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We calculate the error threshold for the linear optics quantum computing proposal by Knill, Laflamme and
Milburn [Nature409, pp. 46–52 (2001)] under an error model where photon detectors have efficiency< 100%
but all other components – such as single photon sources, beam splitters and phase shifters – are perfect and
introduce no errors. We make use of the fact that the error model induced by the lossy hardware is that of an
erasure channel, i.e., the error locations are always known. Using a method based on a Markov chain description
of the error correction procedure, our calculations show that, with the 7 qubit CSS quantum code, the gate error
threshold for fault tolerant quantum computation is bounded below by a value between1.78% and11.5%
depending on the construction of the entangling gates.
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I. INTRODUCTION

In Refs. 1, 2 it was demonstrated how a quantum com-
puter could be built using only single photon sources, pas-
sive linear optics elements, and photon detectors. Quantum
computing proposals that use photons to encode information
are particularly interesting because of practical applications
to quantum communication over optical fibers, and the natu-
ral resilience of photons to decoherence. This proposal is also
a conceptual departure from other quantum computing pro-
posals because it requires post-selection of states in order to
overcome the limitations imposed by the choice of physical
resources – namely, the fact that one cannot make photons in-
teract using passive linear optics elements. Moreover, even
when considering ideal hardware (i.e. lossless and infinitely
precise linear optics elements, 100% efficient detectors) one
mustuse error correction codes to make the implementation
efficient [2]. However, photon detectors are necessary for the
qubit measurements used in post-selection and error correc-
tion, and good photon detectors are notoriously hard to build.
In this paper, we investigate the maximum error rate that a
linear optics quantum computer, as proposed in Ref. 1, can
sustain, assuming that the only source of hardware imperfec-
tions is the finite photon loss at the photon detectors.

The paper is organized as follows. In Section II we briefly
describe the construction of a probabilistic gate as given in
Ref. 1 and emphasize the description of the error model which
arises naturally from considering those gates. In Section III
we describe an error model based on the same gate construc-
tions, but assuming that the single photon detectors have less
than perfect efficiency. In Section IV the error correction code
and the circuits used for error correction are described, along
with constraints for fault-tolerance. Finally, in SectionVII the
recursion relations for the error rates at different level of con-
catenated encoding are given under worst case assumptions,
along with a brief description of how they were calculated,
and the threshold values are stated.

Throughout the paper we will use the Pauli matricesX =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

along with the

identity matrix11.

II. IDEAL HARDWARE ERROR MODEL

In the efficient linear optics quantum computing proposal
put forward by Knill, Laflamme and Milburn [1], qubits are
encoded as a single photon in one of two optical modes, that
is, |0〉 is represented by the photon number state|0〉 |1〉, and
|1〉 is represented by the photon number state|1〉 |0〉 – this en-
coding is also called thedual-rail encoding[26]. The only re-
sources available are single photon sources, passive linear op-
tics elements (such as beam splitters and phase shifters), and
photon detectors. In our model, the only source of hardware
imperfection is the efficiency of the photon detectors, thatis,
the photon sources and passive linear optics elements are as-
sumed to be perfect. We also assume that classical computa-
tion and control are delay and error free, and that all sources
of failure – teleportation and measurement failures – are sta-
tistically independent.

While single qubit operations can be efficiently performed
using only phase shifters and beam-splitters [3] – and there-
fore can be considered error free in our model – two qubit
operations require state post-selection through measurement
of ancillary modes. If the desired measurement is not ob-
tained, the operation may or may not have been applied prop-
erly, but if the desired measurement is obtained, the proper
operation is guaranteed to have been applied. In Ref. 1 a
probabilistic sign shift gate, which performs the operation
NS− = |0〉〈0| + |1〉〈1| − |2〉〈2| on number states of a given
mode, is described. This gate succeeds with probability1

4
. A

probabilistic entangling gateCSIGN, which performs the op-
eration|00〉〈00|+ |01〉〈01|+ |10〉〈10|− |11〉〈11| on two qubits,
can be constructed by using twoNS− gates along with two
beam splitters, but no extra ancillae or measurements. Since
bothNS− applications must succeed, the overall probability of

http://arXiv.org/abs/quant-ph/0502101v1
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FIG. 1: Gate teleportation protocol for aCSIGN. The resource state
is |B00〉 =

|00〉+|11〉√
2

and the two qubit measurement is a Bell basis
measurement. The double lines indicate operations conditioned on
the outcome of the measurement.

