

Cache Aware Optimization of Stream Programs

Janis Sermulins, William Thies, Rodric Rabbah and Saman Amarasinghe

LCTES Chicago, June 2005

Streaming Computing Is Everywhere!

- Prevalent computing domain with applications in embedded systems
 - As well as desktops and high-end servers

Properties of Stream Programs

Regular and repeating computation

- Independent actors with explicit communication
- Data items have short lifetimes

Application Characteristics: Implications on Caching

	Scientific	Streaming
Control	Inner loops	Single outer loop
Data	Persistent array processing	Limited lifetime producer-consumer
Working set	Small	Whole-program
Implications	Natural fit for cache hierarchy	Demands novel mapping

Application Characteristics: Implications on Compiler

	Scientific	Streaming
Parallelism	Fine-grained	Coarse-grained
Data access	Global	Local
Communication	Implicit random access	Explicit producer-consumer
Implications	Limited program transformations	Potential for global reordering

Motivating Example

	Bas	eline	Full S	caling		
A	for i =	1 to N	for $i = 2$	1 to N	for i = 1	to N
	A ();		A ();		A ();	
B	B ();		for i = ²	1 to N	B ();	
	C ();		B ();		end	
С	end		for $i = 2$	1 to N	for $i = 1$	to N
			C ();		C ();	
cache	_					_
size	<mark>A</mark>					
Working	- B + C	A B B C		AB	A	A B B C
Set Size	+C	A B B C	ABC	B Ċ	B C	<u>Ř</u> Č
	inst	data	inst	data	inst	data

Motivating Example

	Bas	eline	F	Full So	calin	ng			
A	for i =	1 to N	fc	or i = 1	to N	١	for i =	1 to 64	1
	A ();			A ();			A ();		
B	B ();		fc	or i = 1	to N	١	B ();		
	C ();			B ();			end		
C	end		fc	or i = 1	to N	١	for i =	1 to 64	1
				C ();			C ();		
cache					_				_
size 🔪	<mark>A</mark>								
Working		Α Ρ			Ą	Ŗ	A	Ą	₽
Set Size	B + C	A B B C	A	ВС	B	Č	B C		Č
	inst	data		inst	da	ta	inst	t da	ita

Motivating Example

	Bas	eline	Full Sc	aling	Cache	e Opt
A	for i =	1 to N	for i = 1	to N	for i = 1 t	to N/64
	A ();		A ();		for i =	1 to 64
B	B ();		for i = 1	for i = 1 to N		
	C ();		B ();		B ();	
C	end		for i = 1	to N	end	
			C ();	C ();		1 to 64
cache					C ();	
size 🔪	<mark>A</mark>				end	
Working	B	A B		AB	A	A B
Set Size	Ċ	A B B C	A B C	B Č	B C	<u>B</u> C
	inst	data	inst	data	inst	data

Outline

- StreamIt
- Cache Aware Fusion
- Cache Aware Scaling
- Buffer Management
- Related Work and Conclusion

Model of Computation

- Synchronous Dataflow [Lee 92]
 - Graph of autonomous filters
 - Communicate via FIFO channels
 - Static I/O rates
- Compiler decides on an order of execution (schedule)
 - Many legal schedules
 - Schedule affects locality
 - Lots of previous work on minimizing buffer requirements between filters

Example StreamIt Filter

StreamIt Language Overview

- StreamIt is a novel language for streaming
 - Exposes parallelism and communication
 - Architecture independent
 - Modular and composable
 - Simple structures composed to creates complex graphs
 - Malleable
 - Change program behavior with small modifications

Freq Band Detector in StreamIt

Outline

- StreamIt
- Cache Aware Fusion
- Cache Aware Scaling
- Buffer Management
- Related Work and Conclusion

Fusion

• Fusion combines adjacent filters into a single filter

- Reduces method call overhead
- Improves producer-consumer locality
- Allows optimizations across filter boundaries
 - Register allocation of intermediate values
 - More flexible instruction scheduling

