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Abstract. The k-pair problem in network coding theory asks to sénohessages simultaneously betwéden
source-target pairs over a directed acyclic graph. In aiguevpaper [ICALP 2009, Part I, pages 622—633] the
present authors showed that if a classicglair problem is solvable by means of a linear coding schenes, the
quantumk-pair problem over the same graph is also solvable, providaticlassical communication can be sent
for free between any pair of nodes of the graph. Here we aslidnesmain case that remained open in our previous
work, namely whethenonlinearclassical network coding schemes can also give rise to gmanetwork coding
schemes. This question is motivated by the fact that theraetworks for which there are no linear solutions to
the k-pair problem, whereas nonlinear solutions exist. In tresent paper we overcome the limitation to linear
protocols and describe a new communication protocol fdiepeguantum network coding that improves over the
previous one as follows: (i) the new protocol does not put@mgdition on the underlying classical coding scheme,
that is, it can simulate nonlinear communication protoealsvell, and (ii) the amount of classical communication
sent in the protocol is significantly reduced.

1 Introduction

The idea ofnetwork coding proposed in the seminal paper by Ahlswede, Cai, Li and Ydlihgopened up a
new communication-efficient way of sending informatiorotigh networks. The key idea is to allow coding and
replication of information locally at any intermediate ®odf the network. For instance, this allows one to send
two bits simultaneously between two source-target paies sgveral networks for which the same task cannot be
solved by routing. A simple, yet instructive, example is thaterfly network described in Figl 1. We refer to
Refs. [4] 8] 18, 19] for extensive treatments of the topicla$sical network coding.

In quantum information processing, it is often desirablen@nipulate quantum states by applying local op-
erations only, rather than applying global operations thgtire to send quantum information between different
places. This in particular applies to the situation of comiation tasks involving quantum information where it
is quite natural to assume that whenever quantum informagicent over a channel, there is a high chance that
it will be corrupted, whereas classical information can éetsery reliably. In this context a natural question is
whether the concept of network coding can be applied to gumamietworks in order to reduce the amountoén-
tum communicationThere have been several studies working on “quantum” n&teading [6, 7] 12, 16]. These
papers deal with the challenge to send quantum informatrenanetwork as well as possible, a task that is greatly
hampered by the fact due to the no-cloning theorem that wmkrguantum information cannot be replicated. A
natural target problem that has crystallized out from therpworks [6,[7,[12] as being at the core of the issue
is the following quantunk-pair problem: Given a directed acyclic graphwith k source-target pairs (where we
assume all the edges, which represent quantum channetspuh#vcapacities), is there a way of sendinguan-
tum messages between theairs? Note that the classicklpair problem, in which the channels and messages
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Figure 1. The butterfly network and a classical linear coglirgjocol. The node; (resp.ss) has for input a bitz;
(resp.z2). The task is to send; to t; andxs to to. The capacity of each edge is assumed to be one bit.

are classical, is one of the most important network codimdplems (for instance, see Refsl[[3| 5, 9,[13, 17]). The
butterfly network described in Fig. 1 is an instance of the-p&ao problem.

Unfortunately, in the early stage of studying quantum neékeoding it was shown that there exist networks for
which the classicak-pair problem is solvable but the quantumpair problem is not perfectly solvable! [6,7,112].
For instance, two quantum states cannot be sent simultalyeaod perfectly (i.e., with fidelity one) between the
two source-target pairs in the butterfly network. Howevee situation changes dramatically if classical com-
munication is allowed freely (which seems to be reasonahlzeslassical communication is much cheaper than
guantum communication and does not increase the amountarigiement of the system). Indeed, the authors of
the present paper established that any linear classicabrietoding protocol oveF, (i. e., a scheme where the
encoding operation at each node is a linear function of fisits) for the multi-cast problem can be turned into a
perfect quantum network coding protocol [11]. This was galieed to thek-pair case[[10] where it was shown
that if the classicak-pair problem is solvable usinglmear coding scheme (or even just a vector-linear coding
scheme over a finite field or a finite ring) then the quanttypair problem is also solvable using free classical
communication. This result gives rise to two natural questi

The first question is whether the linearity condition on thding schemes of the classiéapair problem can be
removed. Indeed, there exist classikgbair problems that are solvable with nonlinear coding sté® but cannot
be solved with linear coding schemes([2] 15]. This quessoriasely related to the following open problem: can
we construct an instance of thepair problem for which there is a (nonlinear) solution te ttiassical version of
the problem, but for which no perfect solution to the corggpng quantum version exists, even with free classical
communication? Note that the techniques used in Ref. [1@]are the linearity of the classical encoding scheme,
and hence they cannot be used directly when simulatingicédssonlinear coding schemes.