success for aCSIGN is 1

16
. In order to make this construction

scalable, one has to usegate teleportation[4], which turns
the gate construction problem into a state preparation prob-
lem with the advantage that such states can be prepared off
line withouta priori knowledge of the inputs to the gate. The
idea of gate teleportation is to use the conjugation relations of
certain gates to modify the resource state and the correction
operations of the teleportation protocol, so that these gates
can be applied implicitly during the teleportation, in a manner
similar to the protocol for theCSIGN gate illustrated in Fig-
ure 1. Strictly speaking, theCSIGN construction is based on
the teleportation of some of the modes constituting the qubits
that must interact, and thus the operations are not general uni-
taries but instead restricted to linear optics operations,single
photon sources, and post-selection based on single photon de-
tection of certain modes.

Even though the directCSIGN construction has a small (but
non-zero) probability of success, it is always known when the
teleportation succeeds, and the resource state of the teleporta-
tion is independent of the inputs to the operation so one can
make many attempts to produce such a resource state before
performing the teleportation. Alternatively, one may make
many attempts in parallel, and select one that succeeds. While
without teleportation the number of attempts needed for er-
ror free quantum computation grows exponentially for circuits
constructed with the probabilisticCSIGN gates, with the gate
teleportation it grows linearly [1, 2]. Since theCSIGN along
with all single qubit unitaries form a universal set for quantum
computation [5], this gives an efficient construction for a uni-
versal quantum computer using only linear optics elements.

Teleportation in linear optics cannot be performed deter-
ministically [6], but it can be performed with probability ar-
bitrarily close to one at the cost of higher complexity for the
teleportation protocol [1]. Once again, as in the probabilistic
CSIGN construction, one can determine whether the proto-
col succeeded through the measurement of ancillary modes,
so possible failures are always flagged by the measurement
outcomes. Since it is not clear how to increase the probabil-
ity of success of the directCSIGN construction, and bounds
for possible probabilities of success are predicted to be signif-
icantly smaller than one [7], this gate teleportation scheme is

highly necessary. We say that the probability of these intrin-
sic teleportation failures occurring isǫideal, since such failures
occur even when considering ideal photon detectors (i.e. with
perfect efficiency) and linear optics elements.

What makes the teleportation scheme highly attractive as
well is exactly what the failure entails. When one of the tele-
portations involved in theCSIGN fails (but no detectors fail),
the output is equivalent to a successful teleportation followed
by a measurement in theZ eigenbasis – that is, we can view it
as a successful gate application followed by aZ measurement
of one of the qubits independently with probabilityǫideal, and
such an event is automatically flagged by the outcome of the
measurement of the ancilla modes. This is what we call the
ideal hardware error model, and it has been shown to be very
benign, with an error threshold arbitrarily close to one [2,8].

Hence teleportation failures under this model mean that
one of the projectors into the eigenbasis ofZ has been ap-
plied. Exactly which projector was applied to the teleported
qubit depends on the outcome of the measurement of the an-
cillae. Formally, the projectors areZ+ = 1

2
(11 + Z) and

Z− = 1

2
(11 − Z). Since the location of these measurements

is flagged by post-selection, this type of failure is a form of
erasure– an error of known location.

III. LOSSY HARDWARE ERROR MODEL

One of the largest technical hurdles in the implementation
of these probabilistic gates is the fact that single photon detec-
tors are notoriously difficult to build. While for some wave-
length very high efficiency can be obtained, the rate at which
false photon detections are signaled, the so calleddark counts,
is unacceptably high [9]. Dark counts are particularly trouble-
some for the gates proposed in Ref. 1 because they could cause
photon loss to go undetected, as well as causing incorrect
post-selection of states. Recent proposals of photon detectors
based on phase transitions in superconductors have very low
dark count rates, although little attention has been given to
optimizing the efficiency of these detectors. We are interested
in finding the minimum efficiency necessary for these detec-
tors, given dark counts stay negligible, in order to be able to
perform useful quantum computation [27].

