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The Streaming Domain

• Widely applicable and increasingly prevalent
– Embedded systems

• Cell phones, handheld computers, DSP’s

– Desktop applications
• Streaming media • Real-time encryption
• Software radio • Graphics packages

– High-performance servers
• Software routers (Example: Click)
• Cell phone base stations
• HDTV editing consoles

• Based on audio, video, or data stream
– Predominant data types in the current data explosion 



Properties of Stream Programs

• A large (possibly infinite) amount of data
– Limited lifetime of each data item
– Little processing of each data item

• Computation: apply multiple filters to data
– Each filter takes an input stream, does some processing, 

and produces an output stream
– Filters are independent and self-contained

• A regular, static computation pattern
– Filter graph is relatively constant
– A lot of opportunities for compiler optimizations



StreamIt: A spatially-aware Language & 
Compiler
• A language for streaming applications

– Provides high-level stream abstraction
• Breaks the Von Neumann language barrier

– Each filter has its own control-flow
– Each filter has its own address space
– No global time
– Explicit data movement between filters
– Compiler is free to reorganize the computation 

• Spatially-aware Compiler
– Intermediate representation with stream constructs
– Provides a host of stream analyses and optimizations



• Hierarchical structures:

– Pipeline

– SplitJoin

– Feedback Loop

• Basic programmable unit:  Filter

Structured Streams



float->float filter LowPassFilter(int N) {
float[N] weights;

init {
for (int i=0; i<N; i++)

weights[i] = calcWeights(i);
}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<N; i++)

result += weights[i] * peek(i);
push(result);
pop();

}
}

Filter Example:  LowPassFilter
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Example: Radar Array Front End
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complex->void pipeline BeamFormer(int numChannels, int numBeams) 
{

add splitjoin { 
split duplicate;
for (int i=0; i<numChannels; i++) {

add pipeline { 
add FIR1(N1);

add FIR2(N2);
};

};
join roundrobin;  

};
add splitjoin {

split duplicate;
for (int i=0; i<numBeams; i++) {

add pipeline {
add VectorMult();

add FIR3(N3);

add Magnitude();

add Detect();
};

};
join roundrobin(0);  

};
}



How to execute a Stream Graph?
Method  1: Time Multiplexing
• Run one filter at a time

• Pros:
– Scheduling is easy
– Synchronization from Memory

• Cons:
– If a filter run is too short

• Filter load overhead is high
– If a filter run is too long

• Data spills down the cache hierarchy
• Long latency

– Lots of memory traffic
- Bad cache effects

– Does not scale with spatially-aware 
architectures 

Processor

Memory



How to execute a Stream Graph?
Method 2: Space Multiplexing
• Map filter per tile and run 

forever

• Pros:
– No filter swapping overhead
– Exploits spatially-aware 

architectures
• Scales well

– Reduced memory traffic
– Localized communication
– Tighter latencies
– Smaller live data set

• Cons:
– Load balancing is critical
– Not good for dynamic behavior
– Requires # filters ≤ # processing elements 



The MIT RAW Machine

• A scalable computation fabric
– 4 x 4 mesh of tiles, each tile is a simple microprocessor

• Ultra fast interconnect network
– Exposes the wires to the compiler
– Compiler orchestrate the communication

Computation
Resources



Example: Radar Array Front End
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for (int i=0; i<numChannels; i++) {

add pipeline { 
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};
add splitjoin {

split duplicate;
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Radar Array Front End on Raw

Executing Instructions
Blocked on Static Network

Pipeline Stall



Bridging the Abstraction layers

• StreamIt language exposes the data movement
– Graph structure is architecture independent

• Each architecture is different in granularity and topology
– Communication is exposed to the compiler

• The compiler needs to efficiently bridge the abstraction
– Map the computation and communication pattern of the program 

to the PE’s, memory and the communication substrate
• The StreamIt Compiler

– Partitioning
– Placement
– Scheduling
– Code generation
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Partitioning: Choosing the Granularity

• Mapping filters to tiles
– # filters should equal (or a few less than) # of tiles
– Each filter should have similar amount of work

• Throughput determined by the filter with most work 

• Compiler Algorithm
– Two primary transformations

• Filter fission
• Filter fusion

– Uses a greedy heuristic 



Partitioning - Fission

• Fission - splitting streams
– Duplicate a filter, placing the duplicates in a SplitJoin to 

expose parallelism.

Filter FilterFilter

Joiner

Splitter

…

–Split a filter into a pipeline for load balancing

Filter Filter0 Filter1 FilterN…



Partitioning - Fusion

• Fusion - merging streams
– Merge filters into one filter for load balancing and 

synchronization removal

FilterFilterNFilter0

Joiner

Splitter

…

FilterFilter0 Filter1 FilterN…



Example: Radar Array Front End (Original)
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Example: Radar Array Front End (Balanced)
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Placement: Minimizing Communication

• Assign filters to tiles 
– Communicating filters try to make them adjacent 
– Reduce overlapping communication paths
– Reduce/eliminate cyclic communication if possible

• Compiler algorithm
– Uses Simulated Annealing 



Placement for Partitioned Radar Array Front End
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Scheduling: Communication Orchestration 

• Create a communication schedule

• Compiler Algorithm
– Calculate an initialization and steady-state schedule
– Simulate the execution of an entire cyclic schedule
– Place static route instructions at the appropriate time
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Steady-State Schedule

• All data pop/push rates are constant
• Can find a Steady-State Schedule

– # of items in the buffers are the same before and the after 
executing the schedule

