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Abstract. The hidden shift problem is a natural place to look for new
separations between classical and quantum models of computation. One
advantage of this problem is its flexibility, since it can be defined for a
whole range of functions and a whole range of underlying groups. In a
way, this distinguishes it from the hidden subgroup problem where more
stringent requirements about the existence of a periodic subgroup have
to be made. And yet, the hidden shift problem proves to be rich enough
to capture interesting features of problems of algebraic, geometric, and
combinatorial flavor. We present a quantum algorithm to identify the
hidden shift for any Boolean function. Using Fourier analysis for Boolean
functions we relate the time and query complexity of the algorithm to
an intrinsic property of the function, namely its minimum influence. We
show that for randomly chosen functions the time complexity of the algo-
rithm is polynomial. Based on this we show an average case exponential
separation between classical and quantum time complexity. A perhaps
interesting aspect of this work is that, while the extremal case of the
Boolean hidden shift problem over so-called bent functions can be re-
duced to a hidden subgroup problem over an abelian group, the more
general case studied here does not seem to allow such a reduction.

1 Introduction

Hidden shift problems have been studied in quantum computing as they provide
a framework that can give rise to new quantum algorithms. The hidden shift
problem was first introduced and studied in a paper by van Dam, Hallgren and
Ip [vDHIO6] and is defined as follows. We are given two functions f, g that map
a finite group G to some set with the additional promise that there exists an
element s € G, the so-called shift, such that for all x it holds that g(z) = f(z+s).
The task is to find s. Here the group G is additively denoted, but the problem can
be defined for non-abelian groups as well. The great flexibility in the definition
allows to capture interesting problems ranging from algebraic problems such as
the shifted Legendre symbol [vDHI06], over geometric problems such as finding
the center of shifted spheres [CSV07, Liu09] and shifted lattices [Reg04], to
combinatorial problems such as graph isomorphism [CWO07].
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Notable here is a well-known connection between the hidden subgroup prob-
lem for the dihedral group, a notoriously difficult instance which itself has con-
nections to lattice problems and average case subset sum [Reg04] and a hidden
shift problem over the cyclic group Z, where the functions f and g are injective
[Kup05, MRRS07, CvD07]. Tt is known [FIM*03, Kup05] that the hidden shift
problem for injective functions f,g : G — S that map from an abelian G to
a set S is equivalent to hidden subgroup problem over the semi-direct product
between G and Zg, where the action of Zo on G is given by the inverse. We
would like to point out that the functions studied here are Boolean functions
(i.e., G = Z7) and therefore far from being injective. Even turning them into
injective quantum functions, as is possible for bent functions [R6t10], seems not
to be obvious in this case. Another recent example of a non-abelian hidden shift
problem arises in a reduction used to argue that the McEliece cryptosystems
withstands certain types of quantum attacks [DMR10].

In this paper we confine ourselves to the abelian case and in particular to the
case where G = Z% is the Boolean hypercube. The resulting hidden shift problem
for Boolean functions, i.e., functions that take n bits as inputs and output just 1
bit, at first glance looks rather innocent. However, to our knowledge, the Boolean
case was previously only addressed for two extreme cases: a) functions which
mark precisely one element and b) functions which are maximally apart from
any affine Boolean function (so-called bent functions). In case a), the problem
of finding the shift is the same as unstructured search, so that the hidden shift
can be found by Grover’s algorithm [Gro96] and the query complexity is known
to be tight and is given by ©(v/27).

In case b) the hidden shift can be discovered in one query using an algorithm
that was found by one of the co-authors [R6t10], provided that the dual of the
function can be computed efficiently, where the definition of the dual is via the
Fourier spectrum of the function which in this case can be shown to be flat in
absolute value. If no efficient implementation of the dual is known then still a
quantum algorithm exists that can identify the hidden shift in O(n) queries.
The present paper can be thought of as a generalization of this latter algorithm
to the case of Boolean functions other than those having a flat spectrum. This
is motivated by the quite natural question of what happens when the extremal
conditions leading to the family of bent functions are relaxed. In this paper we
address the question of whether there is a broader class of functions for which
hidden shifts of a function can be identified.