Modifications to the gate teleportation protocol that allow
for the detection of photon loss at the detectors are known [1].
This protocol can differentiate between the teleportationfail-
ures due to the limitations of linear optics (leaving the error
model due to such failures intact) and the failures due to pho-
ton loss at the detectors – when this occurs, the corrupted qubit
is replaced with a fresh qubit in a known state. We take the de-
tection of a single physical qubit to fail with probabilityδ, and
the overall probability of theCSIGN gate teleportation failing
due to photon loss at the detectors to beǫloss. The form of
ǫloss as a function ofδ depends on the choice of protocol used
– Ref. 1 describes a family of protocols – and for the purposes
of this paper, we will take them to be independent parameters.
Once again, any possible error due to these types of failure is
always flagged by the gate construction, which significantly
simplifies error correction since it is knowna priori where the
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failures have occurred.
Consider the error model dueonly to photon loss at the

detectors (ǫideal = 0) – such an error model is not physical,
since a linear optics quantum computer will always have tele-
portation failures, but taking this limiting case simplifies the
analysis significantly. If we consider a single physical qubit
measurement where photon loss occurred, it is clear that all
information about the qubit is lost. We can model this loss of
information by thefull erasuresuperoperator

E(ρ) =
1

2
11 =

1

4
(ρ + XρX + ZρZ + YρY) . (1)

However, because of the dual-rail encoding, it is always clear
which physical qubit measurement failed in such a manner
since at the lowest level of encoding qubit measurement con-
sist of measuring the two constituent modes, and thus only
one of the detectors may click. If a photon is not detected on
either mode, a measurement failure has occurred, and we may
replace the qubit with a fresh qubit in a known state. This
is fundamentally different from the depolarizing channel [10]
where there is noa priori knowledge of the position of the
errors – one may think of this superoperator as the depolariz-
ing channel superoperator conditioned on perfect information
about which qubits were randomized.

It is clear that the full erasure does not commute with gate
teleportation, otherwise we could in principle transfer some of
the information from the control qubit of aCSIGN to the tar-
get even though all information was lost in the failed telepor-
tation of the control qubit. We take a worst case approach, and
assume thatanyphoton loss during one of the teleportations
yieldstotal information loss of the qubit being teleported, and
that the error model for the other qubit associated with the
same gate teleportation in which the photon was lost is de-
termined by which correction might have been needed to be
applied. In the particular case of the linear optics proposal, the
error model is symmetric: if we disregard the classical corre-
lation between the errors of the outputs of theCSIGN, photon
loss in one of the teleportations translates to a full erasure of
the qubit being teleported and aZ erasure of the other qubit
involved in the gate operation. This is because in both cases
the correction operation from one teleportation to the other is
a Z gate, and if it is not known whether such gate was sup-
posed to be applied because of the photon loss, we have the
superoperator

Z(ρ) =
1

2
(ρ + ZρZ), (2)

which is what we call aZ erasure. Note that this superoper-
ator can be interpreted as an unintentionalZ measurement of
unknown outcome, since

Z+ρZ+ + Z−ρZ− =
1

2
(ρ + ZρZ) = Z(ρ), (3)

and thus this is fundamentally different from the phase erasure
channel [10], since it provides the addeda priori knowledge
of when corruption has occurred or not. As mentioned be-
fore, we say that there is a probabilityǫloss that photon loss

occurs in one of the teleportations in theCSIGN implementa-
tion, which entails a full erasure of the qubit being teleported,
and aZ erasure of the qubit to which it was coupled through
theCSIGN application. The correlation between the erasures
on these two qubits is ignored for our calculations, but could
be exploited to obtain better thresholds.

In summary, all single qubit operations are taken to be error
free, and theCSIGN is taken to introduce at each output qubit
eitherZ measurements, full erasures, orZ erasures with fi-
nite probability. For simplicity, we consider the different error
models independently, that is, we calculate the threshold for
the case where onlyZ measurements occur (where the hard-
ware is ideal, withǫloss = 0 and δ = 0, but teleportation
is imperfect, i.e.ǫideal 6= 0), and we calculate the threshold
where only full andZ erasures occur (that is, where the tele-
portation protocol is perfect,ǫideal = 0, but the detectors are
not, soδ 6= 0 andǫloss 6= 0).

A collection of single qubit erasures is referred to as anera-
sure pattern, and theweightof the erasure pattern is the num-
ber of qubits that have been affected by an erasure, regardless
of the type of erasure.

