LAMPORT, L. A fast mutual exclusion algorithm. 1985. Submitted for publication.
LAMPORT, L. The ‘Hoare logic’ of concurrent programs. Acta Inf. 14, 1 (1980), 21-37.
LamPORT, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
SE-3, 2 (March 1977), 125-143.

LAMPORT, L., AND SCHNEIDER, F. B. Constraints: a uniform approach to aliasing and typing.
In Proceedings of the Twelfth ACM Symposium on Principles of Programming Languages
(New Orleans, Jan. 1985), ACM SIGACT-SIGPLAN.

LAMPORT, L., AND SCHNEIDER, F. B. The “Hoare logic” of CSP, and all that. ACM Trans.
Program. Lang. Syst. 6, 2 (Apr. 1984), 281-296.

OWwICKI, S., AND GRIES, D. An axiomatic proof technique for parallel programs. Acta Inf. 6,
4 (1976), 319-340.

SCHNEIDER, F. B., AND ANDREWS, G. Concepts for concurrent programming. In Current
Trends in Concurrency (1986), J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds.,
Springer-Verlag.

Received July 1986; revised January 1987; accepted February 1987

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April, 1988