The first obvious step in direction of a generalization is actually a roadblock:
Grover’s search problem [Gro96] can also be cast as a hidden shift problem. In
this case the corresponding class of Boolean functions are the delta functions,
e, f,g:{0,1}" — {0,1}, where g(x) = f(x + s) and f(x) is the function that
takes value 1 on input (0,...,0) and 0 elsewhere and g(x) is the function that
takes the value 1 on input s and 0 elsewhere. Grover’s algorithm [Gro96] allows
to find s in time O(v/2") on a quantum computer (which is also the fastest
possible [BV97]).



Thus, the following situation emerges for the quantum and the classical query
complexities of these two extremal cases: for bent functions the classical query
complexity® is £2(v/27) and the quantum query complexity? is O(n). For delta
functions the classical query complexity is ©(2") and the quantum query com-
plexity is ©(v/27).

For a general Boolean function the hidden shift problem can be seen as lying
somewhere between these two extreme cases. This is somewhat similar to how the
so-called weighing matrix problem [vDO08] interpolates between the Bernstein-
Vazirani problem [BV97] and Grover search, and how the generalized hidden shift
problem [CvDO7] interpolates between the abelian and dihedral hidden subgroup
problems. However, apart from these two extremes, not much is known about
the query complexity of the hidden shift problem for general Boolean functions.

The main goal of this work was to understand the space between these two
extremes. We show that there is a natural way to “interpolate” between them
and to give an algorithm for each Boolean function whose query complexity
depends only on properties of the Fourier spectrum of that function.

Prior work. As far as hidden shifts of Boolean functions are concerned, besides
the mentioned papers about the bent case and the case of search, very little was
known. The main technique previously used to tackle hidden shift problem was
by computing a suitable convolution. However, in order to maintain unitarity,
much of target function’s features that we want to compute the convolution with
had to be “sacrificed” by requiring the function to become diagonal unitary,
leading to a renormalization of the diagonal elements, an issue perhaps first
pointed out by [CMO04]. No such renormalization is necessary if the spectrum
is already flat which corresponds to the case of the Legendre symbol [vDHIOG6]
(with the exception of one special value at 0) and the case of bent functions
which was considered in [R6t10].

Our results. We introduce a quantum algorithm that allows us to sample from
vectors that are perpendicular to the hidden shift v according to a distribution
that is related to the Fourier spectrum of the given Boolean function f. If f is
bent, then this distribution is uniform which in turn leads to a unique charac-
terization of v from O(n) queries via a system of linear equations. For general
f more queries might be necessary and intuitively the more concentrated the
Fourier spectrum of f is, the more queries have to be made: in the extreme case
of a (+£1 valued) delta function f the spectrum is extremely imbalanced and
concentrated almost entirely on the zero Fourier coefficient which corresponds

! Note that the query complexity depends crucially on how the functions f and g
can be accessed: the stated bounds hold for the case where f and g are given as
black-boxes. If f is a known bent function, then it is easy to see that the classical
query complexity becomes O(n).

2 A further improvement is possible in case the so-called dual bent function fis ac-
cessible via another black-box: in this case the quantum query complexity becomes
constant [R6t10].



to the case of unstructured search for which our algorithm offers no advantage
over Grover’s algorithm. For general f we give an upper bound on the number
of queries in terms of the influence vy of the function f, where the influence is
defined as vy = min, (Pr, [f(z) # f(z + v)]).