The second question is how much amount of classical commtimicis sufficient. The protocol in Ref. [10]
essentially uses the fact that classical information casdmt (for free) between any two nodes, i.e., there exists
a classical two-way channel between any two nodes, and ¢hpacities are unlimited. Obviously, it would be
desirable to find a weaker requirement on the classical carimation, and to reduce the amount of classical
communication as much as possible. This second questidngsly related to the work of Leung, Oppenheim
and Winter [12]. They investigated various settings of quannetwork coding assisted with supplied resources
such as free classical communication or entanglement. Anotimers, they considered the case where classical
communication can be sent only between each pair of nodesected by a quantum channel and only in the
direction of that quantum channel. Unfortunately agaieytfound that the quantum two-pair problem on the



butterfly network cannot be solved even under this model. @yen problem is thus to clarify which types of
assistance of classical communication enable us to catstiguantum network coding protocol for a givierpair
problem, and show the minimal amount of classical commtioicanecessary under such a model.

Our contribution. This paper provides solutions to both of the above two qoesti We present a quantum
protocol solving, if there is some help of classical comroation, any instance of thie-pair problem for which
the corresponding classical version is solvable (uraigrcoding scheme). In other words, our result shows that
whenever an instance of the classiéapair problem is solvable, the quantum version of the sanoblem is
solvable when assisted with classical communication.Heantore, classical communication is only sent between
two nodes linked by quantum channels, and more preciselyuaiteof classical communication is sent in the
direction of each quantum channel, and one unit is sent imexerse direction of each quantum channel. When
considering two-dimensional quantum states (qubits)h etassical communication unit consists of one bit, and
thus, at most two bits are sent between adjacent nodes: dhe direction of the quantum channel and the other
in the reverse direction. The total amount of classical camioation bits sent is then at most twice the number
of edges in the graph. This significantly improves the bourdrgin Ref. [10], in which the amount of classical
communication going through every edge could depend onuheber of nodes.

The starting point of our protocol is the method proposedef [RQ]. We first simulate a classical protocol by
applying a quantum operator at each node in order to simthatelassical encoding performed at this node. This
simulation introduces intermediate registers that araregiéd with the quantum state we want to send to the targets,
and thus have to be “properly disentangled.” All the diffid come from this latter crucial part. The technique
used in Ref.[[10] was to measure these intermediate regjistéine Fourier basis, and then to send the measurement
outcomes to the target nodes, who then correct locally tlsemtroduced by the measurements. However, this
technique relies on the fact that the classical protocatdsimulated is linear, namely that the exponent in the
phase introduced is a linear function of the input — this igywe phase could be corrected locally at the targets.
In our new protocol, we consider a different way of succdbsflisentangling the intermediate registers. The
registers are again measured in the Fourier basis, but tasurement outcomes are then sent to the nodes to which
the current node has incoming edges (instead of to the taggkets). We then show that, when these operations are
done in a proper order (a reverse topological order of thesipdhen the phase introduced by the measurements
can be corrected locally at these nodes. Repeating thiggsdor each internal node of the graph enables us to
disentangle almost all the intermediate registers. Theamr@ny intermediate registers are those owned bykthe
source nodes, which can be disentangled by measuring thia Fourier basis, but now sending the measurement
outcomes through the graph to the targets. The point ishigtan be done in a very communication-efficient way
since this becomes precisely an instance of the clagsipair problem for which a solution is available.

In our new protocol, the classical coding scheme we simultag appears three times. First, this scheme is
simulated quantumly, which introduces the intermediagsters — this uses one unit of quantum communication
for each edge (in the original direction of the edge). Segdnd used when removing the internal intermediate
registers to correct the phase — this uses one unit of clgEimmunication for each edge (in the reverse direction
of the edge). Third, it is used explicitly in order to remosggthe last part of the protocol, the intermediate registers
owned by the source nodes — this uses one unit of classicahcmication for each edge (in the original direction
of the edge).

Actually, our techniques can also be used to create EPRpaiween the sources and the targets of an instance
of the k-pair problem, whenever the associated classigphir problem is solvable, using one qubit of quantum
communication and only one bit of classical communicatiengrige, as will be discussed in Secfidon 5. Note that
once EPR-pairs are shared, the quanttair problem can be solved using teleportation. Howevss, would
require three bits per edge in total, while the protocol dbed above (designed specifically for thigpair problem)
uses only two bits per edge.

Related work. The restriction of classical communication in this papes a0 studied before by Leung, Op-
penheim and Wintef [12] (who called this the two-way asdisi®se with free two-way classical communication).
As mentioned in Ref[[12], this enables us to send a qubit avarse direction to the quantum channel by sending



two bits (via quantum teleportation). Hence some exampldbeok-pair problem are shown to be solvable by
routing (i.e., without using any coding) whéme sharings allowed (i.e., when the rate of transmission is studied
under the assumption that the network can be used more tlea): see Refl[[12] for the butterfly network. It is
open, however, whether every instance is solvable by gutdur method suggests a different way of solving the
guantumék-pair problem, which requires some coding but does not redime sharing, and works for any solvable
classical instance.