– There exist a unique minimum steady state schedule

• Schedule = { }

pop=3
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…

A B C



…
push=2

…
push=2

Steady-State Schedule

• All data pop/push rates are constant
• Can find a Steady-State Schedule

– # of items in the buffers are the same before and the after 
executing the schedule

– There exist a unique minimum steady state schedule

• Schedule = { A }

pop=3
push=1

pop=2
…

A B C



…
push=2

…
push=2

Steady-State Schedule

• All data pop/push rates are constant
• Can find a Steady-State Schedule

– # of items in the buffers are the same before and the after 
executing the schedule

– There exist a unique minimum steady state schedule

• Schedule = { A, A }

pop=3
push=1

pop=2
…

A B C



…
push=2

Steady-State Schedule

• All data pop/push rates are constant
• Can find a Steady-State Schedule

– # of items in the buffers are the same before and the after 
executing the schedule

– There exist a unique minimum steady state schedule

• Schedule = { A, A, B }

pop=3
push=1

pop=2
…

pop=3
push=1

A B C



…
push=2

…
push=2

Steady-State Schedule

• All data pop/push rates are constant
• Can find a Steady-State Schedule

– # of items in the buffers are the same before and the after 
executing the schedule

– There exist a unique minimum steady state schedule

• Schedule = { A, A, B, A }

pop=3
push=1

pop=2
…

A B C



…
push=2

Steady-State Schedule

• All data pop/push rates are constant
• Can find a Steady-State Schedule

– # of items in the buffers are the same before and the after 
executing the schedule

– There exist a unique minimum steady state schedule

• Schedule = { A, A, B, A, B }

pop=3
push=1

pop=2
…

pop=3
push=1

A B C



…
push=2

Steady-State Schedule

• All data pop/push rates are constant
• Can find a Steady-State Schedule

– # of items in the buffers are the same before and the after 
executing the schedule

– There exist a unique minimum steady state schedule

• Schedule = { A, A, B, A, B, C }
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…
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Initialization Schedule

• When peek > pop, buffer cannot be empty after 
firing a filter 

• Buffers are not empty at the beginning/end of the 
steady state schedule

• Need to fill the buffers before starting the steady 
state execution 

peek=4
pop=3
push=1
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Code Generation: Optimizing tile performance

• Creates code to run on each tile
– Optimized by the existing node compiler

• Generates the switch code for the communication



Performance Results for Radar Array Front End

Executing Instructions
Blocked on Static Network

Pipeline Stall



Performance of Radar Array Front End
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Utilization of Radar Array Front End
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StreamIt Applications:
FM Radio with an Equalizer

Duplicate splitter

Low pass filterLow pass filterLow pass filterLow pass filterLow pass filter Low pass filter Low pass filter Low pass filter Low pass filter Low pass filter

Low Pass filter

FM Demodulator

Float Diff filter
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Float Diff filterFloat Diff filterFloat Diff filterFloat Diff filter Float Diff filter Float Diff filter Float Diff filter Float Diff filter Float Diff filter

Float Diff filter

Float Adder filter



StreamIt Applications: 
Vocoder

Duplicate splitter

DFT filter

Round robin joiner

DFT filterDFT filterDFT filterDFT filter DFT filter DFT filter DFT filter DFT filter DFT filter

Round robin splitter

Duplicate splitter

FIR Smoothing Filter Identity

Round robin joiner

Deconvolve filter

Round robin splitter

Liner Interpolator Filter

Round robin joiner

Multiplier filter

Decimator filter

Liner Interpolator Filter

Decimator filter

Round robin joiner

Phase unwrapper filter

Const Multiplier filter

Linear Interpolator filter

Decimator filter



StreamIt Applications:
GSM decoder

Hold Filter

Round robin splitter
Input

IdentityLTP Input Filter

Additional Update filter

Round robin joiner

LTP Filter

Input

LTP Input Filter

Round robin joiner

Round robin splitter

Duplicate splitter

Reflection Coeff Filter

Round robin splitter Input

LTP Input Filter
Identity

Round robin joiner

Short Term Synth Filter

Post Processing Filter



StreamIt Applications:
3GPP Radio Access Protocol – Physical Layer



Application Performance
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Scalability of StreamIt
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Related Work

• Stream-C / Kernel-C (Dally et. al)
– Compiled to Imagine with time multiplexing
– Extensions to C to deal with finite streams
– Programmer explicitly calls stream “kernels”
– Need program analysis to overlap streams / vary target granularity 

• Brook (Buck et. al)
– Architecture-independent counterpart of Stream-C / Kernel-C
– Designed to be more parallelizable

• Ptolemy (Lee et. al)
– Heterogeneous modeling environment for DSP 
– Many scheduling results shared with StreamIt
– Don’t focus on language development / optimized code generation

• Other languages
– Occam, SISAL – not statically schedulable
– LUSTRE, Lucid, Signal, Esterel – don’t focus on parallel performance



Conclusion

• Streaming Programming Model
– An important class of applications
– Can break the von Neumann bottleneck 
– A natural fit for a large class of applications
– Straightforward mapping to the architectural model

• StreamIt: A Machine Language for Communication Exposed 
Architectures
– Expose the common properties

• Multiple instruction streams
• Software exposed communication
• Fast local memory co-located with execution units

– Hide the differences
• Granularity of execution units
• Type and topology of the communication network
• Memory hierarchy 

• A good compiler can eliminate the overhead of abstraction 