From a simple application of the Chernoff bound it follows that it is extremely
unlikely that a randomly chosen Boolean function will give rise to a hard instance
for our quantum algorithm. This in turn gives rise to our main result of the paper:

Theorem 2 (Average case exponential separation). Let (O, O4) be an
instance of a Boolean hidden shift problem (BHSP) where g(x) = f(x+v) and f
and v are chosen uniformly at random. Then there exists a quantum algorithm
which finds v with bounded error using O(n) queries and in O(poly(n)) time
whereas any classical algorithm needs 2(2"/?) queries to achieve the same task.

This result can be interpreted as an exponential quantum-classical separation
for the time and query complexity of an average case problem. Finally, we would
like to comment on the relationship between the problem considered in this
paper and the abelian hidden subgroup problem. It is interesting to note, yet
not particularly difficult to see, that the case of a hidden shift problem for bent
functions can be reduced to that of an abelian hidden subgroup problem. The
hiding function in this case is a quantum function, i.e., it takes values in the
set of quantum sets rather than just basis states. For the case of a non-bent
function, including the cases of random functions considered here, the same
direct correspondence to the hidden subgroup problem over an abelian group
no longer exists, i.e., even though there is no obvious group/subgroup structure
present in the function f, the algorithm can still identify the hidden shift v.

2 Preliminaries

Definition 1 (Boolean Hidden Shift Problem). Let n > 1 and let f,g :
75 — Zs be two Boolean functions such that the following conditions hold:

— if for some t € Z% it holds that f(z) = f(x +1) then t =0;
— for some s € ZY it holds that g(x) = f(z + s).

If f and g are given by two oracles Oy and Oy, we say that the pair (Of,Oy)
defines an instance of a hidden shift problem (BHSP) for the function f. The
value s € ZY that satisfies g(x) = f(x + s) is the solution of the given instance
of the BHSP.

We also consider the {+1, —1}-valued function F' corresponding to the func-
tion f and view it as a function over R, that is,

F:Z3 - R:z— (—1)7@, (1)

The arguments of these functions are assumed to belong to Z%, and their inner
product is defined accordingly, i.e., (u,v) = @;_; u; - v;. We also denote by



Xu(.-.) the elements of the standard Fourier basis corresponding to Z%, that is,
Xu(v) = (=1)(%) for every u,v € Z3.

We will see that the complexity of the BHSP depends on the notion of influ-
ence.

Definition 2 (Influence). For any Boolean function f over Z% and n-bit string
v, we call 5, = Pry[f(z) # f(x +v)] the influence of v over f, and v5 =
min, vy, the minimum influence over f.

The following lemma relates the influence over a Boolean function f to the
Fourier spectrum of its {+1, —1}-valued analog F, see also [GOST09, Fact 11,
p. 14].

2
Lemma 1. v¢, = Zu:(vm:l ‘F(u)‘

We give a proof of this lemma in Appendix A for completeness.

3 Our algorithm

Theorem 1. There exists a quantum algorithm that solves an instance of BHSP
defined over the function f using expected O(n/ /7y) oracle queries. The algo-
rithm takes expected time polynomial in the number of queries.
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Fig. 1. Quantum circuit for the Sampling Subroutine.

Proof. The algorithm relies on the Sampling Subroutine described in Fig. 1,
where H denotes the standard Hadamard gate, Z is a phase gate acting on one
qubit as Z : |b) = (—1)°|b), and Oy is the oracle for f acting on n + 1 qubits as
Oy : b)|z) — [b& f(x))|z) (similarly for O,). The algorithm works as follows:

Quantum algorithm
1. Seti=1
2. Run the Sampling Subroutine. Denote by (b;, u;) the output of the mea-
surement.
3. If Span{ux|k € [i]} # Z%, increment ¢ — i+1 and go back to step 2. Other-
wise set ¢ = ¢ and continue.
4. Output “s”, where s is the unique solution of

(u1,s) = b1

<Ut, S> == bt.