2 The k-pair problem

The classicalk-pair problem.

We recall the statement of thkepair problem in the classical case (often called the mleltimicast problem), and
the definition of a solution to this problem. The reader ignefd to, for example, Ref.[[3] for further details. We
use the same setting as in Réf.][10], but some conventiofer dif order to facilitate the exposition of our new
protocol.

An instance of a-pair problem is a directed acyclic gragh= (V, E) and k pairs (s1,t1),- .., (Sk, tx) Of
nodes inV. We suppose, without loss of generality, that the nogdes. ., s; have fan-in zero, and the nodes
t1,...,t, have fan-in one and fan-out zero. We denotefbyhe set ofinternal edgesi.e., the edges iF with
no extremity in{ty,...,t;}. Thek edges with an extremity ifit1, ..., ¢, } are called theutput edgesFor each
nodew in V, we fix an arbitrary ordering of the incoming edgesvpfand an arbitrary ordering of the outgoing
edges ofv.

Foreachi € {1,...,k}, a message; is given at the source;, and has to be sent to the targethroughG
under the condition that each edge has unit capacity. Fareodence, the following convention is assumed when
describing a classical coding scheme. Each sosiresupposed to have a “virtual” incoming edge from which it
receives its input; (each source node has thus fan-in at least one, but thesal\édges are not included ir)).

In this way, the source nodes perform coding operations @in itpputs, and this convention enables one to ignore
the distinction between source nodes and internal nodessel¢onventions are illustrated in Hig. 1.

Let X be a finite set. Acoding schemeverX is a choice of operations for each nodé/irwith nonzero fan-in
and nonzero fan-out: for each nodec V with fan-inm > 1 and fan-outn > 1, the operation at is written
asn functions f,, 1, . .., fu.n, €ach fromx™ to X, where the valuef, ;(z1, ..., z,) represents the message sent
through thei-th outgoing edge ot when the inputs of then incoming edges arey, ..., z,. Since the graph
G is acyclic, we can fix a topological ordering of the nodes @& ¢fnaphs, i.e., an ordering in which each node
comes before all nodes to which it has outgoing edges. Thagagheme can then be explicitly implemented by
applying the encoding functions in the order in which theewdppear. Aolutionover Y to an instance of the
k-pair problem is a coding scheme ovethat enables one to send simultaneousiyessages; < 3 from s; to¢;,
foralli € {1,...,k}. For example, the coding scheme in Fij. 1 is a solution ¢0et} to the two-pair problem
associated with the butterfly graph.

The quantum k-pair problem.

We suppose that the reader is familiar with the basics of uannformation theory and refer to Ref. [14] for
a good reference. In this paper we use the same model for #rguqu k-pair problem as in Ref [10] except
restricting the classical communication to be allowed.

An instance of a quanturk-pair problem is, as in the classical case, a directed acgciphG = (V, E) and
k pairs of nodegsi,t1), ..., (sk,tx). LetH be a Hilbert space. A (quantum) solution fHrto the instance is a
guantum coding scheme, i.e., a choice of quantum operabizgrsall nodes, allowing us to send a quantum state
lv) € H®* supported on the source nodes. . ., s (in this order) to the target nodes, . . . , ¢ (in this order).
We consider the model where each edge~otan transmit one quantum state ovér In this paper, classical



communication is only allowed between any two adjacent sodév,,v;) € E then classical communication is
possible fromw, to v and fromus to v1. (Note that in Ref.[[10] classical communication was alldveetween any
two nodes of5.) For a positive integed, an instance of the quantukapair problem is said to bsolvableover C¢

if there exists a protocol solving this problem far= C<.

3 Main result

The main result of this paper is the following theorem.

Theorem 1. LetG = (V, E) be a directed acyclic graph ang,t1), ..., (s, tx) be k pairs of nodes irl/. Let

Y. be a finite set. Suppose that there exists a solution Bvierthe associated classic&lpair problem. Then the
corresponding quanturh-pair problem is solvable ove€/*!. Moreover, there exists a quantum protocol for this
task that sends at most two elementXE gfer edge as classical communication (one in each directidheoedge),
i.e., at mose| F|[log, ||| bits of classical communication in total.

The amount of free classical communication used in the pobtaf our previous work [10] wakm |V |[logs | X ]
bits, wherem denotes the maximal fan-in over all nodegdr(note thaf E| is at mostO(m|V]) in the worst case,
and is much smaller tham|V'| in most cases). The bound in Réf. [10] actually supposesctassical information
can be sent between any two nodes of the graph. If the classiganunication is restricted to adjacent nodes,
then the amount of communication can increase by a factoesponding to the length of the longest path from
an internal node to a target node, and, in general, the nuoflEements o that are sent through a given edge
depends ork, |V | andm. In comparison, Theore 1 enables us to perform quantumonietveding by sending at
most two elements of. between adjacent nodes.