IV. FAULT-TOLERANCE AND ERROR CORRECTION

The quantum error correction code considered here to pro-
tect the data from the error model in question is a[[7, 1, 3]]
self-orthogonal, doubly-even CSS code [11, 12] with stabi-
lizer generators

M1 = X ⊗ X ⊗ X ⊗ X ⊗ 11 ⊗ 11 ⊗ 11
M2 = X ⊗ X ⊗ 11 ⊗ 11 ⊗ X ⊗ X ⊗ 11
M3 = X ⊗ 11 ⊗ X ⊗ 11 ⊗ X ⊗ 11 ⊗ X
M4 = Z ⊗ Z ⊗ Z ⊗ Z ⊗ 11 ⊗ 11 ⊗ 11
M5 = Z ⊗ Z ⊗ 11 ⊗ 11 ⊗ Z ⊗ Z ⊗ 11
M6 = Z ⊗ 11 ⊗ Z ⊗ 11 ⊗ Z ⊗ 11 ⊗ Z.

(4)

Self-orthogonal CSS codes are particularly suited for the er-
ror model considered here because they yield simple construc-
tions of fault-tolerant encoded Clifford group operations. Al-
though the Clifford group is not a universal set of quantum
operations, it is well known how to extend it in order to ob-
tain a universal set fault-tolerantly [13, 14], as well as how
this affects the threshold value [15]. In the case of the er-
ror models considered here, the threshold is unaffected since
we require that computation be performed only on error free
states – that is, error correction is performed until an uncor-
rectable error occurs, causing the computation to be aborted,
or until the data is error free, at which point the computation
may continue.

Recall that the Clifford group consists of all operations that
preserve the Pauli group under conjugation, and this group
is generated by theCSIGN gate, the Hadamard gateH =
1
√

2

(

1 1
1 −1

)

, and the phase gateP =
(

1 0

0 i

)

. TheCSIGN can
be implemented transversally by qubitwiseCSIGNs between
two encoded qubits. Note that CSS codes have a transver-
sal encodedCSIGN. If in addition H has to be transver-
sal, then the CSS code has to be constructed from a single,
self-orthogonal classical code. Moreover, ifP also has to



4

be transversal, then all codewords in this classical code must
have doubly-even weight. Since the 7-qubit code considered
is both doubly-even and constructed from a self-orthogonal
classical code, the Hadamard and phase gates can be im-
plemented using only single qubit operations qubitwise, and
therefore are error free under the models considered here. In
order to obtain a universal gate set, we can add a non-Clifford
gate such as theπ/8 gate, which has a known fault-tolerant
construction [14]. We will make use of the properties of
doubly-even CSS codes for the error correction circuits stud-
ied in Section VI.

V. ENCODED ERROR MODEL

Error models consisting of erasures yield particularly sim-
ple encoded error models because it is always known when
an error is unrecoverable. In such a case one can simply take
the code block to be an encoded erasure at the next level of
encoding. In general, an uncorrectable failure is not an en-
coded failure, and it requires further processing to make itan
encoded failure, as will be discussed below. What remains to
be determined is what kind of encoded failure results.

In the case of ideal hardware, all erasures areZ mea-
surements of known outcomes. Turning to the 7 qubit code
described above, we have that all weight one and two era-
sure patterns are correctable. Of the35 possible weight
three erasure patterns,28 are correctable. The remaining7
weight three patterns, along with all other patterns with higher
weight [28], can be identified with an encodedZ measure-
ment, and are therefore uncorrectable failures. These collec-
tions of individual single qubit measurements are not, strictly
speaking, equivalent to an encoded measurement, since they
collapse the seven qubits into a state outside the code space.
However, because the encoded|0〉 and |1〉 are superpositions
over mutually exclusive sets of states, it is easy to infer which
encoded state the measurement results correspond to, and then
replace the qubits with a fresh encoded|0〉 or |1〉. This opera-
tion is taken to be error free, since we assume that state prepa-
ration can be attempted until no errors have occurred. Since
all encoded failures areZ measurements, in the ideal hard-
ware error model the break even condition between encodedZ
measurements at the first level of encoding, denoted byZ(1),
and single qubitZ measurements, Pr(Z(1) measurement) =
Pr(Z measurement), implies

ǫ
(1)

ideal = ǫideal, (5)

whereǫ
(1)
ideal is the failure rate at the first level of encoding.