Obviously, this algorithm makes O(t) quantum queries to the oracles and its
complexity is polynomial in ¢ + n. The quantum state before the measurement
is
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Its measurement therefore always returns a pair (b;, u;) € {0,1} x {0,1}"™ where
(us,8) = b;. Moreover, since by construction Span{w;|i € [t|} = Z%, the system
of equations in step 4 accepts a unique solution that can only be the hidden shift
s, thus the final answer of our algorithm is always correct.

We now show that the algorithm terminates in bounded expected time. We
need to prove that repeatedly sampling using the procedure in step 2 yields n
linearly independent vectors u;, therefore spanning Z%, after a bounded expected
number of trials ¢. Let (B,U) be a pair of random variables describing the
measurement outcomes for the Sampling Subroutine, and D? denote the
marginal distribution of U. From the right-hand side of (2) it is clear that

DY (u)

2
7o)
Note that this distribution does not depend on g.

Let d; be the dimension of Span{ug|k € [i]}. By construction, we have d; =
1,d; = n and d;4+; equals either d; or d; + 1. Let us bound the probability that
diy1 = d;+1, or, equivalently, that w1 ¢ Span{u|k € []}. This probability can
only decrease as d; increases, so let us consider the worst case where d; = n—1. In
that case, there exists some v € Z§ \ {0} such that Span{uy|k € [i]} is exactly the
subspace orthogonal to v. Then, the probability that u;4; distributed according
to DfU does not lie in this subspace (and hence d;11 = d; + 1) is given by

Pr (u=1= Y [F] =

~DU
U~y w:{v,u)=1

which follows from Lemma 1. Therefore, for any i, the probability that d;; =
d; + 1 is at least vy = min, vy, and the expected number of trials before it
happens is at most 1/+;. Since d; must be incremented n times, the expected
total number of trials ¢ is at most n/v¢.

Using quantum amplitude amplification, we can obtain a quadratic improve-
ment over this expected running time. Indeed, instead of repeating the Sam-
pling Subroutine O(1/~¢) times until we obtain a sample u not in the subspace



spanned by the previous samples, we can use quantum amplitude amplification,
which achieves the same goal using only O(1/,/7y) applications of the quantum
circuit in the Sampling Subroutine (see [BHMT02, Theorem 3]). We therefore
obtain a quantum algorithm that solves the problem with success probability 1
and an expected number of queries O(n/,/7r). O

In case a lower bound on 7 is known, we have the following corollary:

Corollary 1. There exists a quantum algorithm that solves an instance of BHSP
defined over the function f, with the promise that vy > 0, with success probability
at least 1 — ¢ and using at most O(nlog(1/€)/V/§) oracle queries. The algorithm
takes expected time polynomial in the number of queries.

Proof. This immediately follows from Markov’s inequality, since it implies that
the algorithm in Theorem 1 will still succeed with constant probability even
when we stop after a time @(n/,/7y) if it has not succeeded so far. O

4 Classical complexity of random instances of BHSP

In this section we show that a uniformly chosen instance of BHSP is exponentially-
hard classically with high probability.

Lemma 2. A classical algorithm solving a uniformly random instance of BHSP
with probability at least 1/2 makes £2(2"/?) oracle queries.

Proof. Consider a classical algorithm A}, that makes ¢., queries to the oracles
Ay and A, and with probability at least 1/2 returns the unique s satisfying
g(x) = f(x + s) (cf. Definition 1). For notational convenience we assume that
Acla only makes duplicated queries (f(x),g(x)). This can at most double the
total number of oracle calls.

Consider the uniform distribution of f : Z3 — Zy and s € Z3, and let an
input instance of BHSP be chosen accordingly. Let (Xi,...,Xy,,) be random
variables representing the queries made by Ac,. Then by the correctness as-
sumption, the values f(X1),9(X1),..., f(Xt.,.),9(Xt.,.) can be used to predict
s with probability at least 1/2.