Notice that the classical communication bound of Thedresdkscribed independently of the original classical
coding scheme. In fact, if there exists a coding scheme obgraph(V, E’) of G, whereE’ C E (e.g., if a part
of the graph is not involved in the original classical enogdscheme), then the factoF| can be improved in
a straightforward way. We can then also describe the coritplekx a quantumék-pair problem in term of the
complexity of the best classical protocol for the corregfing classical task (i.e., in term of the smallest subset
E’ C F such that a solution ovelV, E’) exists). A specific statement of this observation for thee¢&$ = 2
follows.

Corollary 2. LetG = (V, E) be a directed acyclic graph ans1,¢;), ..., (s, tx) be k pairs of nodes inV.
Suppose that there exists a solution oyer1} to the associated classicatpair problem using a total amount
of C bits of communication. Then there exists a quantum protoeet C? for the corresponding quantur-pair
problem that sends in totdl' qubits of communication art” bits of classical communication.

4 Protocol

As in Ref. [10], the basic strategy for proving Theoreim 1 ipéoform a qguantum simulation of the classical coding
scheme, while the simulation method is more elaboratedbrBgfresenting the proof, we need some preliminaries.

4.1 Quantum operators

Let X be a finite set. In the quantum setting, we suppose that egisterecontains a quantum state oger= C/*l,
and denote by{|z)}.ex an orthonormal basis off. We use the notatiof0y) to refer to an arbitrary vector of
the basis that will be used to initialize registers. bebe an arbitrary bijection front to the set of integers
{0,...,|¥| — 1}. For convenience we denate= o (z) for any element: € 3.



We define a unitary operatd# over the Hilbert spac@( as follows: for anyy € X3, the operato’¥ maps the
basis statéy) to the state
21y - z>| >

\/Eze 2 Bl

Note that1V is basically the quantum Fourier transform over the cyadlaug of orderX|.

A measurement of a quantum state over the Hilbert spaicethe Fourier basis consists in applying the operator
W to the quantum state, and then measuring it in the H&sj$.c». The measurement outcome is an element of
Y. Notice that, if the quantum state measured in the Fourisishg|y), for somey € 3, and the measurement
outcome isz € ¥, then the state after measurement become Q’I”y‘ 2)|z).

Let m andn be two positive integers anfi, ..., f,, ben functions fromX™ to . Let Uy, . r, be a unitary
operator over the Hilbert spadé®™ « H™ such that for any elements, ...,y in X, the operatorUy, .

maps the baSiS Stat@h s 7ym>’07'l7 e 70H> to the Statéyla s 7ym>’f1(y17 s 7ym)7 s 7fn(y17 s 7ym)>

4.2 Global encoding functions

A coding scheme over a directed acyclic gréph- (V, E) naturally induces global encoding functioassociated
with each edge irE. Leté be an edge ir. Then the global encoding functigpy: ¥ — ¥ associated with the

edgec is the function of the variables,, ..., z; representing the message sent through this edge by thegcodin
scheme when the inputis, ..., x;. SinceG is acyclic, the global encoding functions can be definedctlireas
follows.

Definition 3. Let G = (V, E) be a directed acyclic graph a«sl, t;) be k pairs of nodes iV, fori € {1,... k}.
Consider an encoding scheme for thipair problem defined by, for each node= V' with fan-in m and fan-out
n, functions f, 1, ..., fu» from X to X representing the encoding performedvatThen the global encoding
functiongz: ¥* — 3 associated with this encoding scheme, for e&ehE, is inductively defined as follows.

(a) Suppose thatis an edge ine of the form(s;, u), withi € {1,...,k} andu € V. Suppose thatis the/-th
outgoing edge of;. Thengg(x1,...,x;) = fs, ¢(z;) foranyzy,...,z; € X.

(b) Suppose thatis an edge inE of the form (v, w) with v ¢ {s1,..., sk }. Suppose that is the/-th outgoing
edge ofv and denote by(uj,v),..., (u,,v) the incoming edges of node (see Fig[R). Then, for any
Ti,...,Tk €2,

g(v,w)(wlﬂ ) va( 9(uq v (‘Tlﬂ"'7xk)7"'7g(um,v)(x17"'7wk))' (1)

4.3 Proof of Theorem1

Now we are ready to give the proof of TheorEn 1 (see Appendirfiallustration of our strategy on the butterfly
graph).

Proof of TheorerhllLet G = (V, E) be a graph on which there exists a solution to the classigair problem
associated with the pairs;, ;). Without loss of generality, we suppose that all node¥ I{¢y, ..., ¢} have
nonzero fan-in and nonzero fan-out (remember that eacltesmades; has one virtual incoming edge). For each
nodeV\{t,...,t;} with fan-inm > 1 and fan-outr > 1, let f, 1, ..., f, » be the coding operations performed
at nodev in the solution, where each functigf ; is from >X™ to X.