In the case of the lossy error model, because each qubit
can suffer eitherZ erasures or full erasures, different uncor-
rectable errors on the7 qubit code will lead to different en-
coded errors. For simplicity we can take all encoded failures
to be encoded full erasures, which in the first level of encod-
ing we denoteE(1), so that the break even condition on the
probabilities Pr(E(1)) = Pr(E) implies

ǫ
(1)

loss =
1

2
ǫloss, (6)

|+〉Z

X

X

X

|+〉

FIG. 2: A circuit for correcting a singleZ measurement in the top
qubit as long as the remaining 3 qubits are erasure-free. Thefour
qubits are assumed to be part of a block encoded with the 7 qubit
code. The state|+〉 is the+1 eigenvalue eigenvector ofX. The dou-
ble lines indicate control based on the outcome of the measurement.

since only half of the lossy error model failures are full era-
sures, whereǫ(1)

loss is the failure rate at the first level of en-
coding. The resulting threshold is at most as high as the real
threshold, considering the different kinds of encoded erasures
that are simpler to correct, but should be lower in general. A
more detailed analysis can be made [17, 18], and exact prob-
abilities distributions for the different kinds of erasures can
be calculated using the same technique used to calculate the
threshold in Section VII, but the simplifying assumption made
here is enough to match the prediction in Ref. 2.

In reality we would like to consider an error model that
takes both these sources of error into account. Section IV
describes how each of the different kinds of erasures are cor-
rected, and demonstrates the progressively higher cost of cor-
recting aZ measurement, aZ erasure and a full erasure. Given
this fact, for the error correction code chosen here, and forthe
error correction technique used here, the threshold for an error
model consisting of both types of failures is bounded above by
the ideal error model threshold, and below by the lossy error
model threshold.

VI. ERROR CORRECTION CIRCUITS

In general, in order to correct errors by using a stabilizer
code, one simply needs to measure the stabilizer generators
and infer the most probable error that occurred and apply the
correction. In the case of erasure errors, the knowledge of
which qubits have been affected by the error superoperator
greatly reduces the number of stabilizer operators that need to
be measured. This is because we need only measure stabilizer
operators that act non-trivially on the qubits affected by the
error superoperators, and this greatly reduces the probability
of introducing more errors into the data.

This procedure can be further optimized by incorporating
the syndrome measurement and correction into a single step,
as first described in Ref. 2 for the case ofZ measurement cor-
rection codes.

The fact that the 7 qubit code employed here is based on
a classical doubly-even code, allows us to consider the 4
qubit subsystem in the support of any given stabilizer operator.
Since this is a CSS code, we can focus on stabilizer operators
that are made up of tensor products ofXs and identities, and
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FIG. 3: Performing aCNOT between|+〉 and an arbitrary state|α〉
through teleportation.

stabilizer operators that are made up of tensor products ofZs
and identities.

Since we are only interested in correcting erasures of
weight up to 3, we can consider a single qubit that has un-
dergone some erasure, along with three qubits that are still
intact. We choose stabilizer operators that act non-trivially on
all of these four qubits and trivially on all other qubits – this
is always possible in the 7 qubit code. Considering only this4
qubit subsystem, the stabilizer operators in question are [29]

M
′

1 = X ⊗ X ⊗ X ⊗ X
M

′

2 = Z ⊗ Z ⊗ Z ⊗ Z.
(7)

The usual approach is to measure these two operators fault-
tolerantly in order to determine what kind of Pauli correction
needs to be applied to the erased qubit. If we considerZ era-
sures, we need only measureM

′

1. Alternatively, one can sim-
ply use the circuit depicted in Figure 2 (without loss of gen-
erality, we consider the corrupted qubit to be the first qubit
of the four) [30]. As demonstrated before, a code that can
correctZ erasures can also correctZ measurements at known
locations, since aZ erasure can be given by aZ measurement
of unknown outcome. In this case, we do not need to perform
the explicit measurement in theZ eigenbasis since we already
have that information, but the rest of the circuit remains asin
Figure 2 – thus there is an added cost of a possible measure-
ment failure when correctingZ erasures. If the measurement
does fail and the qubit is destroyed (as is the case when a pho-
ton is detected), one simply abandons the attempt at correcting
theZ erasure, since it will then be replaced by a full erasure.