First we observe that if, after k& queries, it holds that X; — X; # s for every
i,j € [k], then even conditionally on the values of f(X1),g(X1), ..., f(Xk), 9(Xk)
every s ¢ {X; — X,l|i,j € [k]} has exactly the same probability to occur. More
precisely, if Sy = {X; — X;|i,j € [k]} and Ej is the event that s € Sy, we have

1 1
<
91— (S| = 27 — k2

Pr s = so|~FEx] = (3)
for any so ¢ S and 0 < k < tcj,. In other words, modulo “s ¢ Si” the actual
values of f and g at points {X;|i € [k]} provide no additional information about

s, and the best the algorithm can do in that case is a random guess, which
succeeds with probability at most 1/(2" — k?).



Now let us analyze the probability that Sy, = {X;—X|i,j € [tca]} contains
s, that is, Pr [E}__]. Since |Sk4+1| — |Sk| < k, we have by the union bound

k
Pr [Eiy1|-FEx] < Z Prs = so|~Ex| < on _ |2’
8$0E€Sk+1
Consequently,

tcla71 2

k t

PrlE < k=0 cla
I‘[ tcla] = 9on _ t(%la - 9on _ t(%la

Finally, we can bound the probability that the algorithm succeeds after ¢, oracle
queries as

Pr [Ac, succeeds] = Pr [Aq, succeeds|E,,, | - Pr[E;

cla cla]

+ Pr [Ac, succeeds|—E; . | - Pr[—F:,. ]

2, +1
< PrE, ] + Pr[Au, succeeds|—E; | < on 2

which is larger than 1/2 only if ., € §2 (2"/ 2), as required. (]

We are now ready to state our main theorem which is an exponential quantum-
classical separation for an average case problem.

Theorem 2 (Average case exponential separation). Let (O, Q) be an
instance of a Boolean hidden shift problem (BHSP) where g(x) = f(x+v) and f
and v are chosen uniformly at random. Then there exists a quantum algorithm
which finds v with bounded error using O(n) queries and in O(poly(n)) time
whereas any classical algorithm needs 2(2"/?) queries to achieve the same task.

Proof. For a fixed v and randomly chosen f, consider the 2"~! mutually in-
dependent events “f(x) = f(x + v)”. By definition of 74, and the Chernoff
bound, the probability that v;, < 1/3 is at most e~ (") Since this is double-
exponentially small in n we obtain from an application of the union bound to the
2™ possible values of v that if f : Z% — Zy is chosen uniformly at random then
Priy; < 1/3] € e=?("). We now apply Corollary 1 for constant 7; to obtain
a quantum algorithm that uses at most O(n) queries and outputs the correct
hidden shift v with constant probability of success (i.e., € is chosen to be con-
stant). Combining this with the exponential lower bound from Lemma 2 implies
that there is an exponential gap between the classical and quantum complexity
of the BHSP defined over a random Boolean function. O

5 Discussion and open problems

We presented a quantum algorithm for the Boolean hidden shift problem that is
based on sampling from the space of vectors that are orthogonal to the hidden



shift. It should be noted that our algorithm reduces to one of the two algorithms
given in [R6t10] in case the function is a bent function. We related the running
time and the query complexity of the algorithm to the minimum influence of the
function and showed that for random functions these complexities are polyno-
mial. This leads to an average case exponential separation between the classical
and quantum time complexity for Boolean functions. An interesting question
is whether these methods can be generalized and adapted for the case of non-
Boolean functions also. Furthermore, we conjecture that the complexity of our
quantum algorithm is optimal up to polynomial factors for any function.
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A Proof of Lemma 1
2

Lemma 1 Vv = Zu:(v,u):l ‘F(U’)‘

Proof. Let us consider the following function E(x) Lef F(z) — F(z + v). Its

Fourier transform reads

o~
~

F,(u) = E[F(z) xu(z) = Flz +v) - xu(@)] = 1 = xu(v) - F(u).

Therefore, we have

w:{v,u)=1 u€Zy u€eLy
1 2
—18|[F0[] ~rirw £ P+ ol =50,

where in the second line we have used Parseval’s identity. 0
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