Suppose that the input state of the quantum task is

[Vs)(S1,.50) = Z Qay oo |T1)S, @ -+ @ |Tp)s,

Tl ,TRED



g(um,v) (xh ey Ik)

g(’u,’w)(gch .- -7mk):fv,l(g(u1,1/)(xlv .. .7$k), e 7g(’um,1/)($17 .. 7$k))

Figure 2: lllustration of the notion of global encoding ftibas. Here node hasm incoming edges labelled in
increasing ordefuy,v), - , (um,v), and edgdv, w) is the/-th outgoing edge of.

where then,, . ., 's are complex numbers such th@m1 s |am17m,xk|2 = 1. Here, for eachi € {1,..., k},
S; is a register received by the nodgfrom its incoming virtual edge. Our protocol consists of theee parts that
are described in details below.

Part 1. First, we simulate the solution to the associated clastisil node by node. In our simulation, each node
in V will receive one quantum register along each incoming edgmémber that each sourggreceivesS; from

its incoming virtual edge). Each nodelif\{¢1, . .., tx } will perform, in the same order as in the classical protocol
(e.g., any topological order of the nodes@j, a quantum operation on the registers it receives, and sewd
registers through its outgoing edges.

More precisely, leb € V\{t1,...,tx} be a node of7 with fan-in m and fan-out. LetQq,...,Q,, denote
the quantum registers received by the incoming edges. Tdiagperformed at node is simulated as followsn
quantum registerQ’, .. ., Q},, each initialized td04), are introduced, and then the operatgs ;. is applied to
the register§Qi,...,Qm, Q},...,Q),). The registerf],...,Q), are then sent along the outgoing edges of
(i.e.,Q} is sent along the-th outgoing edge of), and the registerQ, ..., Q,, are kept at node.

Such a simulation is done for all the nodedii{¢1, ..., tx}. Notice that exactly one register is introduced per
edge inE. These registers can then be indexed by the edgE’s the register associated with an edge of the form
(u,v) € Eis created at node, then sent fromu to v through edgeu, v) in the procedure described above, and
is finally owned by node. We will denote the registers associated with the outpueedand owned by the target
nodes) byT, ..., T, and the other registers IR for eache’ ¢ E. Remember that, additionally, each sousge
owns the input registe$;, fori € {1,...,k}. Then the overall quantum state consists0f + k registers and,
since the coding scheme under consideration solves th&aadhtask, is of the form

Z gy, [T1)8, [T1) Ty @ - @ |zp)s, |2k) T, ® <® |ge(@1, ... ,wk)>Rg)

T1yeTHED éeE

whereg;’s are the global encoding functions associated with theidened coding scheme, as defined in Definition
3.

Part 2. Second, we remove all the intermediate regiskrsConsider an edgé@, w) € E and the registeR ,, )
associated with it. This register is owned by the internalen@ at the end of the procedure described in Part
1. Nodew first measures registét, ,,) in the Fourier basis. Suppose that the outcome of the measutds



a(w,w) € 2. The quantum state then becomes

o) * Yww) (L1, Tk)
Z Qgy...zp, €XD (2m (ww) * I T%| ) X |z1)s, |x1)T, @ - -

T1,..,TEED
e ® o) s o) T, @ ou)Ren © (@) lgele . k)R, ).
é’GE\{(U,w)}

RegisterR, .,y is not anymore entangled with the other registers, and @mnlik disregarded. Nodethen sends
the element:,, .,y of X to the nodev using classical communication. Now suppose thatv) is the/-th outgoing
edge ofv and denote byui,v),..., (un,,v) the incoming edges of node(see Fig[R). Node then applies the

map Y, to its registergR ., v), - - - s R vy ) Wherey, is defined as
Av,w) fv,f(zla <o 7Zm)
Yoilzi,ooo, 2m —2 : ey Zm
|21 Zm) exp( L B )]21 Zm)

foranyz,...,z, € X. From Equation[{l1), this implies that the quantum state &=
S ey mm)s, w)T, ® - ® |zn)s, o) T, © ( QR lgela1,. .. 7$k)>Rg>,

L1,y TR ED )
e#(v,w)
where the registeR ,, ) has been disregarded. Notice that only one elemehtiuds been sent (from to v, i.e.,
in the reverse direction of the edge, w)).
The above procedure is performed by each internal node €aeh node iV \{s1,..., sk, t1,...,tx}) ina
reverse topological order (i.e., an ordering in which eamttencomes before all nodes from which it has incoming
edges) — this latter condition is crucial for the correcnetthe technique. The final state is

Y mlm)s w)T, @ @ ks, |2k T, - 2

L1, X ED

The total number of elements Bfsent as classical communication in Part PA$ More precisely, one element of
> is sent per edge, in the reverse direction of the edge.