The circuit in Figure 2 is not fault-tolerant, as it stands. In
order to make it fault-tolerant, one simply applies a modified
teleportation protocol to the three error-free qubits [1, 8, 17].
In order to understand why this is fault-tolerant, considerthe
teleportation of the three intact qubits before applying the
CNOTs in Figure 2. SinceCNOT is a Clifford gate, we can
apply theCNOTs to the Bell states needed for teleportation,
and simply modify the recovery stage of the teleportation, in
a manner similar to what was described in Figure 1. Note that
it is unnecessary to teleport the control qubit, i.e. the qubit
in the state|+〉, since it is a fixed resource state. Unlike the
CSIGN gate construction, where photon modes are teleported,
this is a teleportation of the qubits, and can be thought of in
terms of the usual higher level gates such asCNOTs and Pauli

FIG. 4: Fault-tolerant measurement of stabilizer operatorZ ⊗ 11 ⊗
Z ⊗ 11 ⊗ Z ⊗ 11 ⊗ Z as proposed by Shor [13]. The qubits in the
shaded region are ancillas, and the measurement of the operator is
inferred from the measurement of the 4 ancilla qubits.

operators.
This procedure becomes clearer if we consider the telepor-

tation of only one of the qubits, followed by theCNOT with
the resource state|+〉, and propagate theCNOT backwards, as
described in Figure 3. If there is a failure in the Bell measure-
ment of the qubits, it will only possible cause aZ erasure in
the control bit, as well as a possible full erasure on the tar-
get bit. SinceZ errors do not propagate from the control of
theCNOT gate, the other twoCNOTs can be performed fault
tolerantly in parallel.

In summary, we simply need to measure the erased qubit
in the Z eigenbasis, discard the erased bit, and apply the
teleportation-based fault-tolerant version of Figure 2 tothree
erasure free qubits in the codeword and an extra qubit in the
|+〉 state to replace the discarded one, and theZ erasure will
be corrected. If any of the teleportations fail, the failurewill
affect only the qubit we are attempting to recover and the qubit
that was being teleported.

The circuit in Figure 4 is used to measure stabilizer opera-
tors made of tensor products ofZs and11s, and thus it partially
corrects full erasures, yielding aZ erasure if successful. The
fault-tolerant version of the circuit in Figure 2 can be usedto
correctZ erasures as well as unintentionalZ measurements.
The strategy taken is to correct full erasures first, and once
there are no more full erasures, to correctZ erasures andZ
measurements. We do not claim that this strategy and circuits
are optimal for error correction, but this choice simplifiesthe
exact calculation of the threshold significantly.

VII. THRESHOLDS

The threshold theorem[19, 20, 21] states that by concate-
nated coding – that is, the repeated encoding of a quantum
state – one can perform quantum computation with arbitrarily
small error efficiently as long as the error is below a certain
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threshold. We take this threshold to be the smallest probabil-
ity of error such that the probability of an encoded failureǫ(1)

is equal to the probability of a single unencoded qubit failure
ǫ(0) ≡ ǫ.

The encoded error rate can be calculated by tracking the
probability of going from any given erasure pattern to any
other erasure pattern during an attempt at error correction.
This describes a Markov chain, and such a description can be
made more compact by considering symmetries of the error
correction code and of the error correction circuitry [17].Era-
sure patterns can be grouped into equivalence classes defined
by the error correcting code as well as the error correcting
procedure, and we need only consider probabilities of going
from one equivalence class to another – in the case of the 7
qubit code, we need to consider only11 equivalence classes
versus the128 that would be necessary for a naive descrip-
tion of the Markov chain. It is straightforward to obtain the
initial distribution of the different equivalence classesas well
as the transition matrix of the Markov chain that describes the
change in the distribution due to one error correction attempt.
The distribution after multiple error correction attemptscan be
obtained by taking higher powers of the transition matrix and
applying it to the initial distribution. Each of the non-trivial
equivalence classes of erasure patterns can be associated with
an encoded erasure, and therefore one can obtain the error dis-
tribution at any given encoding level. In some cases, there is
additional processing and transitions between different equiv-
alence classes associated with the mapping between the era-
sure pattern and an encoded erasure, since, for example the
erasure operator11⊗ 11⊗ 11⊗ 11⊗ 11⊗ 11⊗E is not equivalent
to any encoded operation. In order to account for such pro-
cessing, another transition matrix would be required. Details
of this procedure are discussed elsewhere [18]. In the case
of the ideal hardware error model, all erasure patterns can be
mapped directly to encode measurements by measuring all the
qubits of a code block that is not erasure free. In the case of
the lossy hardware model, we take a worst case approach and
all erasure patterns at the end of the error correction procedure
are taken to be an encoded full erasure, so there is no need for
the more detailed analysis – we can simply replace the cor-
rupted block of qubits with a block in a known fixed encoded
state.