Evaluation Methodology

- StreamIt compiler generates C code
 - Baseline StreamIt optimizations
 - Unrolling, constant propagation
 - Compile C code with gcc-v3.4 with -O3 optimizations
- StrongARM 1110 (XScale) embedded processor
 370MHz, 16Kb I-Cache, 8Kb D-Cache
 - No L2 Cache (memory 100× slower than cache)
 - Median user time
- Suite of 11 StreamIt Benchmarks
- Evaluate two fusion strategies:
 - Full Fusion
 - Cache Aware Fusion

Results for Full Fusion

Hazard: The instruction or data working set of the fused program may exceed cache size!

Cache Aware Fusion (CAF)

- Fuse filters so long as:
 - Fused instruction working set fits the I-cache
 - Fused data working set fits the D-cache
- Leave a fraction of D-cache for input and output to facilitate cache aware scaling
- Use a hierarchical fusion heuristic

Does splitjoin fit in cache? Yes!

Does splitjoin fit in cache? No!

Does pipeline segment fit in cache? No!

Plii

Hierarchical Fusion Heuristic

Identify highest bandwidth connection, fuse greedily Does pipeline segment fit in cache? No!

Identify highest bandwidth connection, fuse greedily

Outline

- StreamIt
- Cache Aware Fusion
- Cache Aware Scaling
- Buffer Management
- Related Work and Conclusion

1417

Improving Instruction Locality

Impact of Scaling

Impact of Scaling

How Much To Scale?

How Much To Scale?

Our Scaling
Heuristic:

- Scale as much as possible
- Ensure at least 90% of filters have data working sets that fit into cache

Impact of Scaling

Scaling Results

CSAIL

Outline

- StreamIt
- Cache Aware Fusion
- Cache Aware Scaling
- Buffer Management
- Related Work and Conclusion

Sliding Window Computation

Circular Buffer:

Circular Buffer:

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Circular Buffer:

Copy-Shift:

Circular Buffer:

Circular Buffer:

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Circular Buffer:

 $peek(i) \rightarrow A[(head + i) \mod 8]$

Copy-Shift:

Plii

Performance vs. Peek Rate

(StrongARM 1110)

execution time

Evaluation for Benchmarks

(StrongARM 1110)

(normalized to baseline Streamlt)

average execution time

Results Summary

CSALL

Outline

- StreamIt
- Cache Aware Fusion
- Cache Aware Scaling
- Buffer Management
- Related Work and Conclusion

- Minimizing buffer requirements
 - S.S. Bhattacharyya, P. Murthy, and E. Lee
 - Software Synthesis from Dataflow Graphs (1996)
 - AGPAN and RPMC: Complimentary Heuristics for Translating DSP Block Diagrams into Efficient Software Implementations (1997)
 - Synthesis of Embedded software from Synchronous Dataflow Specifications (1999)
 - P.K.Murthy, S.S. Bhattacharyya
 - A Buffer Merging Technique for Reducing Memory Requirements of Synchronous Dataflow Specifications (1999)
 - Buffer Merging A Powerful Technique for Reducing Memory Requirements of Synchronous Dataflow Specifications (2000)
 - R. Govindarajan, G. Gao, and P. Desai
 - Minimizing Memory Requirements in Rate-Optimal Schedules (1994)
- Fusion
 - T. A. Proebsting and S. A. Watterson, Filter Fusion (1996)
- Cache optimizations
 - S. Kohli, Cache Aware Scheduling of Synchronous Dataflow Programs (2004)

Conclusions

- Streaming paradigm exposes parallelism and allows massive reordering to improve locality
- Must consider both data and instruction locality
 - Cache Aware Fusion enables local optimizations by judiciously increasing the instruction working set
 - Cache Aware Scaling improves instruction locality by judiciously increasing the buffer requirements
- Simple optimizations have high impact
 - Cache optimizations yield significant speedup over both baseline and full fusion on an embedded platform