Part 3. Finally, we remove the registefs,...,S;. Remember that each registeris owned by nodes;, for
i € {1,...,k}. Each nodes; then measures its regist®y in the Fourier basis, obtaining an elemént X. The
state then becomes

by - T1+ -+ by Tg
Z Q... OXP (27” o ‘2’ : k) ‘b1>51 ’w1>T1 @ ‘bk>sk‘xk>Tk

L1, LEED
The registerssy,...,S; can then be disregarded. Each sousc@ow sendsh; to the targett; using classical
communication. Notice that this is precisely an instancthefclassicak-pair problem we are considering, and
hence the assumed classical network coding protocol isall@i Therefore, this can be done by sending at most
one element of per edge. As the last step, each target noder i € {1,...,k} applies the mag; to its
registerT;, whereZ; maps the basis stafe) to the statexxp ( — 2mb‘i2'|f)|a:>, for anyx € ¥. This corrects the
phase and the resulting state is

Y e, © @ )T, = [Ys) T T-

Tl , TR ED

The amount of classical communication sent in Part 3 is at o element oE per edge (in the direction of the
edge), i.e., at mosE| elements ok in total.

This concludes the proof of Theorém 1. O



5 Sharing EPR-pairs

In this section we describe how our techniques can be usaddtecEPR-pairs between the sources and the targets
of an instance of thé&-pair problem using one qubit of quantum communication anlg one bit of classical
communication per edge.

Let # be a Hilbert space of dimensi@with orthonormal basig|0),|1)}. Let A andB be two registers over
#H. Remember that an EPR-pair ovér, B), denoted by W) 4 g), is the quantum Stat%(‘O>A‘O>B + [1)all)B).

Let G = (V, E) be a directed acyclic graph are,¢1), ..., (sk, tx) bek pairs of nodes. The corresponding
EPR-pair sharing problenasks to creaté EPR-pairs|V) s, 1,y Where, fori € {1,...,k}, eachS; is a register
owned by the source; and eachT; is a register owned by the targgt We consider the model where each edge of
G can transmit one qubit and classical communication is olidyvad between any two adjacent nodes.

Suppose that the classicalpair problem associated @ and thek pairs (s;, ¢;) has a solution ovef0, 1}.
Each source node creates a registéy; initialized to the stat¢0)s,, and applies a Hadamard transform on it. The
guantum state obtained is

1

V) (s1,.80) = ?(\0%1 +1)s,) ® -+ @ (|0)s, + [1)s,)-

Now consider the quantuttpair problem associated @ and thek pairs(s;, t;) on the inputiy) (s, . s,)- Apply-
ing Part 1 and Part 2 of the protocol described in Se¢fion dsgfsee Formul@l2)) the state

1
ﬁ(‘0>51 ‘O>T1 + ‘1>51 ‘1>T1) @ (‘O>Sk‘O>Tk + ’1>Sk ’1>Tk) = ‘\I/>(517T1) Q- ® ’\I’>(Sk,Tk)’

while only one bit of classical communication is sent perestigE, in the reverse direction of the edge. Hare
denotes a register owned by the target ngdéor : € {1, ..., k}. We thus obtain the following result.

Theorem 4. LetG = (V, E) be a directed acyclic graph and,¢;), ..., (sk, tx) bek pairs of nodes irl/. Sup-
pose that there exists a solution o{éx, 1} to the associated classicatpair problem. Then there exists a quantum
protocol that solves the corresponding EPR-pair sharingbtem using only one bit of classical communication
per edge (in the reverse direction of the edge).
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Appendix: Example for our protocol

We illustrate in this appendix the techniques developedhimpaper for the butterfly network shown in Figlte 3.

Our task is to send a quantum state) from the source nodes andss to the target node§ and¢s. The task can

be achieved using the quantum protocol given in Thedrem 1giWethe explicit details for this example. More

precisely, we describe how the protocol simulates the iclasknear coding scheme over = Fy (the finite field

of size 2) presented in Figl 1. Notice that this example do¢seguire nonlinear coding, but we prefer to explain

our protocol on this simple example rather than on knowramsts of the:-pair problem that require nonlinear

coding (e.g., the networks proposed in Refsl[2, 15]) siheddtter are rather complex. Moreover, we believe that

this choice enables the reader to better compare our neadgotdd the one proposed in our previous waorkl[10].
Hereafter, all the registers are assumed to be single-cgditers, i.e.H = C2. We denote by{|z)}.cr, an

orthonormal basis dff. All the registers are supposed to be initializedo

Figure 3: Quantum network coding through the butterfly nekw&ach edge has quantum capacity one. The task
is to send a given input quantum state;) in (S1,S2) to (T, T2) in this order of registers. Here, the quantum
registerS; (resp.Ss) is possessed by the source noedgresp.ss), while the quantum registér, (resp.Ts) is
possessed at the end of the protocol by the target hddesp.t2). The protocol given in Theoreni 1 realizes perfect
quantum transmission d¢f)s). EachR; or T, indicates the quantum register to be sent along the comesmp
edge in the protocol.