In the case of perfect hardware (δ = 0), the error rate recur-
sion relation is

ǫ
(1)
ideal = 56ǫ3

ideal+406ǫ4

ideal+3878ǫ5

ideal−129675ǫ6

ideal+ · · · ,
(8)

which yields a threshold, forǫ(1)
ideal = ǫideal, of approximately

ǫideal = 0.115. The Markov chain describing the error recov-
ery procedure for this model is shown in Figure 5.

In the case of lossy hardware with perfect teleportation, as-
suming thatδ = ǫloss, the error rate recursion relation is

ǫ
(1)
loss = 1050ǫ3

loss+33173ǫ4

loss−46242ǫ5

loss−6861701ǫ6

loss+· · · ,
(9)

which yields a threshold, forǫ(1)
loss = 1

2
ǫloss, of approximately

ǫloss = 0.0178. This threshold is only valid if it is identical to
or smaller than the encoded measurement threshold. Because

fail
0

3

2

1

FIG. 5: The Markov chain describing the error recovery for the ideal
hardware error model. The states are labeled by the weight ofthe
correctable erasures, and the ’fail’ corresponds to all patterns that are
not correctable according to our procedure. Probabilites are omitted
for readability.

fail

[0,0]

[0,1]

[1,0]

[1,1]

[2,1]

[2,0]

[1,2]

[3,0]

[0,2]

[0,3]

FIG. 6: The Markov chain describing the error recovery for the lossy
hardware error model. The states are labeled[m, n] according to the
number of full erasuresm and the number ofZ erasuresn, and the
’fail’ state corresponds to all patterns that are not correctable accord-
ing to our procedure. Probabilites are omitted for readability.

of the structure of CSS codes, encoded basis states correspond
to superpositions of elements of a coset of a linear classical
code. In the case of the[[7, 1, 3]] quantum code, the linear
classical code is a[7, 4, 3] code. Measurement failures can
then be seen as classical erasures on this[7, 4, 3] code, and
ignoring the correctable classical erasure patterns of weight
three and higher, the encoded failure rate for measurementsis
given by

δ(1) =

7∑

i=3

(

7

i

)

δi(1 − δ)7−i, (10)

which yields the benign error thresholdδ = 0.25, validating
the calculated threshold valueǫloss = 0.0178 under the as-
sumptionδ = ǫloss. This is a worst case assumption because
the family of teleportation protocols described in Ref. 1 use
an increasing number of detectors to increase the probability
of success, and for the smallest such protocol the probability
of photon loss is the same as the probability of photon loss for
a single qubit measurement. The Markov chain for the lossy
hardware error model is depicted in Figure 6.
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VIII. CONCLUSIONS

Using the error correction techniques outline here, the
error threshold for Clifford gates is found to be at least
0.0178 < ǫ < 0.115 (sinceǫloss < ǫ < ǫideal), where
ǫ is the probability that some type of erasure is introduced
due to photon loss at the detectors or due to a teleportation
failure.

The threshold values calculated here can be improved by
using optimized stabilizer measurement techniques [22, 23],
or by merging stabilizer measurement and error correction
steps more aggressively [8, 24]. Figure 4 is a straightforward
generalization of a technique used for a two qubitZ measure-
ment error correcting code [2], but Knill showed that by merg-
ing all stabilizer measurements with error correction steps in
modified teleportation protocols, significantly higher thresh-
olds can be obtained [24].

The Markov chain description of the error correction pro-
cedure, discussed in more detail elsewhere [18], can be used

with any of these techniques. This systematic approach to
the calculation of the encoded error rates is particularly use-
ful for practical applications of concatenated codes, since it is
able to give the probability distribution of the encoded errors.
The calculation to check the dependency of the distribution
on parameters such as the number of error correction attempts
or the number of concatenation levels is straightforward, and
one could determine easily how many correction attempts or
concatenation levels are necessary to obtain some target error
rate.
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