In this example, the unitary operatoiy, r, is applied at nodes;, s, andns, wheref; denotes the identity map
overFy. The operatoly, ¢, maps each basis stdtg |21, z2) to the statey)|z; + y, 22 + y). The quantum unitary
operatorUy, is applied at nodes;, n3 andng4, wheref, : (F9)? — Fy is the function mappingy:, y2) to y1 +o.
The operatorUy, maps|yi, y2)|z) 10 |y1,y2)|2 + y1 + y2). Notice that bothUy, , and Uy, can be implemented
by using controlled-NOT operators.

Now we present our protocol for the example of Fig. 3. Let

[1$)(51,55) = @00|0)s,10)s, + a01|0)s, |1)s, + @10[1)s,|0)s, + c11[1)s, [1)s,

be the state that has to be sent from the source nodes to gle¢ tmdes. Her§; (resp.Ss) is a register received
by the source; (resp.ss) through its virtual incoming edge.

Part 1. Nodes; (resp.sz) introduces two register®; andR; (resp.R3 andRy), and applies the operatdry, ,

11



over the registeréS;, Ry, Ry) (resp. over the registefSs, R3, Ry)). The resulting state is

@00/0) (s, ,R1,R2)|0) (S.,R5,R)
+a01/0) (s, ,Ry,R2) 1) (52.Rs.Ra)
+a10/1)(51,Ry R2)[0)(S2.Rs.Ra)
+a11]1) (s, Ry Ro) 1) (S2,Rs,Ra) -

Hereafter, leD and1 denote strings of all-zero and all-one, respectively, gfrapriate length (three here). Then
Ri andR; are sent tov3 andn, respectively, whileRg andR, are sent tay, andn, respectively.

Then the protocol proceeds with the simulation of the codipgration performed at nodg in the classical
coding scheme of Figl 1: node prepares a new registBg and applies the operatdi;, on registergRz, Ry, Rs).
The resulting state is

@00/0) (s, Ry ,R2)10)(S2,Rs.R) [0)Rs
+01]0) (s, R1,Ra) 1) (S2,R5,Ra) | 1)Rs
+a10/1)(s, Ry R2)0)(52,Rs,R) [1)Rs
+a11]1)(s, Ry Ra)[1)(52,Rs.R4) [O)Rs -

The registeR; is then sent taw,.
The noden, now prepares two registeRg andRy7, and applies the operatdfy, , on the registeréRs, Rg, R7).
The resulting state is

@00/0)(s,R1,R2)10) (S2,R5,R4)0) (Rs,Re,R7)

)(s ) )
+a01]0)(s, R R2) | 1)(55.Rs.Ra) 1) (Rs R R7)
+a10/1) (s, Ry R2)[0)(52,Rs.R4)| 1) (Rs Rs.R7)
+a11]1) (s, Ry Ra) [1)(52,R5.R4)|0) (Rs,Re.R7)

and the registerBg andR7; are sent tmg andny, respectively.
In the last step of the simulation, node (resp.n4) prepares one registér, (resp.T;), and applies thé/;, to
registers Ry, Rg, T2) (resp.(Rs, R7, T1)). The resulting state is

@00/0)(s,R1,R2)10)(S2,R5,R4) [0) (Rs,Re,R7) [0)T1 [0) T
+001]0) (s, ,Ry,R2) | 1) (S2,R3,R) | 1) (Rs,Re,R7) | 0) T2 [1) T
+0a10/1)(s;,R1,R2)[0) (52,Rs,Ra) | 1) (Rs,Re,R7) [ 1) T1 10) T
+a11]1)(s,,Ry,Ro) 1) (S2,R3,R4)10) (Rs,Re,R7) | 1) T2 [ 1) T2

and registerg; and T, are sent to nodels andts, respectively.

At this point of our protocol, node; owns registelS;, nodes, owns registefS,, noden,; owns registerfk,
andRy4, nodensy owns registeRs, nodeng owns registeiR; andRg, nodeny owns registerfks andR7, nodet;
owns registeil 1, and node, owns registeil ;.

Part 2. Let us take a reverse topological order of the internal nofiéise graph, for exampl@s, n4, n2,n1).
Nodeng first measures its registeRs andRg in the Hadamard basis (i.e., the Fourier basig¥ir= 2), giving
outcomes:; andao respectively. The resulting state is

a00|0)s, [a1)R,[0)R,|0) (s, R3,Ra) [0)Rs [@2)R6 [0) R [0) T, [0) T,
+(=1)*a1]0)s, [a1)r, [0)R, 1) (s,,Rs,Ra) [1)Rs [a2) R [1)R7 [0) 7 [ 1) T,
+(=1)" 2 ag0[1)s, |a1)R, [1)R,10) (55,Rs,Ra) | 1)Rs [02)Rs | 1) R, 1) T, [0) T,
+(=1)" a11|1)s, [a1)R, [D)Ro11) (55,R5,Ra) [0)Rs [a2)Rs [0) R, [ 1) T [ 1) T
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andR; and Rg can be disregarded. Nodeg then sends the bii; to s1, and the bitas to no, using classical
communication along the edgés;, n3) and (n2, n3) but in the reverse direction. Nodg then applies on its
registerS; the quantum operator mapping, for eacke Fo, the statdz) to (—1)~***|z). Nodeny applies on
its registerR; the quantum operator mapping, for eacke Fy, the statgz) to (—1)~?2%|x). The quantum state
becomes

s, [0
s, [0
s; |1
s, |1

R5’0

R5’1

R7‘O T ’0 T2

app|0 )
+ap1|0 )
+aigll )
)

+a11’1

R210)(S2,R3,Ra) [0
Ro|1)(S2,Rs,R) |1 T
)
)

R2|0 R7|1 T1|0

R2’1 (527R37R4)’0

R5|1
R5’0

Te

)

R7‘O>T1 ’1
(SQ,RS,R4)|1 >
)

—_ — = =
—_ — = =
T — ~— ~~—
T — ~—~— ~—

R7‘1 T1’1 T2

whereR; andRg have been disregarded.
Similarly, noden, measures its registeRs; andR7 in the Hadamard basis, giving outcontgsandb, respec-
tively. The resulting state is

@00|0)s, [0)R,[0)s,[01)R5|0)R, [0)Rs [b2) R [0) T, 10) T,
+(=1)"*2001(0)s, [0)R, |1)s, b1 )Rs | 1) R, [ 1) Rs [b2) R, [0)T, [1)
1)”aio|1)s, [1)R, |0)s, [b1)Rs [0)R, | 1)Rs [02) R [ 1) T, |0)

)51 |11)Rx11)s5 [01)Rs [1)R, |0)Rs [D2) R, [1) T, 1)

1) a11[1)s, |1)Ro | 1)s, [b1)Rs [ 1)Re [0)Rs [02)R; [ 1), 1) T -

T2
+(_ T2

+(—

Noden, then send$; to nodes,, andbs, to nodens, using classical communication. Nodethen applies on its
registerS, the quantum operator mapping, for eache F, the statdz) to (—1)~1%|z). Noden, applies on

its registerRs the quantum operator mapping, for eacke Fy, the statgz) to (—1)~%2%|z). The quantum state
becomes

00/0)s, [0)R,[0)s,0)R,|0)R5 [0) T4 |0)T,
+a01|0)s, |0)R, [1)s, | 1)R, [1)R5 0) T, [1) T,
+a10[1)s, [1)R,[0)s,[0)R, [1)Rs [ 1) T, [0) T,
+a11(1)s, [1)Ry[1)s, [1)R4 [0)Rs [ 1) T, [ 1),

whereR3 andR; have been disregarded.
Nodens then measures its registeRs in the Hadamard basis, giving outcomes he state becomes

The valuec is then sent to node;. The registeR5 can be disregarded, and the phase introduced is correctiee in
following way: noden; applies on its registerRs, R4) the unitary operator mapping, for anyy € Fs, the state
|z, ) to the statg —1)~/+@¥)|z y) = (—=1)~°@+V) |z y). The resulting state is



Notice that the same procedure to remove regiRtewould have worked even if, is not a linear function. This
is the crucial observation that enables us to simulate neaficlassical protocols as well.

Finally, noden; measures its registeR, andR, in the Hadamard basis, giving outcomé&sandd, respec-
tively. It sendsd; to nodesy, andds to nodess, respectively. The registeR®, andR, can then be disregarded,
and the phase introduced is corrected in the following waglers, (resp.s2) applies on its registe$; (resp.Ss)
the unitary operator mapping, for anyc Fy, the statgz) to the statg—1)~%%|z) (resp. to(—1)~%%|z)). The
guantum state becomes

Part 3. Nodes; (resp.s2) measures its quantum regisfar(resp.S-) in the Hadamard basis, giving outcomes
(resp.es). The state becomes

The register$; andS, can then be disregarded. Thenis sent from the sources to the target; using classical
communication and, similarlygs is sent fromss to ¢t5. This is done using one bit of communication per edge by
using the original coding protocol for the butterfly graphe bite; is sent through edgés,,n,) and(sy, ns), the
bit ey is sent through edggss, 1) and(s2, n4), and the bite; + e is sent through edgg$,, n2), (ne, n3) and
(n2,n4). The bite; can then be recovered at nodeand the bite, can be recovered at node

Nodet; (resp.to) finally applies on its register; (resp.Ts) the unitary operator mapping, for amye F,, the
state|x) to the statd —1)~“1%|z) (resp. to(—1)“2%|x)). Now the quantum state becomes the desired state

00[0)T,10)T, + @01 |0)T1, [ 1) T, + @10|1)T,[0) T, + 11| 1)1, 1)1, = [¥5) (T, T2)-

This concludes our protocol.
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